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Abstract

A mixed finite element with the characteristics is presented as a local conservative numerical approximation for an incom-
pressible miscible problem in porous media. A mixed finite element (MFE) is used for the pressure and Darcy velocity,
and a characteristic method is for the saturation. The convection term is discretized along the characteristic direction and
the diffusion term is discretized by zero-order mixed finite element method. The method of characteristics confirms the
strong stability without numerical dispersion at sharp fronts. Moreover, large time step is possibly adopted without any
accuracy loss. The scalar unknown function and the adjoint vector function are obtained simultaneously and the law of
mass conservation holds in every element by the zero-order mixed finite element discretization of diffusion flux. In order
to derive the optimal 3/2-order error estimate in L2 norm, a post-processing technique is included in the approximation to
the scalar unknown saturation. This method can be used to solve the complicated problem.

Keywords: 3D incompressible case, mixed finite element with the characteristics, elemental conservation of mass, 3/2-
order error estimate in L2 norm

1. Introduction

The mathematical model is defined by two partial differential equations, the pressure equation and the concentration
equation, to describe the displacement of incompressible miscible fluid in porous media. The pressure equation is an
elliptic equation and the saturation equation is a convection dominated diffusion equation with strong hyperbolic nature
(Douglas, Ewing & Wheeler, 19831, 19832; Ewing, Russell & Wheeler, 1984; Yuan, 1999).

− ∇ ·
( κ(X)
µ(X)

(∇p − γ(c)∇d(X))
)
≡ ∇ · u = q, X ∈ Ω, t ∈ J = (0,T ], (1a)

u = −
κ(X)
µ(X)

(∇p − γ(c)∇d(X)), X ∈ Ω, t ∈ J. (1b)

φ
∂c
∂t

+ u · ∇c − ∇ · (D(X,u)∇c) = (c̃ − c)q̃, X ∈ Ω, t ∈ J, (2)

u · ν = (D(X,u)∇c) · ν = 0, X ∈ ∂Ω, t ∈ J, (3)

c(X, 0) = c0(X), X ∈ Ω, (4)

where Ω is a bounded domain in R3, p(X, t) is the pressure, u = (u1, u2, u3)T is Darcy velocity and c(X, t) is the saturation
of water. q̃ = max{q, 0}, where the quantity q corresponds to the injection well as q > 0 and to the production well as
q < 0. Other symbols are defined as follows, φ(X), the porosity of porous media, κ(X), the permeability of rock and µ(c),
the viscosity related with the water saturation c, c̃, the injected saturation at injection wells and the resident saturation
at production well equal to c. γ(c) and d(c) = (0, 0, z)T denote the gravity coefficient and vertical coordinate and µ
denotes the unit outward normal vector at ∂Ω. D(X,u) is a diffusion matrix defined generally in (Dawson, 1989; Russell
& Wheeler, 1983),

D(X,u) = Dm(X)I + αl|u|β
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where Dm denotes the molecular diffusion coefficient, I is a 3×3 identity matrix, and αl, αt are longitudinal and transverse
dispersivities, respectively. ûx, ûy, ûz are direction cosines of Darcy velocity in x-axis, y-axis and z-axis. This mathematical
model is usually discussed for simulating numerically oil reservoir and pollution transfer problems. Generally, diffusion
matrix is supposed to be positive definite and is simplified only related with molecular dispersion coefficients, and it holds
that 0 < D∗ ≤ Dm(X) ≤ D∗ for two positive constants D∗ and D∗ (Douglas & Roberts, 1983; Russell & Wheller, 1983;
Yuan, 1996).

A restriction condition is introduced for making the clarity∫
Ω

q(X, t)dX = 0,
∫

Ω

p(X, t)dX = 0, t ∈ J. (6)

Convection-dominated diffusion equations are major modelled formulations in some actual problems, so it is important to
show the efficiency and accuracy in solving such problems. Some simple and traditional numerical methods such as finite
element method (FEM) or finite difference method (FDM) are possibly invalid for numerical dispersion and nonphysical
oscillation. Some new improved numerical techniques are put forward for convection-diffusion equations, and their
numerical analysis and experimental tests are shown (Bell, Dawson & Shubin, 1988; Cella, Russell, Herrera & Ewing,
1990; Dawson, Russell & Wheeler, 1989; Johnson, 1986; Todd, Dell & Hirasaki, 1972; Yang, 1999; Yuan, 1996, 1999).
These methods are developed from FEM or FDM, and they have some distinct properties. Upstream weighting introduces
some extra numerical dispersion. High-order Godunov scheme requires an additional CTL restriction about time step.
Streamline diffusion method and least squares mixed finite element method add some extra numerical work for artificial
streamline directions. Eulerian-Lagrangian localized adjoint method (ELLAM) is mass conservative and it is difficult
for evaluating the resulting integrals. The modified method of characteristic finite element method (MMOC-Galerkin)
permits a larger time step but fails to preserve the law of mass. It is shown that mixed finite element method could solve
some problems in fluid mechanics well. The unknown functions and adjoint vectors could be obtained simultaneously.
Theoretical analysis and applications are also discussed (Johnson & Thomee, 1981; Raviart & Thomas, 1977; Nedelec,
1980; Douglas & Roberts, 1985).

Arbogast and Wheeler discuss a characteristic mixed finite element (CMFE) to approximate the solution of an advection-
dominated transport problem (Arbogast & Wheeler, 1995). It is based on a space-time variational form of the advection-
diffusion transfer problem and adopts characteristic approximation similar to that of MMOC-Galerkin method for handling
diffusion term. Since piecewise defined constants are considered in test function space, so the law of mass holds element
by element. A post-processing step is included in the schemes to improve the rate of convergence of the method. It is
proven that the scheme is optimally convergent with first order in time and at least suboptimally convergent with 3/2 order
in space. It is point out that the scheme of characteristic mixed finite element introduces many integrals of the mapping
of test functions and their computations are difficult and complicated.

