Hopfian and Cohopfian Objects in the Categories of Gr(A - Mod) and COMP(Gr(A - Mod))

Seydina Ababacar BALDE¹, Mohamed Ben Faraj BEN MAAOUIA¹ & Ahmed Ould CHBIH¹

¹ Gaston Berger University, Saint-Louis, Senegal

Correspondence: Mohamed Ben Faraj BEN MAAOUIA, Gaston Berger University, Saint-Louis, Senegal. E-mail: maaouiaalg@hotmail.com

Received: January 1, 2020	Accepted: January 29, 2020	Online Published: February 19, 2020
doi:10.5539/jmr.v12n2p17	URL: https://doi.org/10.5539/jmr.v12n2p17	

Abstract

We study in this work the notions of hopficity and cohopficity in the categories

AGr(A - Mod) and COMP(AGr(A - Mod)) of associate complex to a graded left A-module and we show that:

- 1. Let M a graded left A-module, N a graded submodule of M, M_* be a complex associate to M. Suppose that M_* be a quasi-projective and N_* be a completely invariant and essential sub-complex of M_* associate to N. Then N_* is cohopfian if, and only, if M_* is cohopfian.
- 2. Let *M* a graded left *A*-module, *N* a graded submodule of *M*, M_* quasi-injective and N_* a completely invariant and superfluous sub-complex of M_* . Then M_* is cohopfian if, and only, if M_*/N_* is cohopfian.

Keywords: Hopfian complex, cohopfian complex, chain complex, sequence complex, quasi-injective chain complex, quasi-projective chain complex

1. Introduction

In this paper, the ring A is supposed to be associatif, unitary and not necessairly commutative, every left A-module is unifere.

The aim of this article is to study the hopfian and cohopfian objets in the category Gr(A - Mod) of graded left A-modules and in the category COMP(AGr(A - Mod)) of associated complex of graded left A-modules. In particular we give conditions over M_* and N_* such that M_*/N_* be cohopfian (respectively is hopfian) and conditions over M_*/N_* and N_* such that M_* be hopfian.

We define AGr(A - Mod) and COMP(AGr(A - Mod)):

- 1. The category of graded of left A-modules denoted AGr(A Mod) where :
 - (a) The objects are the graded left *A*-modules;
 - (b) The morphisms are the graded morphisms..
- 2. the category of complexes associate of graded left A-modules denoted COMP(AGr(A Mod)) where
 - (a) the objects are the complex sequences associate of graded left A-modules ;
 - (b) the morphisms are the complex chains associate of graded morphisms.

We note that COMP(AGr(A - Mod)) is a sub-category of COMP(A - Mod).

The principal results of this article is given in the third section, which are:

- 1. Let *M* be a graded left *A*-module. then *M* is hopfian(resp. cohopfian) if for any $n \in \mathbb{Z}$, M(n) is hopfian(resp. cohopfian).
- 2. Let *M* a graded left *A*-module, *N* a graded submodule of *M*, M_* be a complex associate to *M* and N_* be a complex associate to *N*. If M_*/N_* is hopfian, then M_* is hopfian.

- 3. Let *M* a graded left *A*-module, *N* a graded submodule of *M*, M_* be a complex associate to *M* and N_* be a complex associate to *N*. Suppose that N_* be a completely invariant and superfluous sub-complex of M_* . Then M_* is hopfian if, and only, if M_*/N_* is hopfian.
- 4. Let *M* a graded left *A*-module, *N* a graded submodule of *M*, M_* quasi-injective and N_* a completely invariant and superfluous sub-complex of M_* . Then M_* is cohopfian if, and only, if M_*/N_* is cohopfian.
- 5. Let *M* a graded left *A*-module, *N* a graded submodule of *M*, M_* be a complex associate to *M*. Suppose that N_* be a complex associate to *N*, M_* be a quasi-projective and N_* be a completely invariant and essential sub-complex of M_* . Then N_* is cohopfian if, and only, if M_* is cohopfian.
- 6. Let *M* a graded left *A*-module, *N* a graded submodule of *M*, M_* be a complex associate to *M*. If M_*/N_* is hopfian for all nonzero sub-complex N_* associate to *N*, then M_* is hopfian.
- 7. Let *M* a graded left *A*-module, M_* be a complex associate to *M*. If M_*/N_* is hopfian for all sub-complex N_* associate to *N*, then M_* is hopfian.
- 8. (*p*) denotes the following property :

