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Abstract 

In this research, we first prove that the stochastic logistic model (10) has a positive global solution. Subsequently, we 

introduce the sufficient conditions for the stochastically stability of the general form of stochastic differential equations 

(SDEs) in terms of equation (1), for zero solution by using the Lyapunov function. This result is verified via several 

examples in Appendix A. Besides; we prove that the stochastic logistic model, by incorporating the Ornstein-Uhlenbeck 

process is stable in zero solution. Furthermore, the simulated results are displayed via the 4-stage stochastic Runge-Kutta 

(SRK4) numerical method. 
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1. Introduction  

Stochastic differential equations (SDEs) have been intensively used to model the natural phenomena in last decades and 

these equations play a prominent applied role in various fields such as: Finance (Delong, 2013), Chemical (Coffey & 

Kalmykov, 2012), Biology (Wilkinson, 2011), Neural network (Zhang, et al., 2018), Prostate cancer (Assia & Wendi 2019) 

and so on. Most SDEs do not have explicit solutions. Nevertheless, these equations can be solved numerically (Ayoubi, 

2019; Bahar and Mao, 2004; Burrage and Burrage, 1996; Xiao & Tang, 2016). We use SRK4 method to approximate the 

solutions numerically. Whereas, Rüemelin (1982) proposed the S-stage stochastic Runge-Kutta explicit method which 

was based on Brownian motion. Likewise, Xiao and Tang (2016) introduced the High strong order stochastic 

Runge-Kutta methods for stochastic differential equations in case of Stratonovich hence our model is in Stratonovich 

sense. The classical Brownian motion introduced by Scottish Botanist Robert Brown in (1827), describes this motion 

based on random movements of pollen grains in liquid or gas. However, Brown did not solve the problem by himself 

(Mishura & Mishura, 2008). Norbert Wiener (1923) explained full mathematical theory of Brownian motion which 

existed as a rigorously defined mathematical objective to recognize his contribution. Brownian motion is a simple 

continuous stochastic process which is extensively used to model phenomena in various fields such as industry, dynamic 

process, physics, finance and fermentation process, (Arifah, 2005; Ayoubi et al., 2015; Ayoubi, 2015; Bahar & Mao 2004; 

Bazli, 2010; Mazo, 2002). This Brownian motion is the cause of instability (turbulence) in dynamic process (Ayoubi et al., 

2015; Ayoubi, 2015; Liu & Wang, 2013). Therefore, the deterministic models are inadequate to describe the dynamic 

process which containts random fluctuations. Bahar and Mao (2004) introduced the stochastic logistic model to illustrate 

the population growth, which is affected by environmental noise (Liu & Wang, 2013). The environmental noise destroys 

the stability in dynamic process.  

Aleksandr Mikhailovich Lyapunov in (1892), proposed the sense of stability for nonlinear dynamic system. He introduced 

an approach to determine the stability of the system without solving the system. Likewise, the stability theory for SDE 

introduced by Khasminskii (2011) and Mao (1991), Mao (1994) was explained some basic principles of different types of 

SDE. However, there is no specific research on stability stochastic logistic model with Ornsttein-Uhlenbeck process. 

Nevertheless, there are some previous research works which have been done on stability of logistic equation with white 

noise which are (Golec & Sathananthan, 2003; Jiang, et al., 2008; Liu & Wang, 2013; Sung & Wang, 2008). None of these 

researches investigated the stability of stochastic logistic model with Ornsttein-Uhlenbeck process. This research 

establishes the sufficient conditions for SDEs and stochastic logistic equation for zero solution by using Lyapunov 

function. In addition, we showed that noise is unfavorable for stability of population growth. Moreover, we apply the 

SRK4 method to evaluate the numerical solution.   

This paper is organized into five main sections; Introduction, Preliminaries, Models Description, Main Results, 
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Numerical simulation and Conclusion. 

2. Preliminaries and Model Description  

Throughout this paper; the notations  max ( )x t  and  min ( )x t  denote maximum and minimum eigenvalues of ( )x t  

respectively, ( )Tx t  represents transpose of ( )x t ,  ( )LV x t  denotes the differential operator, M is the symmetric matrix, 
TM  is the transpose of M and  ( )E V x t    is the expectation of  ( )V x t . T denotes the terminal time, t is time and 0t  is 

the initial time, ( )x t  corresponds to the highest data size, 0x  is initial data size, max  denotes the maximum specific 

growth rate while maxx  illustrates a carrying capacity and   indicates the random fluctuation.  