In this paper, we discuss a new coupled scheme of MFE and CMFE to solve an incompressible miscible displacement
problem (1)-(6) based on the treatment of two-dimensional simplified model and on the preliminary results (Sun & Yuan,
2009). Error estimate in L2 norm is shown only in first order and its theoretical analysis is not generalized for three-
dimensional case. Three-dimensional problem is concluded by a coupled system from modern numerical simulation of oil
reservoir (Ewing, 1983; Shen, Liu & Tang, 2002; Yuan, 2013) and its computational procedures are formulated as follows.
The pressure is computed by the method of MFE and both the pressure and Darcy velocity are obtained simultaneously.
The saturation equation is discretized by the characteristic method of MFE, where characteristic approximation is used for
the convection term and a zero-order MFE approximation is applied for the diffusion term. The method of characteristics
preserves the stability at sharp fronts and overcomes numerical dispersion. It has smaller truncation error and adopts larger
time step with high efficiency while without any loss of accuracy. The lowest-order MFE approximation for diffusion term
computes the unknown scalar function and the adjoint vector functions. This scheme conserves mass locally because of
piecewise defined constant test functions. A postprocessing technique is introduced to improve the convergent rate and an
optimal 3/2 order error estimate in L2 norm is derived. Then, this method may solve the complicated problem efficiently
(Arbogast & Wheeler, 1995; Ewing, 1983; Shen, Liu & Tang, 2002).

The symbols of Sobolov space are used in this paper. Suppose that the problem is regular

(R)


c ∈ L∞(H2)

⋂
H1(H1)

⋂
L∞(W1

∞)
⋂

H2(L2),
p ∈ L∞(H1),
u ∈ L∞(H1(div))

⋂
L∞(W1

∞)
⋂

W1
∞(L∞)

⋂
H2(L2).

(7)

In the following discussions, K and ε denote a generic positive constant and a generic small positive number, respectively.
They have different definitions at different places.
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2. The Scheme of MFE-CMFE

For convenience, we assume that the problem (1)-(6) is Ω-periodic (Ewing, 1984; Yuan, 1999). This assumption is phys-
ically reasonable, because no-flow condition (3) is generally treated by mirror reflection, and interior flow patterns play
major roles in reservoir simulation (Ewing, Russell & Wheeler, 1984; Shen, Liu & Tang, 2002; Yuan, 1999). Therefore,
the boundary condition (3) could be ignored.

2.1 A CMFE Approximation for the Saturation Equation

Darcy velocity u = (u1, u2, u3)T is assumed to be known for showing how the saturation is obtained. The characteristics
and MFE discretization are used. Let

V = {χ : χ ∈ H(div; Ω), χ · ν|∂Ω = 0},M = {ϕ : ϕ ∈ L2(Ω), ϕ is a piecewise defined constant function},

and M is a dense subset in L2. Let τ(X, t) denote the unit vector of characteristic direction (−u1,−u2,−u3, 1) associated

with the operator φ ∂c
∂t + u · ∇c and let ψ = [|u|2 + 1]1/2 = (

3∑
i=1

u2
i + 1)1/2, where

ψ
∂c
∂τ

= φ
∂c
∂t

+ u · ∇c.

Take z = −D(u)∇c, and assume that u(X, t) is known. The weak form of (2) is given for finding a mapping (c, z) : J →
L2(Ω) × V such that

(ψ
∂c
∂τ
, ϕ) − (∇z, ϕ) = ((c̃ − c)q̃, ϕ), ∀ϕ ∈ L2(Ω), (8a)

(D−1(u)z, χ) + (c,∇ · χ) = 0, ∀χ ∈ V, (8b)
c(X, 0) = c0(X), z(X, 0) = −D(u(X, 0))∇c0, ∀X ∈ Ω. (8c)

Let ∆tc = T/N denote a time step of the saturation where N is a positive integer, and let tn = n∆t. For a function ϕ(X, t),
let ϕn(X) = ϕ(X, tn), and define

X̄n−1 = X − φ−1un∆t, c̄n−1(X) = cn−1(X̄n−1).

Approximate ∂cn

∂τ
(X) = ∂c

∂τ
(X, tn) by a backward difference quotient

∂cn

∂τ
(X) ≈

cn(X) − c̄n−1

∆tcψn , (9)

where ψn = [φ2 + |un|2]1/2.

The time discretization (9) is combined with a spatial normal mixed finite element discretization. For hc > 0, let Thc = {Jc}

denote a quasi-uniform partition of Ω, where the diameter of the regular tetrahedron element or hexahedron element in
symbol Jc is not larger than hc. Let the lowest-order Raviar-Thomas-Nedelec mixed finite element space be denoted by
Mh × Hh ⊂ M × V (Brezzi, 1974; Nedelec, 1980; Raviart & Thomas, 1977), where their functions and approximations
satisfy the following estimates

(Ac)


inf
ϕ∈Mh
|| f − ϕ|| ≤ K1hc|| f ||1,

inf
χ∈Hh
||g − χ|| ≤ K1hc||g||1, inf

χ∈Hh
||g − χ||H(div) ≤ K1hc||g||H1(div),

(Ic) ||ϕ||L∞ ≤ K1h−3/2
c ||ϕ||, ∀ϕ ∈ Mh,

where K1 is a positive constant independent of hc.