«any epimorphism of sub-complex N_* of M_* (where M is an object of COMP(AGr(A - Mod)))) is an isomorphism \gg

Let *M* a graded left *A*-module, M_* a complex associate to *M*. If M_* is an hopfian quasi-projective, then M_* owns the property (p).

2. Preliminaries

Definition 1 Lets A be a ring and is a family $\{A_n\}_{n \in \mathbb{Z}}$ of sub-group of A. If

- $I. \ A = \bigoplus_{n \in \mathbb{Z}} A_n;$
- 2. $A_n \cdot A_m \subset A_{n+m}, \forall n, m \in \mathbb{Z}$.

Then we say that A is a graded ring. Else, if $A_n = 0$, $\forall n < 0$. Then A is called positively graded ring.

In all that follows, A and M are supposed unitary.

Definition 2 Let $A = \bigoplus_{n \in \mathbb{Z}} A_n$ be a graded ring and M be a left A-module, then M is called a graded left A-module if there exist a sequence $(M_n)_{n \in \mathbb{Z}}$ of sub-group of M such that:

1.
$$M = \bigoplus_{n \in \mathbb{Z}} M_n;$$

2. $A_n \cdot M_d \subset M_{n+d}, \forall n, d \in \mathbb{Z}.$

Definition 3 Lets $A = \bigoplus_{n \in \mathbb{Z}} A_n$ be a graded ring, $M = \bigoplus_{n \in \mathbb{Z}} M_n$ be a graded left A-module and N is a sub-module of M, then N is called a graded sub-module of M, if $\forall x = \sum_{n \in \mathbb{Z}} x_n \in N$, with $x_n \in M_n$, then $x_n \in N$, $\forall n \in \mathbb{Z}$. **Proposition 1**

Lets $A = \bigoplus_{n \in \mathbb{Z}} A_n$ be a graded ring and $M = \bigoplus_{n \in \mathbb{Z}} M_n$ is graded left A-module, then for all $n \in \mathbb{Z}$ fixed, we have

$$M(n) = \bigoplus_{k \ge n} M_k = \bigoplus_{k \in \mathbb{N}} M_{n+k}$$

is a graded sub-module of M and :

$$\cdots M(n+2) \subset M(n+1) \subset M(n) \subset \cdots$$

Proof

Let $n \in \mathbb{Z}$ fixed, $M(n) = \bigoplus_{k \ge n} M_k$ is a sub-group of M and

$$A_s \cdot M(n)_k = A_s \cdot M_{n+k} \subset M_{n+k+s} = M_{n+(k+s)} = M(n)_{k+s}.$$

Else

$$M(n) = \bigoplus_{k \ge n} M_k = M_n \bigoplus M(n+1) = \bigoplus_{k \in \mathbb{N}} M_k$$

Hence $M(n + 1) \subset M(n)$. Thus

$$\cdot \cdot M(n+2) \subset M(n+1) \subset M(n) \subset \cdot \cdot \cdot$$

Definition 4 Lets $A = \bigoplus_{n \in \mathbb{Z}} A_n$ be a graded ring, $M = \bigoplus_{n \in \mathbb{Z}} M_n$, $N = \bigoplus_{n \in \mathbb{Z}} N_n$ are two graded left A-modules and $f: M \longrightarrow N$ is a morphism of left A-modules, then f is called a graded morphism if for any $m \in M_s$ then $f(m) \in N_{s+k}$.

Theorem and Definition 1 Let A be a graded ring, the category of graded left A-module is the category denoted by Gr(A - Mod)-Mod whose

- 1. The objects are the graded left A-modules;
- 2. The morphisms are the graded morphisms.

Proof

See (OULD CHBIH et al., 2015).