Definition 2.1 (Arifah, 2005): Consider the system  

      , ( ) , ( ) ( )dx t f t x t dt g t x t dW t                                   (1) 

where    1( ),..., ( )dW t W t W t  illustrates d-dimensional Weiner process,    ,  ( ) : 0;  mg t x t T R  m dR   indicates 

matrix valued function,    ,  ( ) : 0;  m mf t x t T R R   is related to an m  vector valued function and 

     1 ,..., mx t x t x t  is an m  vector stochastic process. System (1) has global unique solution which is x(t; 

t0; x0), for any initial value x(t0) = x0. There is a zero solution for system (1), at 0 0t   which is  0 0x t  . 

This solution is devoted to the origin point or zero solution. This paper investigates the stability of SDEs 

and stochastic logistic model for zero solution by using Lyapunov function.  

Theorem 2.1 (Mao, 1991): If exist a positive-definite function    1,1
0, ( ) , ,hV t x t C S t R   , such that 

       ' , : , ( ) , ( ) , ( ) 0
v v

V t X t x t t x t g t x t
t x

 
  
 

. 

For all     1,1

0, ( ) , ,ht x t C S t R   , then, the trivial solution is stable. If exist a positive-definite decrescent function
   1,1

0, ( ) , ,hV t x t C S t R   , such that  ' , ( ) 0V t x t  , then, the trivial solution is asymptotically stable.  

Theorem 2.2: Suppose that exist a positive definite function,  

1. the trivial solution of equation (1) is stochastically stable, if there exist a function    2,1
0, ( ) , ,hV t x t C S t R  

such that  , ( ) 0LV t x t   for all    0, ( ) , ,ht x t S t R    

2. the trivial solution of equation (1) is stochastically asymptotically stable, if there is exist a decrescent function, 
   2,1

0, ( ) , ,hV t x t C S t R   such that  , ( )LV t x t  is said to be negative definite.  

3. the trivial solution of equation (1) is stochastically stable in large, if there exist a decrescent radially 

unbounded of function    2,1
0, ( ) , ,hV t x t C S t R   such that  , ( )LV t x t  is said to be negative definite.  

Proof: (Mao, 1991; Mao, 1994).  

2.1 Logistic Models  

The simplest mathematical model for exponential growth is  

max

( )
( )

dx t
x t

dt
 .                                     (2) 

The solution of equation (2) is 

max
0( )

t
x t x e


 .                                      (3) 

If max 0   equation (3) is strongly ascending, and max 0   strongly descending. Thus, the exponential growth 

model of (2) is augmented by the inclusion of a multiplicative factor of 
max

( )
1 ,

x t

x
  and the ordinary logistic equation is 

max
max

( )
( ) 1 ( ) ,  [0, ]

x t
dx t x t dt t T

x


 
   

 
,                           (4) 

equation (4) can be solved analytically and the solution is 

0 max max

max 0 max

exp( )
( )

(exp( ) 1)

x x t
x t

x x t






 
.                                  (5) 

Equation (4) has been extremely used in (Madihah, 2002; May, 2001; Murray, 2001). (May, 2001; Murray, 2001) proved 
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that equation (4) is stable. equation (4) proposed by Pierre Francois Verhulst (1838). This model is inadequate to describe 

the dynamic process. Owing to, the dynamic processes contain uncontrolled fluctuations. Arifah, (2005) introduced a new 

stochastic logistic equation (SLE) to model uncontrolled fluctuation in a process. The SLE is 

2
max

max

( )
( ) 1 ( ) ( ) ( ),

x t
dx t x t dt x t dW t

x
 

 
   

 
 [0, ]t T ,                 (6) 

equation (4) particularly is used in [8].  

3. Mean Results  

Remarks 2.1: In (Golec & Sathananthan, 2003;Jiang, & Li, 2008; Liu & Wang, 2013; Sun & Wang, 2008) under 

different conditions, showed that equation (6) is stable. All of them considered the white noise. Nevertheless, this 

research investigates the stability of stochastic logistic model with Ornsttein-Uhlenbeck process in zero solution via 

Lyapunove function. The Ornstein-Uhlenbeck process is: 

     

   0 1

'' '

0 ,  ' 0

y t by t dW t

y y y y

  

 
 ,                                        (7) 

where  y t  indicates the Brownian motion at time t ,  W t  is white noise, 0b   shows the coefficient friction and 
  is the diffusion coefficient.  