Define an elliptic mapping of (c, z): [0,T ]→ Mh × Hh, such that

(c̃h − c, ϕ) + (∇ · (z̃h − z), ϕ) = 0, ∀ϕ ∈ Mh, (10a)(
D−1(u)(z̃h − z), χ

)
+ (z̃h − z,∇ · χ) , ∀χ ∈ Hh. (10b)

From the discussions (Russell, 1985; Wheeler, 1973), we know that (c̃h, z̃h) exists uniquely, and get the following priori
estimates

||z̃h − z||L∞(H(div)) + ||c̃h − c||L∞(L2) ≤ K2hc. (11)
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Characteristics-mixed finite element approximation of (8) is defined by finding {cn
h, z

n
h} ∈ Mh × Hh such that

(ψ
cn

h − c̄n−1
h

∆tc
, ϕ) − (∇ · zn

h, ϕ) + (q̃ncn
h, ϕ) = ((c̃nq̃n, ϕ), ∀ϕ ∈ Mh, (12a)

(D−1(un)zn
h, χ) + (cn

h,∇ · χ) = 0, ∀χ ∈ Hh, (12b)

c0
h = c̃0

h, z0
h = z̃0

h, ∀X ∈ Ω. (12c)

2.2 MFE for the Pressure Equation

Let W = L2(Ω)/{w|Ω ≡ const.}, and define a pair of bilinear operators

A(θ, α, β) = (
µ(θ)

k
α, β), (13a)

B(α, π) = −(∇ · α, π), (13b)

where θ ∈ L∞(Ω), α, β ∈ H(div; Ω), π ∈ L2(Ω).

The pressure equation (1) is equivalent to the following saddle-point problem: to find (u, p) : J → V × W such that
(Ewing, Russell & Wheeler, 1984; Yuan, 1999)

A(c,u, v) + B(v, p) = (r(c)∇d, v), ∀ v ∈ V, (14a)
B(u,w) = −(q,w), ∀ w ∈ W. (14b)

For hp > 0, the problem (14) is discretized in space on a quasi-uniform mesh Jhp of Ω with the diameter of element Jp not
more than hp. Let Vh ×Wh ⊂ V ×W be zero-order Raviar-Thomas-Nedelec space on this mesh, then

(Ap)


inf

w∈Wh
||g − w|| ≤ K3hp||g||1,

inf
v∈Vh
|| f − v|| ≤ K3hp|| f ||1, inf

v∈Vh
|| f − v||H(div) ≤ K3hp|| f ||H1(div),

(Ip) ||v||L∞ ≤ K3h−3/2
p ||v||, ||v||W∞1 (Jp) ≤ K3h−1

p ||v||L∞(Jp), ∀v ∈ Wh,

where K3 is independent of hp and Jp denotes an element of Jhp .

Introduce the elliptic projection of (u, p) to find (ũh, p̃h): [0,T ]→ Vh ×Wh, such that

A(c, ũh, v) + B(v, p̃h) = (r(c)∇d, v), ∀ v ∈ V, (15a)
B(ũh,w) = −(q,w), ∀ w ∈ W. (15b)

where c denotes the exact solution.

It is shown that (ũh, p̃h) exists uniquely and their error estimates are given as follows (Brezzi, 1974; Wheeler, 1973)

||ũh − u||L∞(H(div)) + ||p̃h − p||L∞(L2) ≤ K4hp. (16)

Then it follows from (16) and inverse estimates (Ip)

||ũ||L∞(L∞) ≤ K4. (17)

The pressure and velocity are approximated by the MFE when the saturation approximation ch is given at t ∈ J, that is to
say that (uh, ph) ∈ Vh ×Wh are defined by

A(ch,uh, v) + B(v, ph) = (r(ch)∇d, v), ∀v ∈ Vh, (18a)
B(uh,w) = −(q,w), ∀w ∈ Wh. (18b)

Their numerical solutions of (18) exist uniquely (Brezzi, 1974). From the discussions (Brezzi, 1974; Wheeler, 1973), we
can get the following estimates by (15) and (17)

||uh − ũh||H(div) + ||ph − p̃h|| ≤ K5(1 + ||ũh||L∞ )||c − ch||. (19)

Using (16) and (19), and combining estimates of the saturation, we can derive the error estimates of the velocity and
pressure. Therefore, error estimates of (1)-(6) are mainly discussed in this paper.
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2.3 The Composite Procedures

Combing (12) with (18), we give the coupled scheme of (1)-(6). In actual computations, Darcy velocity changes more
slowly than the saturation with respect to time t, so spatial large step is adopted for computing (18). Time interval J is
partitioned 0 = t0 < t1 < · · · < tL = T , with ∆tm

p = tm − tm−1. All the steps except for the first step ∆t1
p are supposed to

be uniform ∆tm
p = ∆tp,m ≥ 2. Each pressure node tm is also a saturation node tn where m, n are positive integers, and let

j = ∆tp/∆tc, j1 = ∆t1
p/∆tc. For a function ϕm(X) = ϕ(X, tm) related with saturation step tn for tm−1 < tn ≤ tm, we require a

velocity approximation uh in (12). If m ≥ 2, define a linear extrapolation of uh,m−1 and uh,m−2 as follows

Eun
h = (1 +

tn − tm−1

tm−1 − tm−2
)uh,m−1 −

tn − tm−1

tm−1 − tm−2
uh,m−2.

If m = 1, set Eun
h = uh,0.