Definition 5 A complex sequence $(C, d) : ... \to C_{n+1} \xrightarrow{d_{n+1}} C_n \xrightarrow{d_n} C_{n-1} \xrightarrow{d_{n-1}} ...$ is a sequence of morphisms of A-modules satisfying $d_n \circ d_{n+1} = 0$, for all $n \in \mathbb{Z}$.

Definition 6 A complex chain $f : (C, d) \to (C', d')$ is a sequence of homomorphisms $(f_n : C_n \longrightarrow C'_n)_{n \in \mathbb{Z}}$ of A-modules making the following diagram commute :

i.e $d'_{n+1} \circ f_{n+1} = f_n \circ d_{n+1}$, for all $n \in \mathbb{Z}$.

Proposition and Definition 1 Let A be a ring, then the category of complexes of left A-modules is the category denoted COMP(A - Mod) whose :

- 1. The objects are the sequences complex;
- 2. The morphisms are the complex chains.

Proof

See (Dade E. C. 1980).

Proposition 2 Lets $A = \bigoplus_{n \in \mathbb{Z}} A_n$ be a graded ring and $M = \bigoplus_{n \in \mathbb{Z}} M_n$ be a graded left A-module, then we have M_* :

$$M_*:\cdots \to M(n+1) \xrightarrow{d_{n+1}} M(n) \xrightarrow{d_n} M(n-1) \to \cdots$$

is an associate complex sequence of a grade A-module $M = \bigoplus_{n \in \mathbb{Z}} M_n$ with $M(n) = \bigoplus_{k \in \mathbb{Z}} M_{n+k}$ and

$$d_n: M(n) \longrightarrow M(n-1)$$

 $x \mapsto y$

with $(y, z) \in M_n \times M(n + 1)$.

Proof

We have $M(n) = \bigoplus_{k \in \mathbb{Z}} M_{n+k} = \bigoplus_{k \ge n} M_k = M_n \bigoplus M_{n+1}$ and $M(n-1) = M_{n-1} \bigoplus M(n) = M_{n-1} \bigoplus M_n \bigoplus M(n+1).$

Let $x \in M(n) \Longrightarrow \exists !(y, z) \in M_n \times M(n + 1)$ such that x = y + z. Put

$$d_n: M(n) \longrightarrow M(n-1)$$

$$x = y + z \longmapsto y$$

so $Im(d_n) = M_n$; on the other hand

$$d_{n-1}: M(n-1) \longrightarrow M(n-2)$$

 $w=u+v\longmapsto u$

with $(u, v) \in M_{n-1} \times M(n)$ so $ker(d_{n-1}) = M(n)$ so $Im(d_n) \subset ker(d_{n-1})$ so

$$d_{n-1} \circ d_n = 0$$

thus

$$M_*: \cdots \to M(n+1) \xrightarrow{d_{n+1}} M(n) \xrightarrow{d_n} M(n-1) \to \cdots$$

is a complex sequence.

Proposition 3 Let M be a graded left A-module, N a graded submodule of M, M_* the complex associate to M and for all $n \in \mathbb{Z}$, N(n) is a submodule of M(n). Then

$$N_*: \dots \to N(n+1) \xrightarrow{\delta_{n+1}} N(n) \xrightarrow{\delta_n} N(n-1) \to \dots \text{ with } d_n(x) = \delta_n(n)(x)$$

is a sub-complex of M_*

Proof

We have $\delta_n : N(n + 1) \longrightarrow N(n)$ let $x, y \in N(n + 1) : x = y$ then $d_n(x) = d_n(y)$ $\implies \delta_n(x) = \delta_n(y)$ \implies is well define. Let's calculate $\delta_n \circ \delta_{n+1}$ Let $x \in N(n + 1)$, we have : $\delta_n \circ \delta_{n+1}(x) = \delta_n(\delta_{n+1}(x))$ $= \delta_n(d_{n+1}(x)) = d_n(\delta_{n+1}(x)) = d_n \circ d_{n+1}(x) = 0$ Thus $\delta_n \circ \delta_{n+1} = 0$

hence N_* is a sub-complex of M_* .

