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Abstract

The purpose of this paper is to build sequences of suitably smooth approximate solutions to the 1D pollutant transport
model that preserve the mathematical structure discovered in (Roamba, Zabsonré, Zongo, 2017). The stability arguments
in this paper then apply to such sequences of approximate solutions, which leads to the global existence of weak solutions
for this model. We show that when the Reynold number goes to infinity, we have always an existence of global weak
solutions result for the corresponding model.

Keywords: shallow water equations, bilayer models, viscosity, friction, capillarity, intermolecular forces, construction of
weak solutions

1. Introduction

We consider a bilayer model of immiscible fluids where the upper layer can be represented by a Reynolds lubrifications
model and the lower layer by a shallow water model. It can be used to simulate for instance the evolution of a pollutant
fluid over water. A similar model was studied in (Fernandez-Nieto, Narbona-Reina & Zabsonré, 2017). The model reads
as follows:

∂th1 + ∂x(h1u) = 0, (1)

∂t(h1u) + ∂x(h1u2) +
1
2

g∂xh2
1 − 4ν1∂x(h1∂xu) +

u
β
− h1∂x(σ∂2

xh1 − V(h1))

+r1h1|u|2u + rgh1∂xh2 + rgh2∂x(h1 + h2) = 0, (2)

∂th2 + ∂x(h2u) − ε∂2
xh2 − ∂x

(
(ah2

2 + bh2
3)∂x p2

)
= 0, (3)

with

∂x p2 = ρ2g∂x(h1 + h2) and V(h1) =
1
h3

1

−
α

h4
1

(α > 0), (4)

where (t, x) ∈ (0,T )×]0, 1[.

These equations represent a system composed of two layers of immiscible fluids.

Where we denote h1, h2 respectively, the water and the pollutant heights, u is the water velocity. ν1 is the kinematic
viscosity and p2 the pressure; g is the constant gravity. The coefficients σ, r1 and β are respectively the coefficients of
the intrefaz tension, quadratic friction and positive slip length parameters ; a and b respectively depend on the friction at
the interfaz and coefficient of the viscosity of the pollutant. α, ε are positive constants. r is the ratio of densities given by
r =

ρ2

ρ1
where ρ1 and ρ2 denoted respectively the densities of the water and the pollutant. V(h1) represents the force of

Van Der Waals which is given by V(h1) =
1
h3

1

−
α

h4
1

(α > 0), see (Kitavtsev, Laurençot & Niethammer, 2011; Roamba,

Zabsonré & Zongo, 2017; Seemann, Herminghaus & Jacobs, 2001).

We complete the system studied with the initial conditions

h1(0, x) = h10 (x), h2(0, x) = h20 (x), (h1u)(0, x) = m0(x) in [0, 1]. (5)
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h10 , h20 ∈ L2(0, 1), ∂x(h10 ) ∈ L2(0, 1),

∂xm0 ∈ L1(0, 1), m0 = 0 if h10 = 0,

|m0|
2

h10

∈ L1(0, 1), ϕ(h10 ) ∈ L1(0, 1),

(6)

where ϕ(h1) = 4ν1logh1.

The energy inequality associated to the system (1)-(3) is:

d
dt

∫ 1

0

[1
2

h1|u|2 + U(h1) +
1
2

g(1 − r)|h1|
2 +

1
2

rg|h1 + h2|
2 +

1
2
σ|∂xh1|

2
]

+4ν1

∫ 1

0
h1|∂xu|2 +

1
β

∫ 1

0
|u|2 +

1
2

grε
∫ 1

0
|∂xh2|

2

+r1

∫ T

0

∫ 1

0
h1|u|4 + ρ2rg2

∫ 1

0
h2

2|∂x(h1 + h2)|2(a + bh2) ≤
1
2

rgε
∫ 1

0
|∂xh1|

2 (7)

where the potential function U is the indefinite integral of V defined by

U(h1) = −
1

2h2
1

+
α

3h3
1

, h1 > 0. The entropy inequality associated with system (1)-(3) reads as

d
dt

∫ 1

0

[1
2

h1|u + ∂xϕ(h1)|2 −
1
β
ϕ(h1) +

1
2

g(1 − r)|h1|
2 +

1
2

rg|h1 + h2|
2 +

1
2
σ|∂xh1|

2 + U(h1)
]

+
1
β

∫ 1

0
|u|2 + 4ν1

∫ 1

0
(g + gr

h2

h1
+ V

′

(h1))|∂xh1|
2 + rg

∫ 1

0
(ε + 4ν1

h2

h1
)∂xh1∂xh2 + 4ν1σ

∫ 1

0
|∂2

xh1|
2

+r1

∫ T

0

∫ 1

0
h1|u|4 + grε

∫ 1

0
|∂xh2|

2 + rg2
∫ 1

0
h2

2(a + bh2)
(
∂x(h1 + h2)

)2
≤

1
2

rgε
∫ 1

0
|∂xh1|

2 (8)

We say that (h1, h2, u) is a weak solution of (1)-(3), with the initial condition verifying the entropy inequality (8) for all
smooth test functions φ = φ(t, x) with φ(T, .) = 0, we have:

h01φ(0, .) −
∫ T

0

∫ 1

0
h1∂tφ −

∫ T

0

∫ 1

0
h1u∂xφ = 0, (9)

−h02φ(0, .) −
∫ T

0

∫ 1

0
h2∂tφ −

∫ T

0

∫ 1

0
h2u∂xφ + ε

∫ T

0

∫ 1

0
∂xh2∂xφ

+

∫ T

0

∫ 1

0

(
(ah2

2 + bh2
3)∂x p2

)
∂xφ = 0, (10)

h01u0φ(0, .) −
∫ T

0

∫ 1

0
h1u∂tφ −

∫ T

0

∫ 1

0
h1u2∂xφ + 4ν1

∫ T

0

∫ 1

0
h1∂xu∂xφ

+
1
β

∫ T

0

∫ 1

0
uφ +

∫ T

0

∫ 1

0
(σ∂2

xh1 − V(h1))φ∂xh1 +

∫ T

0

∫ 1

0
(σ∂2

xh1 − V(h1))h1∂xφ

−
1
2

g
∫ T

0

∫ 1

0
h2

1∂xφ − rg
∫ T

0

∫ 1

0
h2h1∂xφ + r1

∫ T

0

∫ 1

0
h1|u|2uφ

−rg
∫ T

0

∫ 1

0
φh2∂xh1 − rg

∫ T

0

∫ 1

0
(h1 + h2)h2∂xφ − rg

∫ T

0

∫ 1

0
(h1 + h2)∂xh2φ = 0. (11)

This work follows the work done in (Roamba, Zabsonré & Zongo, 2017). In (Roamba, Zabsonré & Zongo, 2017) as in
this present work, we use a model of transport of pollutant in 1D formally derived in (Fernandez-Nieto, Narbona-Reina
& Zabsonré, 2013). In (Roamba, Zabsonré & Zongo, 2017), the authors showed the existence of global weak solutions
of similar model derived in (Fernandez-Nieto, Narbona-Reina & Zabsonré, 2013). To lead well this result, the authors
considered the condition according to which h2 ≤ h1 (the water layer is more important than the layer of the pollutant).
We suppose in this paper the existence of molecular interactions between molecules and this leads us to use the Van Der
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Waals force which is given by V(h1) =
1
h3

1

−
α

h4
1

(α > 0), see (Kitavtsev, Laurençot & Niethammer, 2011; Seemann,

Herminghaus & Jacobs, 2001). This force of Van Der Waals allows us to lower the height of water which allows us to get
around hypothesis made in (Roamba, Zabsonré & Zongo, 2017).