Combining (12) with (18), replacing exact solution by numerical approximations, then we can obtain full discrete coupled
scheme of (1)-(6) to find (cn

h, z
n
h) : (t0, t1, · · · , tN) → Mh × Hh and (uh, ph) : (t0, t1, · · · , tL) → Vh × Wh satisfying the

following equations

(φ
cn

h − ĉn−1
h

∆tc
, ϕ) + (∇ · zn

h, ϕ) + (q̃ncn
h, ϕ) = ((c̃nqn, ϕ), ∀ϕ ∈ Mh, (20a)

(D−1(Eun
h)zn

h, χ) − (cn
h,∇χ) = 0, ∀χ ∈ Hh, (20b)

c0
h = c̃0

h, z0
h = z̃0

h, ∀X ∈ Ω, (20c)
A(ch,m,uh,m, v) + B(v, ph,m) = (r(ch,m)∇d, v), ∀v ∈ Vh, (20d)
B(uh,m,w) = −(qm,w), ∀w ∈ Wh, (20e)

where ĉn−1
h (X) = cn−1

h (X − φ−1Eun
h∆tc).

The procedure (20) runs as follows.

Step 1. Given initial approximation (c0
h, z

0
h), then numerical values of (uh,0, ph,0) are obtained by (20e) and (20f).

Step 2. Applying (20a) and (20b) to find (c1
h, z

1
h), (c2

h, z
2
h), · · · , (c j1

h , z
j1
h ).

Step 3. By the fact of (c j1
h , z

j1
h ) = (uh,1, ph,1), and by (20d) and (20e), we have (uh,1, ph,1).

Step 4. Similarly, we get the values of (c j1+1
h , z j1+1

h ), (c j1+2
h , z j1+2

h ), · · · , (c j1+ j
h , z j1+ j

h ), and (uh,2, ph,2).

Step 5. The program runs repeatedly as above, then all the numerical solutions are obtained.

Let the post-processing space be denoted by M̃hc whose function ϕ is discontinuous and piecewise linear on the mesh Jhc .
Then we define a post-processing scheme of (1)-(6) by finding C0

h of M̃hc approximating to c0
h and finding (cn

h, z
n
h) ∈ Mh×Hh

and (uh, ph) ∈ Vh ×Wh for n ≥ 1 and m ≥ 0 such that

(φ
cn

h − Ĉn−1
h

∆tc
, ϕ) + (∇ · zn

h, ϕ) + (q̄ncn
h, ϕ) = ((q̃nc̃n, ϕ), ∀ϕ ∈ Mh, n ≥ 1 (21a)

(D−1(Eun
h)zn

h, χ) − (cn
h,∇χ) = 0, ∀χ ∈ Hh, n ≥ 1 (21b)

A(Ch,m,uh,m, v) + B(v, ph,m) = (r(Ch,m)∇d, v), ∀v ∈ Vh,m ≥ 0, (21c)
B(uh,m,w) = −(qm,w), ∀w ∈ Wh,m ≥ 0. (21d)

Finally, we give the locally post-processing of (Cn
h) at the element Jc ∈ Jhc to find Cn

h ∈ M̃hc such that

(φ(Cn
h − cn

h), 1)Jc = 0, (22a)
(D(Eun

h)∇Cn
h + zn

h,∇ϕ)Jc = 0, ∀ϕ ∈ M̃hc . (22b)

The procedures (21) and (22) are computed as follows.

Step 1. Given the initial approximation C0
h, the values of (uh,0, ψh,0) are obtained by (21a) and (21b).

Step 2. (21a) and (21b) are used to compute (c1
h, z

1
h), and the post-processing scheme (22) is used to compute C1

h.

Step 3. Similarly for 1 ≤ n ≤ j1, given (cn−1
h , zn−1

h ), we use (22) to get Cn−1
h , then get (cn

h, z
n
h) by (21a) and (21b). Cn

h is
obtained by (22).

Step 4. Noticing C j1
h = Ch,1, we use (21c) and (21d) to get (uh,1, ph,1).
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Step 5. In the above computation order we get the values of (c j1+1
h , z j1+1

h ), C j1+1
h , (c j1+2

h , z j1+2
h ), · · · , (c j1+ j

h , z j1+ j
h ), C j1+ j

h and
(uh,2, ph,2).

Step 6. Repeatedly, all the numerical solutions are obtained.

2.4 Local Conservation of Mass

If the problem (1)-(6) has no source or sink, i.e. q ≡ 0, and the boundary conditions have no flow, then the saturation
satisfies the law of local mass conservation on each element Jc ∈ Jhc ,∫

Jc

φ
∂c
∂t

dX −
∫
∂Jc

D(u)∇c · νJc dS = 0.

Then we show how (20a) satisfies the law of local mass conservation in discrete norms.

Theorem 1 If q = 0, then on each element Jc ∈ Jhc , the scheme (20a) satisfies the discrete local mass conservation∫
Jc

φ
Cn

h − Ĉn−1
h

∆tc
dX −

∫
∂Jc

Zn
h · νJdS = 0. (23)

Proof: Since ϕ ∈ Mh is a piecewise defined constant function on Jhc , i.e. ϕ equals to the number 1 at Jc ∈ Jhc , and is 0 at
other elements, then (20a) turns into ∫

Jc

φ
Cn

h − Ĉn−1
h

∆tc
dX +

∫
Jc

∇ · Zn
hdX = 0.

Green formula is used for the second term on Jc to get (23), then Theorem 1 is proven completely.