Proposition 4 Lets $A = \bigoplus_{n \in \mathbb{Z}} A_n$ be a graded ring, $M = \bigoplus_{n \in \mathbb{Z}} M_n$ and $N = \bigoplus_{n \in \mathbb{Z}} N_n$ are two graded left A-module $f : M \longrightarrow N$ is a graded morphism of a graded left A-modules, then for all $n \in \mathbb{Z}$

$$f(n): M(n) \longrightarrow N(n)$$
$$m \longmapsto = f(m)$$

is graded morphism.

Proof

We have M(n) is a graded sub-module of left A-module M and $f: M \longrightarrow N$ is graded morphism, then let $m \in M(n)$, so

$$m = \sum_{i \in \mathbb{Z}} m_{i+n} \Longrightarrow f(n)(m) = f(m) = f(\sum_{i \in \mathbb{Z}} m_{i+n}) = \sum_{i \in \mathbb{Z}} f(m_{i+n})$$

or $f(m_{i+n}) \in N_{i+n+k} = (N(n))_{i+k}$ thus f is graded morphism of a graded left A-modules.

Proposition 5 Lets
$$A = \bigoplus_{n \in \mathbb{Z}} A_n$$
 be a graded ring, $M = \bigoplus_{n \in \mathbb{Z}} M_n$, $N = \bigoplus_{n \in \mathbb{Z}} N_n$ are two graded left A-modules and $f: M = \bigoplus_{n \in \mathbb{Z}} M_n \longrightarrow N = \bigoplus_{n \in \mathbb{Z}} N_n$ is a graded morphism of a graded A-modules, then :

$$M_{*}: \dots \longrightarrow M(n+1) \xrightarrow{d_{n+1}} M(n) \xrightarrow{d_{n}} M(n-1) \longrightarrow \dots$$

$$f_{*} \downarrow \qquad f(n+1) \downarrow \qquad f(n) \downarrow \qquad f(n-1) \downarrow$$

$$N_{*}: \dots \longrightarrow N(n+1) \xrightarrow{d'_{n+1}} N(n) \xrightarrow{d'_{n}} N(n-1) \longrightarrow \dots$$

is an associate chain complex f_* of graded morphism f

Proof

Let $x \in M(n+1) \Longrightarrow \exists ! (y,z) \in M_{n+1} \times M(n+2)$ such that x = y + z then

$$(f(n) \circ d_{n+1})(x) = f(n)[d_{n+1}(x)] = f[d_{n+1}(x)] = f[y] = f(y)$$

and

$$(d_{n+1}' \circ f(n+1))(x) = d_{n+1}'[f(n+1)(x)] = d_{n+1}'[f(x)] = d_{n+1}'[f(y+z)] = d_{n+1}'[f(y) + f(z)] = f(y)$$

 $\Longrightarrow (f(n) \circ d_{n+1})(x) = (d_{n+1}^{'} \circ f(n+1))(x), \ \forall \ x \in M(n+1)$

so

$$f(n) \circ d_{n+1} = d'_{n+1} \circ f(n+1)$$

thus f_* is a complex chain.

Theorem 1 Let $A = \bigoplus_{n \in \mathbb{Z}} A_n$ be a graded ring. We called COMP(AGr(A - Mod)) the category of associate complex of a graded left A-modules whose :

- 1. The objets are the associate complex sequences of a graded left A-modules;
- 2. The morphisms are the associate complex chains of a graded morphism.

Proof

1. Lets M_* and N_* two complex sequences associate of a graded left A-module M and N respectively.

Put $Hom_{COMP(AGr(A-Mod))}(M_*, N_*)$ = the class of complex chains associate of graded morphism of $M \rightarrow N$. Then $Hom_{COMP(Gr(A-Mod))}(M_*, N_*)$ is a set, because the class of complex chain of $M_* \rightarrow N_*$ of the category $COMP(A - Mod)(M_*, N_*)$ is a set (it suffices to remark also the class of graded of $M \rightarrow N$ is a set).