By substituting  

   'y t W t ,                                                (8) 

into the equation (7) hence, the Ornstein-Uhlenbeck process becomes:  

     dW t bW t dt dW t   .                                       (9) 

The expectation and variance of Ornstein-Uhlenbeck process is: 

     0 1

1
( )

bte
E y t E y E y

b

 
    

 
, 

     
2 2

2
0 2 3

( ) 3 4 bt btV y t V y t e e
b b

        , 

and the distribution follows as 

  , var( )N E y y . 

Whereas, the normal distribution of white noise is a normal Gaussian. By substituting equation (9) into equation (6) the 

new logistic model is given as:  

 2 2 2
max

max

( )
( ) 1 ( ) ( ) ( ) ( ) ( ),  0, ,

x t
dx t x t dt x t bW t dt x t dW t t T

x
  

 
     

 
             (10) 

Equation (10) is a stochastic logistic model with Ornstein-Uhlenbeck process.  

First, it is necessary to prove that equation (10) has a unique positive solution then, we focus on stability.  

Theorem 3.1: Equation (10) has a unique positive solution, for all 0t   and 00 x . 

Proof: The coefficients of the equation (10) are locally Lipschitz continuous, for  any given initial value 0
nx R . Thus, 

a unique locally solution x(t), 0,  et   exit. Where e  displays the explosion time (Arnold, 1972; Friedman, 1976). 

The x(t), is a unique positive global solution. So, we need to show the e  . Let 0 0 0
0

1
,  ,  0k k k

k

 
  
 

 and k > k0 is 

satisfactorily large.  For each component of 0x , the stopping time for every integer k > k0 is:  
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  
1

inf 0,  : ,  ,k et t x t k
k


  

     
  

 

and 0k  is satisfactorily large. It means that kt  increases as k  . Thus, lim k
k

t t


  and et   . In other words, 

only we need to show    . If this statement is false, there exist a pair of constant 0T   and  0,  1  such that  

  .P T     

Hence, there is an integer 1 0k k  and  

  1,  P T k k      .                                         (11) 

We define the Lyapunov function  

     
1

( ) : 1 ln
2

V x t x t x t
 

   
 

,                               (12) 

for all   0,  ex t   and the nonnegative function:   

1
1 ln .

2
u u

 
  

 
 

By using Itô formula (Mao, 2007) for Lyapunov function and taking into account the equation (10) then we have:  

  
   

 
         

   

 
         

2 2 2
max

max

2

2 2 2
max23

max

1 1
( ) 1

22

1 0.25 1
                   1

2 2

A

x t
d V x t x t dt x t bW t dt x t dW t

x t xx t

x t
x t dt x t bW t dt x t dW t

xx tx t

  

  

  
       

   

    
        

     

,

B

     (13) 

computing A and B separately we get:  

 

 
 

 
    2

max
max

1 1
1

2 2

x t
A x t dt x t bW t dt

xx t x t
 
  
      

  
 

 
    

 

 
 

 
    

 
    

2 2
max

max

2 2 2

1 1
1

22

1 1

2 2

x t
x t dW t x t dt

x t xx t

x t bW t dt x t dW t
x t x t

 

 

  
      

  

 

 

and  

   

 
      

 
 

    
 

           

2

2
max max23

max max

2 2
2 2 2 2

max
max

0.25 1
1 2 1

2

      2 1

x t x t
B x t dt x t bW t dt x t dt

x xx tx t

x t
x t bW t dt x t dt x t bW t dt x t dW t

x

  

   

      
                        

  
         

  
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 

 
 

 
    

 
 

 
         

 

 
      

 

 

2

2
max max

3 3
max max

2 2
2 2 2 2

max
3 3

max

max2

0.25 0.25
1 2 1

0.25 0.25
        2 1

1
     1

2

x t x t
B x t dt x t bW t dt x t dt

x xx t x t

x t
x t bW t dt x t dW t x t dt x t bW t dt

xx t x t

x t

x t

  

   



      
                

      

  
         

  

   
 

    
 

 

 
         

 

 
      

2

2
max2

max max

2 2
2 2 2 2

max2 2
max

1
1

2

1 1
        1

2 2

x t
x t dt x t bW t dt x t dt

x xx t

x t
x t bW t dt x t dW t x t dt x t bW t dt

xx t x t

 

   

      
              

      

  
         

  

. 