3. Convergence Analysis

3.1 Hypotheses

Here we only consider molecular diffusion for diffusion matrix D(X,u), i.e. D(X,u) ≈ Dm(X)I, simply symbol in D(X)
(Douglas & Roberts, 1983; Ewing, 1983; Russell & Wheeler, 1983; Shen, Liu & Tang, 2002; Yuan, 2013). The coeffi-
cients and the right-hand functions of (1)-(6) are supposed to satisfy the following conditions

(C)


0 < a∗ ≤

k(X)
µ(X) ≤ a∗, 0 < φ∗ ≤ φ(X) ≤ φ∗,∣∣∣∣ ∂(k/µ)

∂c (X, c)
∣∣∣∣ +

∣∣∣ ∂(r)
∂c (X, c)

∣∣∣ + |∇φ(X)| + |q̃(X, t)| +
∣∣∣∣ ∂q̃
∂t (X, t)

∣∣∣∣ ≤ K∗,
0 < D∗ ≤ D(X) ≤ D∗, |∇D(X)| ≤ D∗,

(24)

where a∗, a∗, φ∗, φ∗,K∗,D∗ and D∗ are positive constants.

3.2 Primary Properties

We give a local post-processing for C̃h on the element Jc ∈ Jhc by defining C̃h ∈ M̃hc such that(
φ(C̃h − c̃h), 1

)
= 0, (25a)(

D∇C̃h + z̃h,∇ϕ
)

Jc
= 0, ϕ ∈ M̃hc . (25b)

Let η = c̃h − c, η̃ = C̃h − c, ξ = c− c̃h, ξ̃ = Ch − C̃h, ρ = z̃h − z, ζ = zh − z̃h. Some properties are stated as follows (Arbogast
& Wheeler, 1995; Sun & Yuan, 2009).

Lemma 1 For ∀t ∈ J and sufficiently small spatial step hc,

||η|| ≤ K6hc||z||1, (26a)
||ρ|| ≤ K6hc||z||1, (26b)

||η̃|| ≤ K6(||z||1 + ||∇ · z||1)h2
c , (26c)

||
∂η̃

∂t
|| ≤ K6(||z||1 + ||∇ · z||1 + ||

∂z
∂t
||1 + ||∇ ·

∂z
∂t
||1)h2

c , (26d) ∑
Jc∈Jhc

||∇η̃||2Jc


1/2

≤ K6||z||1hc. (26e)
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By inverse property (Ic) and priori estimates (11), there exists a positive constant K7 independent of hc such that

||C̃h||L∞(L∞) ≤ K7. (27)

Lemma 2 For ∀t ∈ J, it holds (
φ(ξ̃n − ξn), ξ̃n

)
= ||φ1/2(ξ̃n − ξn)||2, (28a)

||φ1/2ξn|| ≤ ||φ1/2ξ̃n||, (28b)

||D1/2∇ξn|| ≤ ||D−1/2ζn||, (28c)

||φ1/2(ξ̃n − ξn)||Jc ≤ K8||∇ξ̃
n||Jc hc, (28d)

where K8 is a positive constant independent of hc.

Lemma 3 There exist a function Φn ∈ H1(Ω) and a positive number K9 independent of hc and n such that

||Φn||1 ≤ K9 (||ξn||−1 + ||ζn||) , (29a)

then for sufficiently small hc,

||Φn − ξn|| ≤ K9 (||ξn||−1 + ||ζn||) hc, (29b)

where K9 is depends on the upper bound and lower bound of D(X), and ||D||W1
∞(Ω) and || · ||−1 denote the dual norms of

H1(Ω).

3.3 Convergence Theorem

Optimal order estimates in L2 norm are derived for the saturation equation. Successively by (16) and (19) we can get
estimates of Darcy velocity in H(div; Ω) norm and of the pressure in L2 norm.

Theorem 2 Suppose that the conditions (R), (C), (Ac), (Ic), (Ap) and (Ip) hold and suppose that the partition parameters
satisfy

hp = O(h3/2
c ), (∆t1

p)3/2 = O(h3/2
c ), (∆tp)2 = O(h3/2

c ),∆tc = O(h3/2
c ). (30)

Suppose that initial approximation is taken by C0
h = C̃0

h, and there exists a positive constant K such that ∆tc ≥ Kh3/2
c , then

the solutions of (21) and (22) are estimated as follows

max
0≤n≤T/∆tc

{
||Cn

h − cn||
}
≤ K

{
h3/2

c + hp + ∆tc + (∆tp)2 + (∆t1
p)3/2}, (31a)

max
0≤n≤T/∆tc

{
||cn

h − cn||
}
≤ K

{
hc + hp + ∆tc + (∆tp)2 + (∆t1

p)3/2}, (31b)

max
0≤m≤T/∆tp

{
||uh,m − um||H(div) + ||Ph,m − pm||

}
≤ K

{
h3/2

c + hp + ∆tc + (∆tp)2 + (∆t1
p)3/2}, (31c)

where K depends on p, c and their derivatives.

Proof: It follows from (8a), (8b) and (10)

(
φ

cn − ĉn−1

∆tc
, ϕ

)
+

(
∇ · z̃n

h, ϕ
)

=
(
(c̃n − cn)q̃n, ϕ) −

(
ψ(cn)

∂cn

∂τ
− φ

cn − ĉn−1

∆tc
, ϕ

)
, ∀ϕ ∈ Mh, n ≥ 1, (32a)

(D−1z̃n
h, χ) + (c̃n

h,∇ · χ) = 0, ∀χ ∈ Hh. (32b)

Subtracting (32) from (21a) and (21b), we have

(
φ
ξn − ˆ̃ξn−1

∆tc
, ϕ

)
+

(
∇ · ζn, ϕ

)
= −

(
(ηn + ξn)q̃n, ϕ) −

(
φ
ηn − ˆ̃ηn−1

∆tc
, ϕ

)
+

(
ψ(cn)

∂cn

∂τ
− φ

cn − ĉn−1

∆tc
, ϕ

)
+ (ηn, ϕ), ∀ϕ ∈ Mh, (33a)

(D−1ζn, χ) − (ξn,∇ · χ) = 0, ∀χ ∈ Hh. (33b)
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In (33), we take test functions by ϕ = ξn and χ = ζn, and add (33a) and (33b) together. Then,

(
φ
ξn − ˆ̃ξn−1

∆tc
, ξn) + (D−1ζn, ζn)

= −
(
(ηn + ξn)q̃n, ξn) −

(
φ
ηn − ˆ̃ηn−1

∆tc
, ξn) +

(
ψ(cn)

∂cn

∂τ
− φ

cn − ĉn−1

∆tc
, ξn) + (ηn, ξn).