2. $\forall f_* \in Hom_{COMP(Gr(A-Mod))}(M_*, N_*); g_* \in Hom_{COMP(Gr(A-Mod))}(N_*, P_*) \text{ and } h_* \in Hom_{COMP(Gr(A-Mod))}(P_*, Q_*) \text{ we have :}$

$$\begin{split} M_{*} &: \cdots \longrightarrow M(n+1) \xrightarrow{d_{n+1}} M(n) \xrightarrow{d_{n}} \cdots \\ f_{*} \bigvee f(n+1) \bigvee & \downarrow f(n) \\ N_{*} &: \cdots \longrightarrow N(n+1) \xrightarrow{d'_{n+1}} N(n) \xrightarrow{d'_{n+}} \cdots \\ \bigvee g_{*} & \bigvee g(n+1) & \downarrow g(n) \\ P_{*} &: \cdots \longrightarrow P(n+1) \xrightarrow{d''_{n+1+k+r}} P(n) \xrightarrow{d''_{n+k+r}} \cdots \\ & \downarrow h_{*} & \downarrow h(n+1) & \downarrow h(n) \\ Q_{*} &: \cdots \longrightarrow Q(n+1) \xrightarrow{d'''_{n+1}} Q(n) \xrightarrow{d'''_{n}} \cdots \end{split}$$

So $(h_* \circ g_*) \circ f_* = h_* \circ (g_* \circ f_*);$

3. Let M_* the object of COMP(Gr(A - Mod)) we have :

 1_{M_*} verified $f_* \circ 1_{M_*} = f_* \quad \forall f_* \in Hom_{COMP(Gr(A-Mod))}(M_*, N_*).$

Furthermore $1_{M_*} \circ g_* = g_* \quad \forall g_* \in Hom_{COMP(Gr(A-Mod))}(N_*, M_*).$

4. $\forall (M_*, N_*) \neq (M'_*, N'_*) \Longrightarrow Hom_{COMP(Gr(A-Mod))}(M_*, N_*) \neq Hom_{COMP(Gr(A-Mod))}(M'_*, N'_*)$

Thus COMP(Gr(A - Mod)) is a category.

Remark 1 COMP(AGr(A – Mod)) is a sub-category of COMP(A – Mod)

Proposition and Definition 2 Lets $(C, d) : \dots \longrightarrow C_{n+1} \xrightarrow{d_{n+1}} C_n \xrightarrow{d_n} C_{n-1} \longrightarrow \dots$ be a complex sequence of left A-modules and (E_n) be a family of left A-modules such that for all n, E_n is a submodule of C_n . If $d_n(E_n) \subset E_{n-1}$, then the complex sequence of induced morphisms $(d_n : E_n \longrightarrow E_{n-1})$ is complex sequence of left A-modules called sub-complex of C

Proof

Let $\delta_n : E_n \longrightarrow E_{n-1}$ be the induced morphism of d_n , indeed let $x \in E_n$, hence $d_n(x) \in E_n$, then δ_n is well defined.

 δ_n is a morphism, since it's composed of two morphisms.

Let's verify that $\delta_n \circ \delta_{n+1} = 0$

Let be $x \in E_{n+1}$, hence $\delta_{n+1}(x) = d_{n+1}(x) \in E_n$ and $\delta((d_{n+1})(x) = d_n \circ d_{n+1}(x) = 0$, then $\delta_n \circ \delta_{n+1} = 0$, $\forall n \in \mathbb{Z}$.

Proposition and Definition 3 Lets C be a complex and E be a sub-complex of C. Suppose that $K = (K_n)_{n \in \mathbb{Z}}$, where $K_n = C_n/E_n$. Then K is called quotient complex of C by E and denoted C/E

Proof

See (Diallo E. O. 2014).

Theorem 2 let (C, d), (C', d') two objects of COMP(A - Mod) and $f : C \longrightarrow C'$ be a complex chain. Then *f* is a monomorphism of COMP(A - Mod) if, and only, if ker(f) = 0.