From a theoretical point of view several studies have been carried out on the construction of global weak solutions of
shallow-water equations model. The construction of global weak solutions for a shallow water model is done in (Bresch
& Desjardins, 2006) for the two-dimensional case. In (Kitavtsev, Laurençot & Niethammer, 2011), the authors, to prove
the existence of global weak solutions for one-dimensional lubrification models, have constructed approximate solutions.

In this paper, our contribution is to build sequences of suitably smooth approximate solutions to the 1D pollutant transport
model for a similar model studied in (Roamba, Zabsonré & Zongo, 2017). A similar method of construction of weak
solutions has been made in (Gamba, jüngel & Vasseur, 2009). In (Vasseur & Yu, 2016; Roamba & Zabsonré, 2017), an
other method of construction of weak solutions is developped to prove the existence of global weak solutions by deriving
the Mellet-Vasseur type inequality.

We complete the system (1) − (3) by:
u = 0 at x = 0, 1 (12)

∂xhi = 0, i = 1, 2 at x = 0, 1 (13)

Our paper is organized as follows. On the one hand, the Section 2 is devoted to the actual construction of solutions to a
perturbed system that preserves the BD entropy discovered in (Bresch & Desjardins, 2002; Bresch & Desjardins, 2006;
Bresch, Desjardins & Lin, 2003), we establish a classical energy equality and the ”mathematical BD entropy”, which entail
some regularities on the unknowns. The BD entropy is a mathematical entropy introduced firstly in (Bresch & Desjardins,
2002). Then we give a proposition allowing us to limit inferiorly the height of water which is very fundamental for the
continuation since this limit study gives us additional regularities on the data. We also give an existence theorem of global
weak solutions. To end, we give the proof of existence Theorem including the limits passage in the section.

2. Construction of Approximate Solutions

This section is devoted to the construction of approximate solutions to the 1D pollutant transport model. A small parame-
ter β is introduced. For given η > 0, the approximate system is globally well posed and h1 is bounded and bounded away
from 0. The global existence of weak solutions is obtained by taking the limit η → 0 and using the stability arguments
detailed in (Roamba, Zabsonré & Zongo, 2017) and (Roamba, Zabsonré & Zongo, 2017). Although the pressure term
V(h1) does not need a regularization as in the case of Bresch and Desjardins (Bresch & Desjardins, 2006), one still needs
to regularize the function h1 sufficiently in order to control additional higher order terms arising in the entropy equality.
The approximating systems we take are given by

∂th1η + ∂x(h1ηuη) = 0, (14)

∂t(h1ηuη) + ∂x(h1ηuη
2) +

1
2

g∂x(h1η )
2 − 4ν1∂x(h1η∂xuη) +

uη
β
− h1η∂x(σ∂2

xh1η − V(h1η ))

+rgh1η∂xh2η + rgh2η∂x(h1η + h2η ) − ηh1η (∂
7
xh1η + ∂3

xh1η ) + η2∂4
xuη = 0, (15)

∂th2η + ∂x(h2ηuη) − η(∂6
xh2η + ∂4

xh2η ) − ε∂
2
xh2η − ∂x

(
(ah2η

2 + b(h2η )
3)∂x p2η

)
= 0, (16)

with
∂x p2η = ρ2g∂x(h1η + h2η ) and V(h1η ) =

1
(h1η )3 −

α

(h1η )4 (α > 0), (17)

where (t, x) ∈ (0,T )×]0, 1[ and η is a small parameter. Consider (14) − (16) with boundary condions

uη = ∂2
xuη = ∂xh1η = ∂3

xh1η = ∂5
xh1η = ∂xh2η = ∂5

xh2η = 0, (t, x) ∈ (0,T ) × {0, 1}. (18)

and initial data

h0
1,η, h

0
2,η ∈ H1(0, 1), u0

η ∈ L2(0, 1),

uη(x, 0) = u0
η(x), h1η (x, 0) = h0

1η (x) > 0 and h2η (x, 0) = h0
2,η(x) > 0, in (0, 1),

(19)

where u0
η, h0

1η
and hη2,0 are smooth functions such as

u0
η → u1,0 in L2(0, 1), h0

1η → h1,0, h0
2,η → h2,0 in H1(0, 1)

and ηh0
1η → 0, ηh0

2,η → 0 in H3(0, 1) as η→ 0.
(20)
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We have the following energy inequality

Lemma 1. For classical solutions of the system (14)-(16), the following inequality holds

E(uη, h1η , h2η ) + 4ν1

∫ T

0

∫ 1

0
h1η |∂xuη|2 +

1
β

∫ T

0

∫ 1

0
|uη|2 +

1
2

rgη
∫ T

0

∫ 1

0
|∂2

xh2η |
2

+
1
2

grε
∫ T

0

∫ 1

0
|∂xh2η |

2 + rg2ρ2

∫ T

0

∫ 1

0
(h1η )

2(a + bh2η )
(
∂x(h1η + h2η )

)2
+ η2

∫ T

0

∫ 1

0
|∂2

xuη|2

+
1
2

rgη
∫ T

0

∫ 1

0
|∂3

xh2η |
2 ≤

1
2

rg
∫ T

0

∫ 1

0

[
ε|∂xh1η |

2 + η|∂2
xh1η |

2 + η|∂3
xh1η |

2
]

+ E(u0
η, h

0
1η , h

η
2,0), (21)

where

E(uη, h1η , h2η ) :=
∫ 1

0

[1
2

h1η |uη|
2 + U(h1η ) +

1
2

g(1 − r)|h1η |
2 +

1
2

rg|h1η + h2η |
2 +

1
2
σ|∂xh1η |

2 + η
1
2
|∂2

xh1η |
2

+
η

2
|∂3

xh1η |
2
]
,

and
U(h1) = −

1
2h2

1

+
α

3h3
1

, h1 > 0.

Remark 1. Notice that the two terms in the right can be controlled using Gronwall’s lemma.