(34)

From (25) and (22), it follows
(φξn, ϕ) = (φξ̃n, ϕ), (φηn, ϕ) = (φη̃n, ϕ), ϕ ∈ Mh. (35)

Let
X̌n−1 = X − φ−1Eun∆tC , f̌ n−1(X) = f n−1(X̌n−1), (36)

where f denotes any function defined on Ω × [0,T ]. Using (35), we rewrite (34) as follows

(
φ
ξ̃n − ξ̃n−1

∆tc
, ξn) + (D−1ζn, ζn)

=
(
ψ(cn)

∂cn

∂τ
− φ

cn − ĉn−1

∆tc
, ξn) − (

(ηn + ξn)q̃n, ξn) + (ηn, ξn) −
(
φ
η̃n − η̃n−1

∆tc
, ξn)

+
(
φ

ĉn−1 − čn−1

∆tc
, ξn) − (

φ
ˇ̃ηn−1 − ˆ̃ηn−1

∆tc
, ξn) − (

φ
ˇ̃ξn−1 − ˆ̃ξn−1

∆tc
, ξn)

−
(
φ
η̃n−1 − ˇ̃ηn−1

∆tc
, ξn) − (

φ
ξ̃n−1 − ˇ̃ξn−1

∆tc
, ξn).

(37)

Applying Hölder inequality and (35) for the fist term on the left hand side of (37) to get(
φ(ξ̃n − ξ̃n−1), ξn)
≥

(
φξ̃n, ξn) − 1

2
[(
φξ̃n−1, ξ̃n−1)

)
+

(
φξn, ξn)] =

1
2
(
φξ̃n, ξn) − 1

2
(
φξ̃n−1, ξ̃n−1)

)
=

1
2
[(
φξ̃n, ξ̃n) − (

φξ̃n−1, ξ̃n−1)
)]
−

1
2
(
φ(ξ̃n − ξn), ξ̃n).

By Lemma 2, (
φ(ξ̃n − ξn), ξ̃n) = ||φ1/2(ξ̃n − ξn)||2 ≤ K8

∑
Jc∈Jhc

||∇ξ̃n||2Jc
h2

c ≤ K9h2
c ||D

1/2ζn||2,

where K8 is a positive constant.

Therefore, the terms on the left hand side of (37) are estimated as follows

1
∆tc

(
φ(ξ̃n − ξ̃n−1), ξn) + (D−1ζn, ζn)

≥
1

2∆tc

[(
φξ̃n, ξ̃n) − (

φξ̃n−1, ξ̃n−1)
)]

+
1

2∆tc
(2∆tc − K8h2

c)(D−1/2ζn, ζn).
(38)

The terms on the right hand side of (37) are denoted by G1,G2, · · · ,G9. Then,

|G1| ≤ K10

∣∣∣∣∣∣
∣∣∣∣∣∣∂2c
∂τ2

∣∣∣∣∣∣
∣∣∣∣∣∣
L2(tn−1,tn;L2)

∆tc + K9 ||ξ
n||

2 . (39)

|G2| + |G3| ≤ K9

{
h4

c + ||ξn||
2
}
. (40)

Applying Lemma 2 to estimate G4,

|G4| ≤ K11(∆tc)−1
∣∣∣∣∣∣∣∣∣∣∂η̃∂t

∣∣∣∣∣∣∣∣∣∣2
L2(tn−1,tn;L2)

+ K11 ||ξ
n||

2

≤ K10(∆tc)−1h4
c

{
||z||2L2(tn−1,tn;H1) + ||∇ · z||2L2(tn−1,tn;H1) +

∣∣∣∣∣∣∣∣∣∣∂z
∂t

∣∣∣∣∣∣∣∣∣∣2
L2(tn−1,tn;H1)

+

∣∣∣∣∣∣∣∣∣∣∇ · ∂z
∂t

∣∣∣∣∣∣∣∣∣∣2
L2(tn−1,tn;H1)

}
+ K10 ||ξ

n||
2 .

(41)
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For the argument of G5, we first introduce

ĉn−1 − čn−1 =

∫ X̂n−1

X̌n−1

∂cn−1

∂z
dz =

∫ 1

0

∂cn−1

∂z

(
(1 − z̄)X̌n−1 + z̄X̂n−1

) ∣∣∣Eun − Eun
h

∣∣∣ ∆tcdz̄, (42)

where z denotes the unit vector of Eun − Eun
h. Let

gc(X) =

∫ 1

0

∂cn−1

∂z

(
(1 − z̄)X̌n−1 + z̄X̂n−1

)
dz̄.

Noting that gc(X) is a mean value of the first-order derivative of cn−1(X), we have

||gc||L∞ ≤ K11
∣∣∣∣∣∣cn−1

∣∣∣∣∣∣
W1
∞

.