Somewhat lengthy calculation and application of the facts that      0,  0,  dt dt dt dW t dW t dW t dt     

(Gardiner, 2004 pp87) we have:  

   
  

 

 

 

 

4 4

23

4 4 4 4

23

0.125 0.25

0.125 0.25
.

B x t dt
x tx t

x t dt x t dt
B

x tx t



 

 

 

 

Substituting the values of A and B into equation (13) yields:  

  
 

 
 

 
    

 
    

 

 
 

 
    

 
    

 

2
max

max

2 2
max

max

2 2 2

4 4

1 1
( ) 1

2 2

1 1
                  1

22

1 1
                    

2 2

0.125
                 

x t
d V x t x t dt x t bW t dt

xx t x t

x t
x t dW t x t dt

x t xx t

x t bW t dt x t dW t
x t x t

x t

 

 

 



  
      

  

  
      

  

 



 

 

 

4 4

23

0.25
.

dt x t dt

x tx t




 

    
 

 
 

 0.5
max max

max max

( ) 0.5 1 0.5 1
x t x t

d V x t x t x t x t
x x

 
       
                        

 

           

       

1.5 4 2.5 4 2

2 2 2

1
0.5 0.5 0.125

8

0.5 0.5 ,

x t bW t x t bW t x t x t dt

x t dW t x t dW t

   

 


    



 

 

    
 

 

 
        

          

0.5
max

max

0.5
max

max

4 2 2 0.5

( ) 0.5 1

                   0.5 1 0.5 1

1
                   0.25 1 0.5 1 .

2

x t
d V x t x t x t

x

x t
x t x t bW t x t

x

x t x t dt x t dW t x t



 

 

   
         

  
       

  

 
    

 

                (14) 

It is worth mentioning,  
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 
 

 
 

 

    

 
 

 
 

 

    

0.5
max max

max max

4 2

0.5
max max

max max

4 2
1

0.5 1 0.5 1

0.25 0.5 1

0.5 1 0.5 1

0.25 sup 0.5 1 .
t R

x t x t
x t x t x t

x x

x t x t

x t x t
x t x t x t

x x

x t x t Q

 



 




 



      
              

      

 

      
               

      

  

 

If   maxx t   then 
 

max

1 0
x t

x

 
   

 
, it follows from the boundedness of  . Hence, there is nonnegative number 1Q  

which is independent of x  and t . 

If   max0 x t   , obviously there is a positive number 2Q  which is independent of x  and t , and it follows from the  

boundedness  , such that   

 
 

 
 

 

    

0.5
max max

max max

4 2

0.5 1 0.5 1

0.25 0.5 1

x t x t
x t x t x t

x x

x t x t

 



      
              

      

 

 

 
 

 
 

 

    

0.5
max max 2

max max

4 2

0.5 1 0.5 1

0.25 sup 0.5 1 .
t R

x t x t
x t x t x t Q

x x

x t x t

 




 



      
                

      

 

 

As results, we determine that there exist a positive number Q  that is independent of x  and t  such that  

 
 

 
 

 

    

0.5
max max

max max

4 2

0.5 1 0.5 1

0.25 0.5 1 .

x t x t
x t x t x t

x x

x t x t Q

 



      
              

      

  

                (15) 

Substituting of the inequality (15) into (14) we get:  

                0.5 2 0.5( ) 0.5 1 0.5 1d V x t Qdt x t bW t x t x t dW t x t      .           (16) 

It is obvious that the expectation of Brownian motion is zero (Mao, 2007) since  W t  is Brownian motion, then by 

taking the expectation and integral from both sides of inequality (17) we have:  

      

 

( T) (0) T

                          (0) .

n nE V x V x QE

V x QT

    

 
                          (17) 

Based on inequality (11) we have:  

 nP T   .  

For every      
1

,  ,   or ,  .n nT x n
n

          Hence,  ( )V x t  is no less than either  

1 1 1
min 1 ln( ), 1 ln( ) .

2 2
k k k

k

 
    

 
 

By taking into account equation (16) we have:   
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      (0) ( )

1 1 1
                    min 1 ln( ), 1 ln( ) .