Remark 2. Let (h1η , h2η , uη) be a solution of model (14) − (16). Then, thanks to the energy inequality, we have:√
1
2

g(1 − r)h1η is bounded in L∞(0,T ; L2(0, 1)),

√
1
2
σ∂xh1η is bounded in L∞(0,T ; L2(0, 1)),√

1
2

rg(h1η + h2η ) is bounded in L∞(0,T ; L2(0, 1)),√
1
2

√
h1ηuη is bounded in L∞(0,T ; L2(0, 1)),

2
√
ν1

√
h1η∂xuη is bounded in L2(0,T ; L2(0, 1)),

1
√
β

uη is bounded in L2(0,T ; L2(0, 1)),

g
√

rρ2h2η

√
a + bh2η

(
∂x(h1η + h2η )

)
is bounded in L2(0,T ; L2(0, 1)),

√
rgη(h1η )

− 3
2 is bounded in L∞(0,T ; L2(0, 1)),√

η

2
∂3

xh1η is bounded in L∞(0,T ; L2(0, 1)),

√
grε∂xh2η is bounded in L2(0,T ; L2(0, 1)),√
η

2
∂2

xh1η is bounded in L∞(0,T ; L2(0, 1)),

η|∂2
xuη| is bounded in L2(0,T ; L2(0, 1)).

The following lemma gives us the inequality of entropy necessary to limit ∂x
√

h1η .

Lemma 2. For smooth solutions (h1η , h2η , uη) of model (14)− (16) satisfying the classical energy equality of the lemma 1,
we have the following mathematical BD entropy inequality:

S (uη, h1η , h2η ) +
1
β

∫ T

0

∫ 1

0
|uη|2 + 4ν1

∫ T

0

∫ 1

0
(g + gr

h2η

h1η
V
′

(h1η ))|∂xh1η |
2 + 4rgν1

∫ T

0

∫ 1

0
(1 +

h1η

h1η
)∂xh1η∂xh2η

4
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+4ν1σ

∫ T

0

∫ 1

0
|∂2

xh1η |
2 + rg2ρ2

∫ T

0

∫ 1

0
(h1η )

2(a + bh2η )
(
∂x(h1η + h2η )

)2
+

1
2

rgη
∫ T

0

∫ 1

0
|∂2

xh2η |
2

+

∫ T

0

∫ 1

0

[
η2|∂2

xuη|2 + 4νη|∂4
xh1η |

2 + 4νη2∂2
xuη∂3

xlogh1η

]
≤

1
2

rg
∫ T

0

∫ 1

0

[
ε|∂xh1η |

2 + η|∂2
xh1η |

2 + η|∂3
xh1η |

2
]

+ S (u0
η, h

0
1η , h

η
20

), (22)

where

S (uη, h1η , h2η ) :=
∫ 1

0

[1
2

h1η |uη + ∂xϕ(h1η )|
2 −

1
β
ϕ(h1η ) +

1
2

rg|h1η + h2η |
2 +

1
2

g(1 − r)|h1η |
2

+
1
2
σ|∂xh1η |

2 + U(h1η ) +
η

2
|∂2

xh1η |
2 +

η

2
|∂3

xh1η |
2
]
.

Remark 3.

In the lemma 2 all the terms, excepted∫ T

0

∫ 1

0
(ε + 4ν1

h2η

h1η
)∂xh1η∂xh2η

∫ 1

0

∫ T

0
V
′

(h1η )|∂xh1η |
2 and

∫ T

0

∫ 1

0
4νη2∂2

xuη∂3
xlogh1η

are controlled since they have the good sign. The control of the term
∫ T

0

∫ 1

0
|uη|2uη∂xh1η takes inspiration in (Roamba,

Zabsonré & Traor?, 2016). The term
∫ 1

0

∫ T

0
V
′

(h1η )|∂xh1η |
2 can be absorbed thanks to the work done in (Kitavtsev,

Laurençot & Niethammer, 2011). It remains for us to control the terms∫ T

0

∫ 1

0
(ε + 4ν1

h2η

h1η
)∂xh1η∂xh2η ,

∫ T

0

∫ 1

0
4νη2∂2

xuη∂3
xlogh1η , see (Roamba, Zabsonré & Zongo, 2017) and (Kitavtsev,

Laurençot & Niethammer, 2011) for justifications.

Remark 4. Given η > 0, the equation (14) is parabolic in uη. Also, the quations (15) and (16) are parabolic respectively
in h1η and in h2η . Relying on the works of Bresch and Desjardins in (Bresch & Desjardins, 2006) and those of Kitavtsev,
Laurençot and Niethammer in (Kitavtsev, Laurençot & Niethammer, 2011) the system (14)-(16) with (19)-(20) has a u-
nique classical solution at least locally in time. Arguing as in (Kitavtsev, Laurençot & Niethammer, 2011), the Proposition
1 and the regularities above guarantee the global in time solvability for (14)-(16) with (19)-(20).

Proposition 1. If h1η has the regularities established in corollary 2.1, then there exists constants c1 and c2 such as
0 < c1 < h1η < c2.

Lemma 3. For classical solutions of the system (14) − (16) with a first component h1η , we have

1
4

∫ 1

0
h1η |∂xϕ(h1η )|

2 ≤
1
2

∫ 1

0
h1η (uη + ∂xϕ(h1η ))

2 + 2E(h1η , h2η , uη) +
1

3α2 (23)

with

E(h1η , h2η , uη) =

∫ 1

0

[1
2

h1η |uη|
2 + U(h1η ) +

1
2

g(1 − r)|h1η |
2 +

1
2

rg|h1η + h2η |
2 +

1
2
σ|∂xh1η |

2 +
η

2
|∂3

xh1η |
2
]
.

Proof: See (Roamba, Zabsonré & Zongo, 2017).

Corollary 1. Let (h1η , h2η , uη) be a solution of model (14) − (16).

Then, thanks to lemma 3 and the BD entropy equality, we have:√
h1η is bounded in L∞(0,T ; L2(0, 1)),

∂x

√
h1η is bounded in L∞(0,T ; L2(0, 1)),

∂2
xh1η is bounded in L2(0,T ; L2(0, 1)),

√
η∂2

xh2η is bounded in L2(0,T ; L2(0, 1)),

2
√
η∂4

xh1η is bounded in L2(0,T ; L2(0, 1)).

5
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Remark 5. 1. In the remark 2, the estimate√
h1ηuη is bounded in L∞(0,T ; L2(0, 1))

implies,
h1ηuη is bounded in L∞(0,T ; L2(0, 1))

this leads us
∂th1η is bounded in L∞(0,T ; W−1,2(0, 1)).

2. We have the additional regularities thanks to Corollary 1:

(a) h1η , uη are bounded in L2(0,T ; H2(0, 1)),
(b) h2η are bounded in L2(0,T ; H2(0, 1)),
(c) h1ηuη is bounded in L3(0,T ; L3(0, 1)) ∩ L∞(0,T ; L2(0, 1)).

Remark 6. We have the following additional regularities:

1. h1η and h2η are bounded in L∞(0,T ; L2(0, 1)).

2.
√

h1η is bounded in L2(0,T ; H1(0, 1)).
Indeed,
by integrating the mass equation, we obtain directly

√
h1η in L∞(0,T ; L2(Ω)). As Corollary 1 gives us ∂x

√
h1η in

L∞(0,T ; L2(Ω)), so
√

h1η is bounded in L∞(0,T ; H1(Ω)).