Proof

If *f* is a monomorphism of *C* into *C'*, hence $f \circ u = f \circ v \Longrightarrow u = v$, then $\forall n \in \mathbb{Z}$, $f_n \circ u_n = f_n \circ_n \Longrightarrow u_n = v_n$, so f_n is a monomorphism, thus $ker(f)_n = 0$, hence ker(f) = 0.

Suppose that ker(f) = 0, hence ker(f) is a zero complex, so each terms is zero, thus f_n is a monomorphism of left A-modules then $\forall n \in \mathbb{Z}$ it gives if $f_n \circ u_n = f_n \circ v_n$ hence $u_n = v_n$, so $(f \circ u)_n = (f \circ v)_n \Longrightarrow (u)_n = (v)_n$, finally, f is a monomorphism of complex chains.

Theorem 3 lets (C, d), (C', d') two objects of COMP(A - Mod) and $f : (C, d) \rightarrow (C', d')$ be a complex chain. Then f is an epimorphism of COMP(A - Mod) if, and only, if Im(f) = C'.

Proof

If *f* is an epimorphism of *COMP*(*A*-*Mod*), then $u \circ f = v \circ f \Longrightarrow u = v$, hence for all $n \in \mathbb{Z}$, $(u \circ f)_n = (v \circ f)_n \Longrightarrow u_n = v_n$, f_n is an epimorphism of left *A*-modules, then $Im(f)_n = C'_n$, $\forall n \in \mathbb{Z}$, so Im(f) = C'.

Suppose that Im(f) = C', hence $\forall n \in \mathbb{Z}$, $Im(f)_n = C'_n$, then f_n is an epimorphism of left A-modules so $\forall n \in \mathbb{Z}$, $u_n \circ f_n = v_n \circ f_n$, then $(u \circ f)_n = (v \circ f_n) \Longrightarrow u_n = v_n$ then f is an epimorphism of complex chains.

3. Hopfian and Cohopfian Objects, Quasi-Injective and Quasi-Projective Objects in the Category COMP(Gr(A-Mod))

Definition 1 Let M_* an object of COMP(AGr(A - Mod)). Then M_* is said to be hopfian (resp. cohopfian) if any epimorphism (resp. monomorphism) f_* of M_* is an automorphism.

Proposition 1 Let M be a graded left A-module and f a graded endomorphism of M. If f is an epimorphism (resp. monomorphism, resp. isomorphism) then f(n) is an epimorphism (resp. monomorphism, resp. isomorphism).

Proof

Is evident, since f(n) is the induce of f.

Proposition 2 Let *M* be a graded left *A*-module. then *M* is hopfian(resp. cohopfian) in AGr(A - Mod) if for any $n \in \mathbb{Z}$, M(n) is hopfian(resp. cohopfian) AGr(A - Mod).

Proof

let $g: M(n) \longrightarrow M(n)$ a graded epimorphism (resp. a monomorphism), since $M = M(n) \bigoplus M_{n+k}$.

Put $f = g + id_{M_{n+k}}$ where $f \in End(M)$ is an epimorphism (resp. monomorphism). Since M hopfian (resp. cohopfian) this implies f is an isomorphism, thus g is an isomorphism, then M(n) is hopfian (resp. cohopfian)

Definition 2 Let *M* be a graded left *A*-module and *N* a graded submodule of *M*. Then *N* is called a completely invariant if for any graded endomorphism f of M, we have $f(N) \subset N$.

Definition 3 Let M_* an objet of COMP(AGr(A – Mod) and N_* a sub-complex of M_* . N_* is called completely invariant if for any endomorphism f_* of M_* , $f(N_*)$ is a of M_* .

Proposition 3 Let $M_* : \ldots M(n+1) \xrightarrow{d_{n+1}} M(n) \xrightarrow{d_n} M(n-1) \longrightarrow \ldots$ be an objet of COMP(AGr(A - Mod)) and $N_* : \ldots N(n+1) \xrightarrow{\delta_{n+1}} N(n) \xrightarrow{\delta_n} N(n-1) \longrightarrow \ldots$ be a subcomplex of M_* . Then N_* completely invariant in AGr(A - Mod) if, and only if, for all $n \in \mathbb{Z}$, N(n) is a completely invariant sub-module of M(n).