From (42), (16), (19) and (26) it follows

|G5| =

∣∣∣∣∣∫
Ω

φ(X)gc(X)|Eun − Eun
h|ξ

ndX
∣∣∣∣∣ ≤ φ∗ ||gc||L∞

∣∣∣∣∣∣Eun − Eun
h

∣∣∣∣∣∣ ||ξn||

≤ K11

{∣∣∣∣∣∣Eun − Eun
h

∣∣∣∣∣∣2 + ||ξn||
2
}
≤ K11

{
h2

p + h4
c +

∣∣∣∣∣∣ξ̃m−1
∣∣∣∣∣∣2 +

∣∣∣∣∣∣ξ̃m−2
∣∣∣∣∣∣2 + ||ξn||

2
}
.

(43)

For G6, taking hc sufficiently small, and using Lemma 1, (16), (19), (Ic) and Lemma 3, we have

|G6| =
∣∣∣∣ ∑

Jc∈Jhc

∫
Jc

φ
ˆ̃ηn−1 − ˇ̃ηn−1

∆tc
ξndX

∣∣∣∣ =
∣∣∣∣ ∑

Jc∈Jhc

∫
Jc

φ(X)gη̃(X)|Eun − Eun
h|ξ

ndX
∣∣∣∣

≤ K12

{ ∑
Jc∈Jhc

∣∣∣∣∣∣gη̃∣∣∣∣∣∣2Jc

}1/2 ∣∣∣∣∣∣Eun − Eun
h

∣∣∣∣∣∣ (||Φn||L∞ + ||Φn − ξn||L∞
)

≤ K12

{ ∑
Jc∈Jhc

∣∣∣∣∣∣gη̃∣∣∣∣∣∣2Jc

}1/2 ∣∣∣∣∣∣Eun − Eun
h

∣∣∣∣∣∣ h−1/2
c

(
||ξn||−1 + ||ζn||

)
≤ K12

{
h2

p + h4
c +

∣∣∣∣∣∣ξ̃m−1
∣∣∣∣∣∣2 +

∣∣∣∣∣∣ξ̃m−2
∣∣∣∣∣∣2 + ||ξn||

2
}

+ ε
∣∣∣∣∣∣D1/2ζn

∣∣∣∣∣∣2 .

(44)

G7 is discussed similarly to G6,

|G7| ≤ K13

{ ∑
Jc∈Jhc

∣∣∣∣∣∣∇ξ̃n−1
∣∣∣∣∣∣2

Jc

}1/2 ∣∣∣∣∣∣Eun − Eun
h

∣∣∣∣∣∣ h−1/2
c

(
||ξn||−1 + ||ζn||

)
≤ K13

∣∣∣∣∣∣D−1/2ζn−1
∣∣∣∣∣∣ h−1/2

c

(
hp + h2

c +
∣∣∣∣∣∣ξ̃m−1

∣∣∣∣∣∣ +
∣∣∣∣∣∣ξ̃m−2

∣∣∣∣∣∣) (||ξn||−1 + ||ζn||
)

≤ K13

{
h−1

c
[
h2

p + h4
c +

∣∣∣∣∣∣ξ̃m−1
∣∣∣∣∣∣2 +

∣∣∣∣∣∣ξ̃m−2
∣∣∣∣∣∣2 ] ∣∣∣∣∣∣D−1/2ζn−1

∣∣∣∣∣∣
+ h−1/2

c

(
hp + h2

c +
∣∣∣∣∣∣ξ̃m−1

∣∣∣∣∣∣ +
∣∣∣∣∣∣ξ̃m−2

∣∣∣∣∣∣) (∣∣∣∣∣∣D−1/2ζn−1
∣∣∣∣∣∣ +

∣∣∣∣∣∣D−1/2ζn
∣∣∣∣∣∣) + ||ξn||

2
}
.

(45)

Introduce an induction hypothesis for l ≥ 1. If tl ≤ T , we assume that

h−1
c

∣∣∣∣∣∣ξ̃n−1
∣∣∣∣∣∣2 → 0, hc → 0, n = 1, 2, · · · , L. (46)

By (46) and hp = O(h3/2
c ), we get

|G7| ≤ K13 ||ξ
n||

2
+ ε

{∣∣∣∣∣∣D−1/2ζn−1
∣∣∣∣∣∣ +

∣∣∣∣∣∣D−1/2ζn
∣∣∣∣∣∣} . (47)

G8 is bounded as follows by Lemma 3,

|G8| ≤ K14(∆tc)−1
{ ∣∣∣(η̃n−1 − ˇ̃ηn−1,Φn)

∣∣∣ +
∣∣∣(η̃n−1 − ˇ̃ηn−1, ξn − Φn)

∣∣∣ }
≤ K14(∆tc)−1

{ ∣∣∣∣∣∣η̃n−1 − ˇ̃ηn−1
∣∣∣∣∣∣
−1 ||Φ

n|| +
∣∣∣∣∣∣η̃n−1 − ˇ̃ηn−1

∣∣∣∣∣∣ ||ξn − Φn||
}

≤ K14(∆tc)−1
{ ∣∣∣∣∣∣η̃n−1 − ˇ̃ηn−1

∣∣∣∣∣∣
−1 + hc

∣∣∣∣∣∣η̃n−1 − ˇ̃ηn−1
∣∣∣∣∣∣ }{ ||ξn||−1 + ||ζn||

}
.

From the discussions (Ewing, Russell & Wheeler, 1984; Russell, 1985), we have∣∣∣∣∣∣η̃n−1 − ˇ̃ηn−1
∣∣∣∣∣∣
−1 ≤ K14

∣∣∣∣∣∣η̃n−1
∣∣∣∣∣∣ ∆tc,
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and ∣∣∣∣∣∣η̃n−1 − ˇ̃ηn−1
∣∣∣∣∣∣
−1 ≤ K14

∣∣∣∣∣∣η̃n−1
∣∣∣∣∣∣ .