Remark 7. Since we have 0 < c1 < h1η < c2 uniformly with respect to ε, the limit h1η is bounded and bounded away
from zero. The limit system can then be divided by h1η and becomes parabolic with respect to the velocity uη. Arguing
as in Bresch and Desjardins (Bresch & Desjardins, 2006), Kitavtsev, Laurençot and Niethammer (Kitavtsev, Laurençot &
Niethammer, 2011) the initial-boundary value problem system (14)-(16) with (18)-(19) has a unique classical solution at
least locally in time.

Now, we are going to define a weak formulation of the problem (14)-(16) with boundary conditions (18). Consider
(h10 , h20 , u0) satisfying (20).

Definition 1. A triplet (h1η , h2η , uη) is a global weak solution to (14)-(16) with boundary conditions (18) and initial
conditions (h10 , h20 , u10 ) if h10 , h20 and u0 enjoy the regularity properties stated above in this section and the following
holds

h0
1ηφ(0, .) −

∫ T

0

∫ 1

0
h1η∂tφ −

∫ T

0

∫ 1

0
h1ηuη∂xφ = 0, (24)

−hη20
φ(0, .) −

∫ T

0

∫ 1

0
h2η∂tφ −

∫ T

0

∫ 1

0
h2ηuη∂xφ + ε

∫ T

0

∫ 1

0
∂xh2η∂xφ

+

∫ T

0

∫ 1

0

(
(ah2η

2 + bh2η
3)∂x p2η

)
∂xφ − η

∫ 1

0

∫ T

0
∂6

xh2ηφ − η

∫ 1

0

∫ T

0
∂4

xh2ηφ = 0, (25)

hη01
u0
ηφ(0, .) −

∫ T

0

∫ 1

0
h1ηuη∂tφ −

∫ T

0

∫ 1

0
h1ηuη

2∂xφ + 4ν1

∫ T

0

∫ 1

0
h1η∂xuη∂xφ +

1
β

∫ T

0

∫ 1

0
uηφ

+

∫ T

0

∫ 1

0
(σ∂2

xh1η − V(h1η ))φ∂xh1η +

∫ T

0

∫ 1

0
(σ∂2

xh1η − V(h1η ))h1η∂xφ −
1
2

g
∫ T

0

∫ 1

0
(h1η )

2∂xφ

−rg
∫ T

0

∫ 1

0
h2ηh1η∂xφ + r1

∫ T

0

∫ 1

0
h1η |uη|

2uηφ − rg
∫ T

0

∫ 1

0
φh2η∂xh1η − η

∫ 1

0

∫ T

0
∂2

xuη∂2
xφ

−rg
∫ T

0

∫ 1

0
(h1η + h2η )h2η∂xφ − rg

∫ T

0

∫ 1

0
(h1η + h2η )∂xh2ηφ + η

∫ 1

0

∫ T

0
h1η∂

7
xh1ηφ − η

∫ 1

0

∫ T

0
∂3

xh1ηφ = 0, (26)

for all φ ∈ C∞0 ([0,∞) × [0, 1]) such that φ(T, .) = 0.

We now show that solutions to the system (14)-(16) with boundary and initial conditions (18)-(19) converge to a solution
of (9)-(11) as η −→ 0.

Theorem 1. For any positive σ, β and initial data (h10 , h20 , u0) satisfaying (20), there exists a global weak solution to the
system (14)-(16) with boundary conditions (18) and initial conditions (19) in the sense of (24)-(26).

6
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3. Case β = ∞

We follow the ideas proposed in (Kitavtsev, Laurençot & Niethammer, 2011).

Let us first consider a sequence of positive real numbers (βn), βn → ∞, and denote the corresponding solutions to (24)-(26)
with β = βn by (h1βn

, h2βn
, uβn ). The corresponding system reads as:

∂th1βn
+ ∂x(h1βn

uβn ) = 0, (27)

∂t(h1βn
uβn ) + ∂x(h1βn

uβn
2) +

1
2

g∂x(h1βn
)2 − 4ν1∂x(1βn∂xuβn ) +

uβn

βn
− h1η∂x(σ∂2

xh1βn
− V(h1βn

))

+rgh1βn
∂xh2βn

+ rgh2βn
∂x(h1βn

+ h2βn
) − ηnh1βn

(∂7
xh1βn

+ ∂3
xh1βn

) + η2
n∂

4
xuβn = 0, (28)

∂th2βn
+ ∂x(h2βn

uβn ) − ηn(∂6
xh2βn

+ ∂4
xh2βn

) − ε∂2
xh2βn

− ∂x

(
(ah2βn

2 + b(h2βn
)3)∂x p2βn

)
= 0, (29)

with

∂x p1βn
= ρ2g∂x(h1βn

+ h2βn
) and V(h1βn

) =
1

(h1βn
)3 −

α

(h1βn
)4 (α > 0), (30)

where (t, x) ∈ (0,T )×]0, 1[ and ηn is a small parameter.

For this system (27) − (29), the statement of Remark 2, Corollary 1 and the Lemma 1 are true for the weak solutions to
(24)-(26). We may then investigate the behaviour of these solutions as either β → ∞. Though the estimate on (uβn/βn) is
useless in that case, one still recovers the estimate of (uβn ) in L2(0,T ; H1

0(0, 1)) as a consequence of Remark 2, Corollary
1 and the Poincaré inequality. Arguing as in the proof of Theorem 1, we conclude that, after possibly extracting a
subsequence, (h1βn

, h2βn
, uβn ) converges towards a weak solution to the model

∂th1 + ∂x(h1u) = 0, (31)

∂t(h1u) + ∂x(h1u2) +
1
2

g∂xh2
1 − 4ν1∂x(h1∂xu) − h1∂x(σ∂2

xh1 − V(h1))

+r1h1|u|2u + rgh1∂xh2 + rgh2∂x(h1 + h2) = 0, (32)

∂th2 + ∂x(h2u) − ε∂2
xh2 − ∂x

(
(ah2

2 + bh2
3)∂x p2

)
= 0. (33)

4. Conclusion

This article was the subject of the construction of global weak solutions of a model of pollutant transport in dimension
1. Furthermore, we have shown that the existence of global weak solutions of the model is preserved when the Reynolds
number tends to infinity. For our future works, we will show the existence of global weak solutions of the model studied
in this paper when σ −→ 0.
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Appendix

Tha aim of this appendix is to prove technical lemmas that will yield crucial estimates for passing to the limits in the
approximate (14)-(16).