Proof

Let N(n) be a completely invariant in M(n), $\forall n \in \mathbb{Z}$ then we have :

 $f(n)(N(n)) \subset N(n) \Longrightarrow f_*(N_*) \subset N_*, \forall n \in \mathbb{Z}$

Suppose that N_* completely invariant in M_* , then

 $f(n)(n) \subset N(n), \forall n \in \mathbb{Z}$

Thus N(n) is completely invariant in M(n).

Definition 4 Lets *M* be a left *A*-module and *N* be a sub-module of *M*. Then *N* is called essential in *M* if for any nonzero submodule *K* of *M*, we have $K \cap N \neq 0$; *M* is called essential extension of *E*.

Definition 5 Lets $M_* : \ldots M(n+1) \xrightarrow{d_{n+1}} M(n) \xrightarrow{d_n} M(n-1) \longrightarrow \ldots$ be a complex sequence of left A-modules and $N_* : \ldots N(n+1) \xrightarrow{\delta_{n+1}} N(n) \xrightarrow{\delta_n} N(n-1) \longrightarrow \ldots$ be a subcomplex of M_* . Then N_* is called essential of M_* if N(n) is an essential submodule of M(n), $\forall n \in \mathbb{Z}$

Definition 6 Lets M be a left A-module and N be a submodule of M. Then N is called superfluous in M if for any submodule K of M, we have K + N = M, then K = M.

Definition 7 Lets $M_* : \ldots M(n+1) \xrightarrow{d_{n+1}} M(n) \xrightarrow{d_n} M(n-1) \longrightarrow \ldots$ be an objet of COMP(AGr(A - Mod)) and $N_* : \ldots N(n+1) \xrightarrow{\delta_{n+1}} N(n) \xrightarrow{\delta_n} N(n-1) \longrightarrow \ldots$ be a subcomplex of M_* . Then N_* is called superfluous of M_* if N(n) is superfluous submodule of M(n), $\forall n \in \mathbb{Z}$.

Definition 8 Let *M* a graded left *A*-module. Then *M* is called quasi-injective, if for any graded monomorphism $g : N \longrightarrow M$ of graded left *A*-modules and for any graded morphism $f : N \longrightarrow M$, there exists a graded endomorphism *h* of *M* such $f = h \circ g$.

Definition 9 Lets M_* and N_* are two objets of COMP(AGr(A – Mod)). M_* is called quasi-injective, if for any monomorphism $g: N_* \longrightarrow M_*$ and for any complex chain $f: N_* \longrightarrow M_*$, there exists a complex chain $h: M_* \longrightarrow M_*$ verifying $f = h \circ g$

Theorem 1 Given $M_* : \ldots M(n+1) \xrightarrow{d_{n+1}} M(n) \xrightarrow{d_n} M(n-1) \longrightarrow \ldots$ an object of COMP(Gr(A - Mod)). M_* is

quasi-injective in COMP(Gr(A - Mod)) *if, and only, if for all* $n \in \mathbb{Z}$ *,* M(n) *is a quasi-injective in* COMP(Gr(A - Mod))*.*

Proof

See (OULD CHBIH et al., 2015).

Definition 10 Let *P* a graded left *A*-module. Then *P* is called quasi-projective, if for any graded left *A*-module *N* and any graded epimorphism $\pi : P \longrightarrow N$ of graded left *A*-modules and for any graded morphism $\phi : P \longrightarrow N$, there exists a graded endomorphism ψ of *P* such $\phi = \pi \circ \psi$.

Definition 11 Lets M_* and N_* are two objects of COMP(Gr(A - Mod)). M_* is called quasi-projective, if for any epimorphism $g : M_* \longrightarrow N_*$ and for any complex chain $f : M_* \longrightarrow N_*$, there exists a complex chain $h : M_* \longrightarrow M_*$ verifying $f = h \circ g$.