2 2

n nV x QT E T V x

k k k
k

      

 
     

 

 

Where   n T   shows the function  n T  . Letting n   leads to dissidence  

 (0) .V x QT     

Consequently, we must have     and the proof is completed.  

Theorem 3.2: The differential operator  ( )LV x t  which is associated with equation (1):  

                   ( ) , , , , ( ) .
T TT

E LV x t dt E x t Mf t x t f t x t Mx t g t x t Mg t x t E dV x t           
     (19) 

This result is achieved based on Lyapunov quadratic function and by taking into account equation (1). Suppose that the 

Lyapunov quadratic function is given by  

     ( )
T

V x t x t Mx t ,                                   (20) 

where  

11 1

1

...

: ... :

...

n

m m n m n

a a

M

a a  

 
 

  
 
 

 

is a symmetric positive definite matrix. To clarify the sign of V(x(t)), we are suggesting the bellow inequality  

         
1 1

( ) ,  

n n
T T

ij i j

i j

V x t x t Mx t M x t x t M M

 

   ,  

           2 2
min max

T
M x t x t Mx t M x t   . 

Equation (19) in some neighborhood of   00,  x t t t   , with respect to the equation (1) is negative definite and it is 

stochastically asymptotically stable, in zero solution (origin point).  

Proof: To achieve the goal, we use the basic concept of derivative and Lyapunov function, to yield:   

          dV x t V x t dx t V x t   , 

               ( )
T T

dV x t x t dx t M x t dx t x t Mx t    , 

            ( ) , ,
TT T

A

dV x t x t f t x t dt g t x t dW t
 

  
    

              , , .
T T

B

M x t f t x t dt g t x t dW t x t Mx t    
    

By multiplying the two brackets A and B yields  
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          

           

        

           

           

( ) ,

              , ,

             , , ,

             , ,

            , ,

T T

TT

T T

T

T T

dV x t x t Mx t x t Mf t x t dt

x t Mg t x t dW t Mx t f t x t dt

f t x t dtMf t x t dt Mf t x t dt

g t x t dW t Mx t f t x t dW t

f t x t dW t Mf t x t dt x t Mx t

 

 

 

 

 

 

         , ,
T

f t x t dW t Mf t x t dW t . 

By using the facts that  0,  0dt dt dt dW t     and    dW t dW t dt   (Gardiner, 2004 pp87) and with somewhat 

lengthy calculation we have:  

             

           

     

( ) , ,

              , ,

              , , .

T T

T T

T

dV x t Mx t f t x t dt x t Mg t x t dW t

Mx t f t x t dt Mx t f t x t dW t

Mg t x t g t x t dt

 

 



                   (21)  

By applying expectation in the above system, we get:  

             

           

       

( ) , ,

                      , ,

                     , , ( ) .

T T

T T

T

E dV x t E x t Mf t x t dt Mx t g t x t dW t

Mx t f t x t dt Mx t f t x t dW t

Mg t x t g t x t dt E LV x t dt

     

 

     

 

           

       

( ) , ,

                     , , ( ) .

TT

T

E dV x t E x t Mf t x t dt Mx t f t x t dt

Mg t x t g t x t dt E LV x t dt

     

     

 

Based on (Mao, 2007 p.108), let  ( )V x t  be a positive function then  ( )V x t  is negative definite and a nonnegative 

continuous function  ( )V x t  is said to be decrescent. Hence,  

   ( ) ( ) ,  ConstantLV x t kV x t k   ,                            (22) 

and  

   

   

( ) ( )

( ) exp

E V x t KE V x t
t

E V x t Kt


       

    

 

    lim ( ) lim ( )
T

t t
E V x t E x t x t

 

         
. 

Consequently, based on   we see that the equation (1) is stable, asymptotically stable or asymptotically stable in large 

and the above proof is completed.  

Remark 3.1: Theorem 3.2 is the general theory which determines the stability states of all SDEs in term of equation (1) 

for zero solution. This result verified via Theorem 3.3 and several examples in Appendix A.   

Theorem 3.3: In some neighbourhood at x(t)=0, the zero solution of equation (10) is globally asymptotically stable a.s 

(almost surly) under the following hypothesis  

H1: For 0,t   max 0 max0 x x     , then   l i m ( ) 0
t

V x t


 .  