Proof of Lemma 1

First, we multiply the momentum equation by uη and we integrate from 0 to 1. We use the mass conservation equation of
the first layer for simplification. Then, we obtain∫ 1

0

1
2
∂t(h1η (uη)

2) +
1
2

∫ 1

0
g∂x(h1η )

2uη − 4
∫ 1

0
∂x(ν1h1η∂xuη)uη −

∫ 1

0
h1ηuη∂x(σ∂2

xh1η − V(h1η ))

+

∫ 1

0

(uη)2

β
+ η

∫ 1

0
h1η∂

7
xh1ηuη − η

2
∫ 1

0
∂4

xuηuη + rg
∫ 1

0
h1η∂xh2ηuη

+rg
∫ 1

0
h2η∂x(h1η + h2η )uη = 0. (34)

Now, we simplify each term as follows:

• −4
∫ 1

0
∂x(ν1h1η∂xuη)uη = 4ν1

∫ 1

0
h1η (∂xuη)2,

• −

∫ 1

0
h1ηuη∂x(σ∂2

xh1η − V(h1η )) =

∫ 1

0
∂x(h1ηuη)(σ∂

2
xh1η − V(h1η ))

= −

∫ 1

0
∂th1η (σ∂

2
xh1η − V(h1η ))

=

∫ 1

0
σ∂xth1η∂xh1η +

∫ 1

0
∂t(U(h1η ))

=

∫ 1

0
∂t

(1
2
σ|∂xh1η |

2 + U(h1η )
)
,

8
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• rg
∫ 1

0
h1η∂xh2ηuη = −rg

∫ 1

0
h2η∂x(h1ηuη) = rg

∫ 1

0
h2η∂th1η ,

•
1
2

g
∫ 1

0
∂x(h1η )

2uη =
1
2

g
d
dt

∫ 1

0
|h1η |

2,

•η

∫ 1

0
h1η∂

7
xh1ηuη = −η

∫ 1

0
∂x(h1ηuη)∂

6
xh1η

= η

∫ 1

0
∂th1η∂

6
xh1η

= −η

∫ 1

0
∂xth1η∂

5
xh1η

= η

∫ 1

0
∂t∂

2
xh1η∂

4
xh1η

= −η

∫ 1

0
∂t∂

3
xh1η∂

3
xh1η

=
−η

2
d
dt

∫ 1

0
|∂3

xh1η |
2,

•η

∫ 1

0
h1η∂

3
xh1ηuη = −η

∫ 1

0
∂x(h1ηuη)∂

2
xh1η

= η

∫ 1

0
∂th1η∂

2
xh1η

= −η

∫ 1

0
∂xth1η∂xh1η

= −η
1
2

d
dt

∫ 1

0
|∂xh1η |

2,

•η2
∫ 1

0
uη∂4

xuη = −η2
∫ 1

0
∂xuη∂3

xuη

= η2
∫ 1

0
|∂2

xuη|2,

• rg
∫ 1

0
h2η∂x(h1η + h1η )uη = −rg

∫ 1

0
(h1η + h2η )∂x(h2ηuη).

The pollutant transport equation gives us:

∂x(h2ηuη) = −∂th2η + ε∂2
xh2η + ∂x

(
(ah1η

2 + bh2η
3)∂x p2η

)
+ η(∂6

xh2η + ∂4
xh2η ) and we have:

• rg
∫ 1

0
h2η∂x(h1η + h1η )uη = rgε

∫ 1

0
∂xh1η∂xh2η + rgε

∫ 1

0
|∂xh2η |

2 +
1
2

rg
d
dt

∫ 1

0
|h2η |

2

+ρ2rg2
∫ 1

0
(h1η )

2|∂x(h1η + h1η )|
2(a + bh2η ) + rg

∫ 1

0
h1η∂th2η + rgη

∫ 1

0
∂3

xh1η∂
3
xh2η

+rgη
∫ 1

0
|∂3

xh2η |
2 + rgη

∫ 1

0
∂2

xh1η∂
2
xh2η + rgη

∫ 1

0
|∂2

xh2η |
2.

Substituting all these terms in (34), we get (21) by integrating under 0 to T .

Proof of Lemma 2

Let us multiply the equation (15) by ∂xϕ(h1ηk
), integrate with respect to x and use an integration by parts, and using (1),

we have:

4ν1

∫ 1

0
(∂tuη + uη∂xuη)∂xh1η + 4ν1g

∫ 1

0
|∂xh1η |

2 + 16ν2
1

∫ 1

0
h1η∂xuη∂x

(∂xh1η

h1η

)

9
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+4ν1

∫ 1

0

uη∂xh1η

βh1η
+ 4ν1σ

∫ 1

0
|∂2

xh1η |
2 + 4ν1

∫ 1

0
V
′

(h1η )|∂xh1η |
2 + 4ν1rg

∫ 1

0
∂xh1η∂xh1η

+4ν1rg
∫ 1

0

h2η

h1η
|∂xh1η |

2 + 4ν1rg
∫ 1

0

h2η

h1η
∂xh2η∂xh1η + 4ν1η

∫ 1

0
|∂4

xh1η |
2 + η2

∫ 1

0
∂2

xuη∂3
xϕ(h1η ) = 0. (35)

On the one hand, a further integration by parts of the first integral of (35), equation (1), and the energy inequality (21)
give

4ν1

∫ 1

0
(∂tuη + uη∂xuη)∂xh1η

= 4ν1

( d
dt

∫ 1

0
uη∂xh1η −

∫ 1

0
uη∂2

xth1η +

∫ 1

0
uη∂xuη∂xh1η

)
= 4ν1

( d
dt

∫ 1

0
uη∂xh1η −

∫ 1

0
∂xuη∂x(h1ηuη) +

∫ 1

0
uη∂xuη∂xh1η

)
= 4ν1

( d
dt

∫ 1

0
uη∂xh1η −

∫ 1

0
h1η (∂xuη)2

)
=

d
dt

∫ 1

0

[
4ν1uη∂xh1η +

1
2

h1η |uη|
2 + U(h1η ) +

1
2

g(1 − r)|h1η |
2 +

1
2

rg|h1η + h2η |
2 +

1
2
σ|∂xh1η |

2

+
η

2
|∂2

xh1η |
2 +

η

2
|∂3

xh1η |
2
]

+
1
β

∫ 1

0
|uη|2 + rgε

∫ 1

0
∂xh1η∂xh2η + rgη

∫ 1

0
∂3

xh1η∂
3
xh2η + rgε

∫ 1

0
|∂xh2η |

2

+rg2
∫ 1

0
(h2η )

2(a + bh1η )
(
∂x(h1η + h1η )

)2
+ 4ν1η

∫ 1

0
|∂4

xh1η |
2 + η2

∫ 1

0
∂2

xuη∂3
xϕ(h1η )

+rgη
∫ 1

0
∂2

xh1η∂
2
xh2η + rgη

∫ 1

0
|∂2

xh2η |
2. (36)

On the other hand,we can write the third and the fourth integrals of (35) as

• 16ν2
1

∫ 1

0
∂x

(∂xh1η

h1η

)
∂xuηh1η =

1
2

d
dt

∫ 1

0
h1η |ϕ(h1η )|

2,

• 4ν1

∫ 1

0

uη∂xh1η

βh1η
= −4ν1

∫ 1

0

∂x(uηh1η )
βh1η

+ 4ν1

∫ 1

0

∂xuη
β

= −
1
β

d
dt

∫ 1

0
ϕ(h1η ).

Substituting finally the last three identities into (35), we obtain (22).