Then, combining the above estimates with Lemma 3,

|G8| ≤ K14

{ ∣∣∣∣∣∣η̃n−1
∣∣∣∣∣∣ +

∣∣∣∣∣∣η̃n−1
∣∣∣∣∣∣ (∆tc)−1hc

}(
||ξn||−1 + ||ζn||

)
≤ ε

∣∣∣∣∣∣D−1/2ζn
∣∣∣∣∣∣2 + K14

{
h4

c + h6
c(∆tc)−1 + ||ξn||

2
}
.

(48)

In a similar fashion, G9 is bounded by

|G9| ≤ K15

{ ∣∣∣∣∣∣ξ̃n−1
∣∣∣∣∣∣ +

[ ∑
Jc∈Jhc

∣∣∣∣∣∣∇ξ̃n−1
∣∣∣∣∣∣2

Jc

]1/2
(∆tc)−1h2

c

}(
||ξn||−1 + ||ζn||

)
≤ K15

{
(∆tc)−2h4

c
( ∣∣∣∣∣∣D−1/2ζn−1

∣∣∣∣∣∣2 +
∣∣∣∣∣∣D−1/2ζn

∣∣∣∣∣∣2 )
+

∣∣∣∣∣∣ξ̃n−1
∣∣∣∣∣∣2 +

∣∣∣∣∣∣ξ̃n
∣∣∣∣∣∣2} . (49)

Substituting (38)-(49) into (37), we have

1
2∆tc

[(
φξ̃n, ξ̃n) − (

φξ̃n−1, ξ̃n−1)
)]

+
1

2∆tc
(2∆tc − K8h2

c)(D−1/2ζn, ζn)

≤ K16

{( ∣∣∣∣∣∣
∣∣∣∣∣∣∂2c
∂τ2

∣∣∣∣∣∣
∣∣∣∣∣∣
L2(tn−1,tn;L2)

+

∣∣∣∣∣∣∣∣∣∣∂c
∂t

∣∣∣∣∣∣∣∣∣∣
L2(tn−1,tn;L2)

)
∆tc +

( ∣∣∣∣∣∣
∣∣∣∣∣∣∂2u
∂τ2

∣∣∣∣∣∣
∣∣∣∣∣∣
L2(tm−2,tm;L2)

+

∣∣∣∣∣∣
∣∣∣∣∣∣∂2u
∂t2

∣∣∣∣∣∣
∣∣∣∣∣∣
L2(tm−2,tm;L2)

)
(∆tp)3 +

(
||z||2L2(tn−1,tn;H1) + ||∇ · z||2L2(tn−1,tn;H1)

+

∣∣∣∣∣∣∣∣∣∣∂z
∂t

∣∣∣∣∣∣∣∣∣∣2
L2(tn−1,tn;H1)

+

∣∣∣∣∣∣∣∣∣∣∇ · ∂z
∂t

∣∣∣∣∣∣∣∣∣∣2
L2(tn−1,tn;H1)

)
(∆tc)−1h4

c + h2
p + h4

c + h6
c(∆tc)−2

+
∣∣∣∣∣∣ξ̃m−1

∣∣∣∣∣∣2 +
∣∣∣∣∣∣ξ̃m−2

∣∣∣∣∣∣2 +
∣∣∣∣∣∣ξ̃n−1

∣∣∣∣∣∣2 +
∣∣∣∣∣∣ξ̃n

∣∣∣∣∣∣2 + (∆tc)−2h4
c
( ∣∣∣∣∣∣D−1/2ζn−1

∣∣∣∣∣∣2
+

∣∣∣∣∣∣D−1/2ζn
∣∣∣∣∣∣2 )}

+ ε
{ ∣∣∣∣∣∣D−1/2ζn−1

∣∣∣∣∣∣2 +
∣∣∣∣∣∣D−1/2ζn

∣∣∣∣∣∣2 }
.

(50)

By (30) and ∆tc ≥ K′h3/2
c , we get

K8h2
c ≤ K8(K′)−1∆tch1/2

c , h6
c(∆tc)−2 ≤ (K′)−4(∆tc)2, (∆tc)−2h4

c ≤ (K′)−2hc.

Multiplying both sides of (50) by 2∆tc, summing on 1 ≤ n ≤ L and using Lemma 2, we have for sufficiently ε and hc,

∣∣∣∣∣∣ξ̃L
∣∣∣∣∣∣2 +

L∑
n=1

||ζn||
2

∆tc ≤ K17

(∆tc)2 + (∆tp)4 + (∆t′p)3 + h3
c + h2

p +

L∑
n=1

∣∣∣∣∣∣ξ̃n
∣∣∣∣∣∣2 ∆tc

 . (51)

Applying Gronwall Lemma, we obtain

∣∣∣∣∣∣ξ̃L
∣∣∣∣∣∣2 +

L∑
n=1

||ζn||
2

∆tc ≤ K17

{
(∆tc)2 + (∆tp)4 + (∆t′p)3 + h3

c + h2
p

}
. (52)

It remains to testify the induction hypothesis (46). It holds obviously because of ξ̃0 = 0. If it holds for l < L, then by (52)
and (30) we have

h−1
c

∣∣∣∣∣∣ξ̃L
∣∣∣∣∣∣2 ≤ K17h−1

c

{
(∆tc)2 + (∆tp)4 + (∆t′p)3 + h3

c + h2
p

}
→ 0, hc → 0. (53)

Then, the induction hypothesis (46) is proven.

Finally, combining (52) and (26), we obtain (31). The proof ends.
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