Proof: An applying equation (19) in equation (10) we have:  
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     

   

     

2
max

max

2
max

max

2 2 2 2

( )
( ) 1 ( ) ( )

( )
                       1 ( ) ( )

                       ( ) ( ) ( ) ,

T

T

T

x t
E dV x t E x t M x t x t bW t dt

x

x t
Mx t x t x t bW t dt

x

M x t x t dt E LV x t dt

 

 

 

   
             

  
     

  


    

                  (23) 

where M is the identity matrix and taking expectation on both sides yields:  

     

   

     

2
max

max

2
max

max

2 2 2 2

( )
( ) 1 ( ) ( )

( )
                       1 ( ) ( )

                       ( ) ( ) ( )

T

T

T

x t
E dV x t E x t x t x t bW t dt

x

x t
x t x t x t bW t dt

x

x t x t dt E LV x t dt

 

 

 

   
             

  
     

  


    

                   (24) 

     

 

4 4
max

max

( )
( ) 2 1 ( ) ( )

                    ( ) .

x t
E dV x t E x t x t x t dt

x

LV x t dt

 
   

              

   

                   (25) 

Based on equation (19) and inequality (22), equation (25) becomes:   

   ( ) 2 ( )LV x t V x t   

and  

   

   

( ) 2 ( )

( ) exp 2

E V x t E V x t
t

E V x t t


       

    

. 

Therefore, 

   lim ( ) lim exp 2 0
t t

E V x t E t
 

         , 

and hence, function  ( )V x t  is negative definite. Therefore, the zero solution is stable and we reach to desired goal.  

To support our theory, this research considers numerical simulation which is presented in below section.   

4. Numerical Simulation   

In this section we consider a strong and accurate numerical method SRK4 to elaborate the analytical results (Ayoubi et al., 

2015 and Ayoubi, 2015). Bear in mind, we cannot use the SRK to approximate the numerical solution of equation (10). 

Since, it is in Itô sense (Rosli et al., 2010). Thus, equation (10) can be converted into Stratonovich sense by using the 

below formula  

       
1

, ( ) , ( ) , ( ) , ( )
2

g
f t x t f t x t g t x t t x t

x


 


.  

Hence,  

    2 4 3
max

( )
( ) 1 ( ) ( ) ( )

max

x t
dx t x t bW t x t dt x t dW t

x
  
  

     
   

,                   (26) 

where ( )dW t  denotes the Stratonovich form. Equations (10) and (26), represent some solution under different approach. 

We use SRK4 method to approximate the numerical solution. SRK4 was based on the increment of Wiener process (Rosli 

et al., 2010).  
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Figure 1. Shows the stability of equation (10), for 0 0 max max0.0,  0.0001,  3.525,  0.0091,t x x      60.5, 

and 1b   respectively 

.  

Figure 2. Illustrates the stability of equation (10), for 0 0 max max0.0,  0.0001,  0.50,  1.99,t x x       70.5,   

1b   respectively 

5. Conclusion and Recommendations  

This research was assigned for the stability of equation (1) and (10). In addition, the research presented a general theory to 

state the stability of SDEs for zero solution via Lyapunov function (see Theorem 3.2) which is verified by the stochastic 

logistic model (10) (see Theorem 3.3) and several examples (see Appendix A). Likewise, we proved that equation (10) 

has a positive global solution (see Theorem 3.1). Finally, this research used the SRK4 method to illustrate the applicability 

our theory. In conclusion, an interesting topic for future research is proposed: if the 0 max max ,x x   what is the 

possibility of finding sufficient conditions for stability in trivial solution-s? Unfortunately, there are some impediments 

here which need some further investigation in future perspective. 
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Appendix A  

Example1: Investigate the stability of equation (1) 

  2cos( ) cos ( ) ( ) ( )
a

dx t t t dt cx t dW t
b

 
   
 

.                          (1) 

For 0 a b   equation (1) is stable in zero solution then  lim ( ) 0
t

V x t


 . By using equation (1) in system 

(19) we have 

 

    

2 2( ) ( ) cos( ) cos ( ) ( ) cos( ) cos ( )

                       ( ) ( ) ( )

T
T

T

a a
E dV x t x t t t dt x t t t dt

b b

cx t cx t E LV x t dt

   
         

   

    

 

where M  is a symmetric positive matrix. If 1M  . 
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     2 2 2( ) 2 ( ) cos( ) cos ( ) ( ) ( )
a

E dV x t x t t t dt c x t E LV x t dt
b

 
          

 
 

Based on equation (1) and inequality (22) we get: 

    ( )LV x t V x t  , 

   

   

( ) 2 ( )

( ) exp 2

E V x t E V x t
t

E V x t t


       

    

 

   lim ( ) lim exp( 2 ) 0
t t

E V x t t
 

      . 