Proof of Proposition 1

We follow the lines performed in (Kitavtsev, Laurençot & Niethammer, 2011). Using the bound on ∂xh1η we obtain:

h1η (x, t) − h1η (y, t) ≤
∣∣∣∣∣ ∫ y

x
∂xh1η (z, t)dz

∣∣∣∣∣ ≤ ||x − y||1/2||∂xh1η (t)||2 ≤
c1
√
σ
|x − y|1/2

for all (x, y) ∈ (0, 1) × (0, 1) and t ∈ (0,T ). Next we integrate the above inequality with respect to y ∈ (0, 1), readily give
the upper bound. To establish the lower bound for h1η , we combine the L∞(0,T ; L2(0, 1))-estimates on (h1η )

−3/2 and ∂xh1η

just established to obtain a bound on the norm of 1/
√

h1η in L∞(0,T ; W1,1(0, 1)) since∫ 1

0

∣∣∣∂x
(
h−1/2

1
)∣∣∣ =

1
2

∫ 1

0

∣∣∣∂xh1η

∣∣∣
(h1η )3/2 ≤

1
2
√
σ
‖
√
σ∂xh1η‖2‖(h1η )

−3/2‖2.

Due to the continuous embedding of W1,1(0, 1) in L∞(0, 1), we get the positive lower bound.

Proof of Theorem 1

In this section, we give a proof of the Theorem 1. Let be (h1ηk
, h2ηk

, u1ηk
) a sequence of weak solutions with initial data

h1ηk |t=0 = h0
1ηk
, h2ηk |t=0 = h0

2ηk
, (h1ηk

uηk )|t=0 = m0
ηk

10
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such as
h0

1ηk
−→ h10 in H1(Ω), h0

2ηk
−→ h20 in H1(Ω), m0

ηk
−→ m0 in (L1(Ω))2,

and satisfying the following inequality:

−
1
β

∫ 1

0
ϕ(h0

1ηk
) +

∫ 1

0

[
h0

1ηk

∣∣∣u0
1ηk

∣∣∣2 + 64ν2
1

∣∣∣∂x

√
h0

1ηk

∣∣∣2 +
1
2

g(1 − r)
∣∣∣h0

1ηk

∣∣∣2 +
1
2

rg
∣∣∣h0

1ηk
+ h0

2ηk

∣∣∣2 +
1
2
σ
∣∣∣∂xh0

1ηk

∣∣∣2
+
η

2
|∂3

xh0
1ηk
|2
]
≤ C.

Take a sequence {ηk}k≥1 → 0 and, for each k ≥ 1, denote the corresponding solution to the approximate system (14)-(16)-
(18)-(19) with η = ηk by (h1ηk

, h2ηk
, uηk ).

Convergence of
√

h1ηk
, h1ηk

and h2ηk

From the remark 6: √
h1ηk

is bounded in L∞(0,T ; H1(Ω)). (37)

Moreover, using the mass equation, we obtain the following equality:

∂t

√
h1ηk

=
1
2

√
h1ηk

∂xuηk − ∂x(
√

h1ηk
uηk ),

which gives that ∂t

√
h1ηk

is bounded in L2(0,T ; H−1(Ω)).

Applying Aubin-Simon lemma (see (Lions, 1989; Simon, 1987), we can extract a subsequence, still denoted (h1ηk
)1≤k,

such as √
h1ηk

converges strongly to
√

h1 in C0(0,T ; L2(0, 1)).

According to the Proposition 1, we show that∣∣∣∣∣h1ηk
− h1

∣∣∣∣∣ ≤ √c2

∣∣∣∣∣ √h1ηk
−

√
h1

∣∣∣∣∣⇒ ∣∣∣∣∣h1ηk
− h1

∣∣∣∣∣2 ≤ c2

∣∣∣∣∣ √h1ηk
−

√
h1

∣∣∣∣∣2.
This ensures

h1ηk
converges strongly to h1 in L2(0,T ; L2(0, 1)).

We have h2ηk
bounded in L2(0,T ; H1(0, 1)). Moreover, we have

∂th2ηk
= −∂x(h2ηk

uηk ) + ε∂2
xh2ηk

+ ηk(∂6
xh2ηk

+ ∂4
xh2ηk

) + ∂x((ah2ηk
+ b(h2ηk

)3)∂x p2ηk
).

Let us study each term separately

•Since h2ηk
is in L∞(0,T ; L2(0, 1)) and uηk is in L2(0,T ; L2(0, 1)), we show that the first term is in L2(0,T ; W−1,1(0, 1)).

•For the second term, since ∂xhηk
2 is in L2(0,T ; L2(0, 1)), we have ∂2

xhηk
2 in L2(0,T ; W−1,1(0, 1)).

• For the third one, for any ψ ∈ C∞0 ((0, 1) × (0,T )), using integration by parts and regularities in the previous section,∣∣∣∣∣ ∫ T

0

∫ 1

0
ψ∂6

xh2ηk

∣∣∣∣∣ ≤ ‖∂2
xψ‖L2(0,T ;L2(0,1))‖∂

4
xh2ηk
‖L2(0,T ;W−1,1(0,1))

≤ C‖∂4
xh2ηk
‖L2(0,T ;W−1,1(0,1)).

∣∣∣∣∣ ∫ T

0

∫ 1

0
ψ∂4

xh2ηk

∣∣∣∣∣ ≤ ‖∂2
xψ‖L2(0,T ;L2(0,1))‖∂

3
xh2ηk
‖L2(0,T ;W−1,1(0,1))

≤ C‖∂3
xh2ηk
‖L2(0,T ;W−1,1(0,1)).

•For the last term, as hηk
2

√
a + bhηk

2

(
∂x(h1ηk

+ hηk
2 )

)
is in L2(0,T ; L2(0, 1)), we have

∂x

(
hηk

2

√
a + bhηk

2

(
∂x(h1ηk

+ hηk
2 )

))
in L2(0,T ; W−1,1(0, 1)).

So, the third term is in L2(0,T ; W−1,1(0, 1)) and therefore, ∂th2ηk
is in L2(0,T ; W−1,1(0, 1)).

11
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Convergence of h1ηk
uηk

According to the remark 5, uηk ∈ L2(0,T ; H1(0, 1)). This fact with the lemma 1 allows us to get

(h1ηk
uηk ) in L2(0,T ; H1(0, 1)) (38)

Moreover, the momentum equation (2) enables us to write the time derivation of the water discharge:

∂t(h1ηk
uηk ) = −∂x(h1ηk

uηk
2) −

1
2

g∂xh1ηk

2 + 4ν1∂x(h1ηk
∂xuηk ) −

uηk

β
+ h1ηk

∂x(σ∂2
xh1ηk

− V(h1ηk
))

−rgh1ηk
∂xh2ηk

− rgh2ηk
∂x(h1ηk

+ h2ηk
) + ηkh1ηk

(∂7
xh1ηk

+ ∂3
xh1ηk

) − η2
k∂

4
xuηk . (39)

We then study each term:

• ∂x(h1ηk
(uηk )

2) = ∂x((h1ηk
uηk )uηk ) which is in L2(0,T ; W−1,1(0, 1)).

• As h1ηk
is in L∞(0,T ; L2(0, 1)), we have:

∂x[(h1ηk
)2] is in L∞(0,T ; W−1,1(0, 1)).

• ∂x(h1ηk
∂xuηk ) = ∂x(

√
h1ηk

√
h1ηk

∂xuηk ) is bounded in L2(0,T ; W−1,1(0, 1)).

• rgh1ηk
∂xh2ηk

is bounded in L2(0,T ; W−1,1(0, 1)).

• h1ηk
∂x∂

2
xh1ηk

is bounded in L∞(0,T ; W−1,1(0, 1)).

• rgh2ηk
∂x(h1ηk

+ h2ηk
) is bounded in L2(0,T ; W−1,1(0, 1)).

• For any ψ ∈ C∞0 ((0,T ) × (0, 1)), we obtain, using integration by parts and the regularities in the previous section,∣∣∣∣∣ ∫ T

0

∫ 1

0
ψh1ηk

∂7
xh1ηk

∣∣∣∣∣ =

∣∣∣∣∣ ∫ T

0

∫ 1

0
∂4

xh1ηk

[
ψ∂3

xh1ηk
+ 3∂xψ∂

2
xh1ηk

+ 3∂2
xψ∂xh1ηk

+ h1ηk
∂3

xψ
]∣∣∣∣∣

≤

∫ T

0
‖∂4

xh1ηk
‖L2(0,1)

[
‖ψ‖L∞(0,1)‖∂

3
xh1ηk
‖L2(0,1) + ‖h1ηk

‖L∞(0,1)‖∂
3
xψ‖L2(0,1)

+3‖∂xψ‖L∞(0,1)‖∂
2
xh1ηk
‖L2(0,1) + 3‖∂2

xψ‖L∞‖∂xh1ηk
‖L2(0,1)

]
≤ C‖∂4

xh1ηk
‖2L2(0,1)‖ψ‖H3(0,1) ≤ ‖ψ‖L2(0,T ;H3(0,1)),∣∣∣∣∣ ∫ T

0

∫ 1

0
ψh1ηk

∂xV(h1ηk
)
∣∣∣∣∣ =

∣∣∣∣∣ ∫ T

0

∫ 1

0
∂xψV1(h1ηk

)
∣∣∣∣∣

≤ ‖V1(h1ηk
)‖L∞((0,1)×(0,T ))

( ∫ T

0
‖ψ‖H1(0,1)

) 1
2

where V1(h1ηk
) := −

∫ ∞

h
τV

′

1(τ)dτ,

and ∣∣∣∣∣∣
∫ T

0

∫ 1

0
ψh1ηk

∂3
xh1ηk

dxdt

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫ T

0

∫ 1

0
∂2

xh1ηk
[h1ηk

∂xψ + ψ∂h1ηk
]

∣∣∣∣∣∣
≤

∫ T

0
‖∂2

xh1ηk
‖L2(0,1)[‖h1ηk

‖L∞(0,1)‖∂xψ‖L2(0,1) + ‖ψ‖L∞(0,1)‖∂xh1ηk
‖L2(0,1)]

≤ C
(∫ T

0
‖ψ‖2H1(0,1)

) 1
2

.

Finally (uηk ) and (ηk∂
4
xuηk ) are bounded in L2(0, 1; H1(0,T )) and L2(0,T ; H−2(0, 1)) respectively. Collecting the above

information completes the proof of the boundness of the right-hand side of (39), whence

∂t(h1ηk
uηk ) is bounded in L2(0,T ; H−3(0, 1)).

12
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Combining this with (38) and corollary 4 in (Simon, 1987) ensures that (h1ηk
uηk ) is compact in L2((0,T ); L2(0, 1)). So,

there exists m ∈ L2((0,T ); L2(0, 1)) such that

h1ηk
uηk converges to m in L2((0,T ); L2(0, 1)). (40)

Convergences of (h1ηk
)−1, uηk and

√
h1ηk

uηk

•As (h1ηk
)k converges strongly to h1 in L2(0,T ; W1,p(0, 1))∩C([0,T ]×(0, 1) for p ∈ [1,∞) and we have 0 < c1 ≤ h1ηk

≤ c2,
we deduce that

(h1ηk
)−1 converges strongly to h−1

1 in C([0,T ] × (0, 1)). (41)

• Considering (40) and (41), there exists u1 ∈ L2(0,T ; H1(0, 1)) such that

uηk converges strongly to u in L2(0,T ; L2(0, 1)). (42)

• Since
√

h1ηk
converges strongly to

√
h1 in C0(0,T ; L2(0, 1)), by using (42),

√
h1ηk

uηk converges strongly to
√

h1u1 in

L2(0,T ; L1(0, 1)).

Convergences of ∂xh1ηk
, h2ηk

∂xh1ηk
, ∂2

xh1ηk
, h1ηk

∂2
xh1η and ∂xh1ηk

∂2
xh1ηk

•We have ∂xh1ηk
bounded in L2(0,T ; H1(0, 1)) and ∂t∂xh1ηk

is bounded in L∞(0,T ; H−1(0, 1)) since ∂th1ηk
is bounded in

L∞(0,T ; H−1(0, 1)). Thanks to compact injection of H1(0, 1) in L2(0, 1) in one dimension, we have:

∂xh1ηk
converges strongly to ∂xh1 in L2(0,T ; L2(0, 1)).

• The bound of ∂2
xh1ηk

in L2(0,T ; L2(0, 1)) and ∂xh2ηk
in L2(0,T ; L2(0, 1)) gives us:

∂2
xh1ηk

converges strongly to ∂2
xh1 in L1(0,T ; L1(0, 1)),

∂xh2ηk
converges strongly to ∂xh2 in L1(0,T ; L1(0, 1)).

• Thanks to the strong convergence of h1ηk
, h2ηk

, ∂xh1ηk
and the weak convergence of ∂2

xh1ηk
, we have:

h2ηk
∂xh1ηk

converges strongly to h2∂xh1 in L1(0,T ; L1(0, 1)),

h1ηk
∂2

xh1ηk
converges strongly to h1∂

2
xh1 in L1(0,T ; L1(0, 1)),

∂xh1ηk
∂2

xh1ηk
converges wealkly to ∂xh1∂

2
xh1 in L1(0,T ; L1(0, 1)),

h1ηk
∂xh2ηk

converges strongly to h1∂xh2 in L1(0,T ; L1(0, 1)),

h2ηk
∂xh2ηk

converges strongly to h2∂xh2 in L1(0,T ; L1(0, 1)),

(h1ηk
)2 converges strongly to h1

2 in L1(0,T ; L1(0, 1)),

(h2ηk
)2 converges strongly to h2

2 in L1(0,T ; L1(0, 1)),

h1ηk
h2ηk

converges strongly to h1h2 in L1(0,T ; L1(0, 1)).

Convergences of h1ηk
∂xuηk , uηk

As uηk is bounded in L2(0,T ; L2(0, 1)), then ∂xuηk is bounded in L2(0,T ; W−1,2(0, 1)).

Then,
uηk converges strongly to u in L1(0,T ; L1(0, 1)).