The function  ( )V x t  is definite, therefore the zero solution is stochastically stable according to Theorem 2.2. 

Example2: Determine the stability states of bellow equation 

( ) ( ) exp( ) ( ).dx t bx t dt a t dW t                                 (2) 

Equation (2) for b a  is asymptotically stochastically stable in zero solution. An application of equation (2) into 

equation (19) and 1M  , leads to:  

       

 

( ) ( ) ( ) ( ) ( ) a exp( ) a exp( )

                        ( )

T TTE LV x t dt E x t bx t bx t x t t t

E dV x t

             

   

,          (3) 

after simplification it yields:  

  2( ) 2 ( ) exp( 2 )E LV x t E bx t a t dt          . 

By taking limit on both sides of above equation, we get:  

  2

0 0

lim ( ) lim 2 ( ) lim exp( 2 )

t t

t t t
E LV x t E b x s ds a s ds

  

 
       
 
 
  . 

For ( ) 0x s   the 
0

( )

t

x s ds    [Evans, 2012 pp 67] than the  ( ) 0LV x t  . Therefore, equation (2) is stable 

in zero solution based on Theorem 2.2.  

Example3: Investigate the stability of stock price 

( ) ( ) ( ).dx t bx t dt adW t                                     (4) 

We are using equation (19) for model (4) and assuming 1M  , to determine the stock price is not stable. 

  2

0 0

lim ( ) lim 2 ( ) lim

t t

t t t
E LV x t E b x s ds a ds

  

 
     
 
 
  . 

For any 0 and 0a b   and for ( ) 0x s   the 

0

( )

t

x s ds    [Evans, 2012 pp 67]  ( ) 0LV x t  . Hence, the 

zero solution is unstable or stock price is not stable. 

Example4: Determine the stability of equation (5) 

2( ) sin( ) sin ( ) ( ) ( )
a

dx t a t t dt cx t dW t
b

 
   
 

.                          (5) 
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For 00 x a b   , it is stable then  lim ( ) 0
t

V x t


 . By using equation (5) in system (22) we have: 

 

   

2 2( ) ( ) sin( ) sin ( ) ( ) sin( ) sin ( )

                           ( ) ( ) ( )

T
T

T

a a
E LV x t dt Mx t t t dt Mx t t t dt

b b

M cx t cx t dt E dV x t

   
         

   

    

 

where M is symmetric positive matrix, assume M=1. 

 

   

2 2( ) ( ) sin( ) sin ( ) ( ) sin( ) sin ( )

                           ( ) ( ) ( )

T
T

T

a a
E LV x t dt x t t t dt x t t t dt

b b

cx t cx t dt E dV x t

   
         

   

    

 

Based on equation (5) and inequality (22) we have:  

    ( )LV x t V x t  , 

   ( ) 2 ( )E V x t E V x t
t


       

, 

   lim ( ) lim exp( 2 ) 0
t t

E V x t E t
 

      .  

The function  ( )V x t  is definite, therefore the zero solution is stochastically asymptotically stable.  

 

Figure 1. Shows the stability of equation (1) with different values, 3.523,a   00.15,  1.6 and 0.0001b c x    

.  

Figure 2. Illustrates the stability of equation (2) with different values, 2.6,  1.9a b   and 0 0.0001x   

0 100 200 300 400 500 600 700 800 900 1000
-1.5

-1

-0.5

0

0.5

1
x 10

19

Time (t)

x
(t

)

0 100 200 300 400 500 600 700 800 900 1000
-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Time (t)

x
(t

)



 

 

http://jmr.ccsenet.org                        Journal of Mathematics Research                       Vol. 12, No. 2; 2020 

64 

.  

Figure 3. Indicates the instability of equation (4) with different values, 01,  1 and 0.0001a b x    

 

Figure 4. Shows the stability of equation (5) with different values, 0.1,  1,  1a b c    and 0 0.0001x   
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