At last, the function (h1ηk
, ∂xuηk ) 7−→ h1ηk

∂xuηk is a continuous in L∞(0,T ; H1(0, 1))×L2(0,T ; W−1,2(0, 1)) to L2(0,T ; W−1,2(0, 1)).

So,
h1ηk

∂xuηk converges weakly to h1∂xu in L2(0,T ; H−1(0, 1)).

13
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Convergences of h2ηk
uηk and ∂2

xh2ηk

We know that ∂xh2ηk
is bounded in L2(0,T ; L2(0, 1)) this implies ∂2

xhk
2 is in L1(0,T ; W−1,2(0, 1)).

So,
∂2

xh2ηk
converges weakly to ∂2

xh2 ∈ L1(0,T ; W−1,2(0, 1)).

To conclude, we have uηk converges weakly to u in L2(0,T ; L2(0, 1)) and the strong convergence of hk
2 to h2, gives us:

h2ηk
uηk converges weakly to h2u in L1(0,T ; L1(0, 1)).

Convergence of
(
a(h2ηk

)2 + b(h2ηk
)3)

)
∂x(h1ηk

+ h2ηk
)

We know that ∂x(h1ηk
+h2ηk

) converges weakly to ∂x(h1 +h2) in L2(0,T ; L2(0, 1)) and (a(h2ηk
)2 +b(h2ηk

)3)converges strongly
to ah2

2 + bh3
2 in L1(0,T ; L1(0, 1)).

So, (
a(h2ηk

)2 + b(h2ηk
)3)

)
∂x(h1ηk

+ h1ηk
) converges weakly to (ah2

2 + bh3
2)∂x(h1 + h2) in L1(0,T ; L1(0, 1))

Convergences of h1ηV(h1ηk
) and V(h1ηk

)∂xh1ηk

We will begin by studying the convergence of the term h1V(h1ηk
). We have h1V(h1ηk

) =
1

(h1ηk
)2 −

α

(h1ηk
)3 and

∣∣∣∣∣ 1
(h1ηk

)2 −
α

(h1ηk
)3 − (

1
h2

1η

−
α

h3
1η

)
∣∣∣∣∣ ≤ ∣∣∣∣∣ 1

(h1ηk
)2 −

1
h2

1

∣∣∣∣∣ +

∣∣∣∣∣ 1
(h1ηk

)3 −
1
h3

1

∣∣∣∣∣
∣∣∣∣∣ 1
(h1ηk

)2 −
α

(h1ηk
)3 − (

1
h2

1

−
α

h3
1

)
∣∣∣∣∣ ≤ |h1ηk

− h1||h1ηk
+ h1|

(h1ηk
)2h2

1

+
|h1ηk
− h1||(h1ηk

)2 + h1ηk
h1 + h2

1|

(h1ηk
)3h3

1

.

We use the Proposition 1 to find two constants δ1 and δ2 such as∣∣∣∣∣ 1
(h1ηk

)2 −
α

(h1ηk
)3 − (

1
h2

1

−
α

h3
1

)
∣∣∣∣∣ ≤ δ1|h1ηk

− h1| + δ2|h1ηk
− h1|.

So ∣∣∣∣∣ 1
(h1ηk

)2 −
α

(h1ηk
)3 − (

1
h2

1

−
α

h3
1

)
∣∣∣∣∣2 ≤ δ2

3|h
k
1 − h1|

2 → 0, with δ3 = 2max(δ1, δ2).

We have
1

(h1ηk
)2 −

α

(h1ηk
)3 converges strongly to

1
h2

1

−
α

h3
1

in L2(0,T ; L2(0, 1)).

A similar reasoning ensures the strong convergence of
1

(h1ηk
)3 −

α

(h1ηk
)4 to

1
h3

1

−
α

h4
1

in L2(0,T ; L2(0, 1)).

The strong convergence of ∂xh1ηk
in L2(0,T ; L2(0, 1)) gives us

V(h1ηk
)∂xh1ηk

converges weakly to V(h1)∂xh1 in L1(0,T ; L1(0, 1)).

Convergence of ∂2
xuηk , h1ηk

∂7
xh1ηk

, ∂6
xh2ηk

• The bound of ∂2
xuηk in L2(0,T ; L2(0, 1)) gives us:

∂2
xuηk converges strongly to ∂4

xu in L1(0,T ; L1(0, 1)).

•, we have:∫ T

0

∫ 1

0
h1ηk

∂7
xh1ηk

φ = −3
∫ T

0

∫ 1

0
∂2

xh1ηk
∂xφ∂

4
xh1ηk

− 3
∫ T

0

∫ 1

0
∂xh1ηk

∂2
xφ∂

4
xh1ηk

−

∫ T

0

∫ 1

0
φ∂3

xh1ηk
∂4

xh1ηk

−

∫ T

0

∫ 1

0
h1ηk

∂3
xφ∂

4
xh1ηk

14
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The function (∂2
xh1ηk

, ∂4
xh1ηk

) 7−→ ∂2
xh1ηk

∂4
xh1ηk

is a continuous in L∞(0,T ; H1(0, 1)) × L2(0,T ; W−1,2(0, 1)) to
L2(0,T ; W−1,2(0, 1)), so (∂2

xh1ηk
∂4

xh1ηk
)k converges weakly to ∂2

xh1η∂
4
xh1η in L2(0,T ; W−1,2(0, 1)). Next, the function

(∂3
xh1ηk

, ∂4
xh1ηk

) 7−→ ∂3
xh1ηk

∂4
xh1ηk

is a continuous in L∞(0,T ; H1(0, 1)) × L2(0,T ; W−1,2(0, 1)) to L2(0,T ; W−1,2(0, 1)), so
(∂3

xh1ηk
∂4

xh1ηk
)k converges weakly to ∂3

xh1∂
4
xh1 in L2(0,T ; W−1,2(0, 1)).

∂xh1ηk
∂4

xh1ηk
converges weakly to ∂xh1∂

4
xh1 in L2(0,T ; L1(0, 1)). Finally, h1ηk

∂4
xh1ηk

converges strongly to h1∂
4
xh1 in

L1(0,T ; L1(0, 1)).

•We have:∫ T

0

∫ 1

0
∂6

xh2ηk
φ =

∫ T

0

∫ 1

0
h2ηk

∂6
xφ

The bound of h2ηk
in L∞(0,T ; L2(0, 1)), give us:

the strong convergence of h2ηk
in L2(0,T ; W−1,1(0, 1)).

Convergence of h1ηk
∂3

xh1ηk

The function (h1ηk
, ∂3

xh1ηk
) 7−→ h1ηk

∂3
xh1ηk

is a continuous in L∞(0,T ; H1(0, 1))×L2(0,T ; W−1,2(0, 1)) to L2(0,T ; W−1,2(0, 1)),
so h1ηk

∂3
xh1ηk

converges weakly to h1∂
3
xh1 in L2(0,T ; W−1,2(0, 1)).

These above convergences then allow us to pass to the limit as n → ∞ in the weak formulation of the approximating
systems (14) − (16) − (18) − (19) in order to get that (h1, h2, u1) satisfies (24) − (25).
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