Theorem 2 Let be $M_* : \ldots M(n+1) \xrightarrow{d_{n+1}} M(n) \xrightarrow{d_n} M(n-1) \longrightarrow \ldots$ an object of COMP(Gr(A - Mod)). M_* is quasi-projective if, and only, if for all $n \in \mathbb{Z}$, M(n) is a quasi-injective left A-modules

Proof

See (OULD CHBIH et al., 2015).

Proposition 4 Lets M be a graded left A-module, N be a graded submodule of M, M_* be a complex associate to M and N_* be a complex associate to N. If M_*/N_* is hopfian, then M_* is hopfian.

Proof

If M_*/N_* is hopfian and M_* is not hopfian, hence there exists $n \in \mathbb{Z}$ such $f(n) : M(n) \longrightarrow M(n)$ be an epimorphism and no monomorphic, i.e $ker(f)(n) \neq 0$. Put N(n) = ker(f)(n). Thus f(n) induce an isomorphism $\overline{f}(n) : M(n)/N(n) \longrightarrow M(n)$. If $\pi(n) : M(n) \longrightarrow M(n)/N(n)$ the canonical surjection, $\pi(n) \circ f(n) : M(n)/N(n) \longrightarrow M(n)/N(n)$ is an epimorphism and no monomorphic, this is a contradiction because all epimorphism of M(n)/N(n) is an isomorphism.

Lemma 1 if $f: M \longrightarrow N$ and $g: N \longrightarrow M$ such that $f \circ g = id_N$, then $M = ker(f) \oplus Img$.

Proof

Let $m \in ker(f) \cap Img \Longrightarrow f(m) = 0$ and there exists $n \in N$, $g(n) = m \Longrightarrow f(m) = f \circ g(n) = n$ and $f(m) = 0 \Longrightarrow n = 0 \Longrightarrow g(0) = m \Longrightarrow ker(f) \cap Img = 0$.

Let $m \in M$, show that $m - g \circ f(m) \in ker(f)$.

We have $f(m - g \circ f(m)) = f(m) - (f \circ g)(f(m)) = f(m) - f(m) = 0$.

Since $m = g \circ f(m) + (m - g \circ f(m))$.

More than $g \circ f(m) \in Img$ and $m - g \circ f(m) \in ker(f)$, hence M = ker(f) + Img. Thus $M = ker(f) \oplus Img$.

Proposition 5 Lets *M* be a left graded module, *N* a graded submodule of *M*. If M_* quasi-projective and N_* is a completely invariant and essential subcomplex of M_* . Then N_* is cohopfian if, and only, if M_* is cohopfian.

Proof

Suppose that M_*/N_* is hopfian and let $f_*: M_* \longrightarrow M_*$ be an epimorphism.

As N_* is completely invariant, then $\forall n \in \mathbb{Z}$, $f(n)(N(n)) \subset N(n)$, implies f(n) induce an epimorphism $\overline{f}(n) : M(n)/N(n) \longrightarrow M(n)/N(n)$, since M_*/N_* is hopfian, then $\overline{f}(n)$ is an automorphism. Put K(n) = ker(f)(n) and $\pi(n) : M(n) \longrightarrow M(n)/N(n)$ be the canonical projection, we have :

$$f(n) \circ \pi(n)(K(n)) = \pi(n) \circ f(n)(K) = 0$$

Indeed, $\forall x \in K(n)$, we have :
 $\overline{f}(n) \circ \pi(n)(x) = \pi(n) \circ f(n)(x)$, so
 $\pi(n) \circ f(n)(x) = \pi(n)(f(n)(x) = \pi(n)(0) = 0$, hence $\overline{f}(n) \circ \pi(n)(K) = 0$.

 $\overline{f}(n) \circ \pi(n)(K(n)) = \pi(n) \circ f(n)(K(n)) = 0 \Longrightarrow \overline{f}(n)(\pi(n)(K(n))) = 0 \Longrightarrow \pi(n)(K(n)) \subset N(n) \Longrightarrow K(n) \subset N(n)$

Since M_* is quasi- projective, there exists an endomorphism $s(n) : M(n) \longrightarrow M(n)$ such that $f(n) \circ s(n) = id(n)_M$, which implies $M = K(n) \oplus Ims(n)$, or K(n) = N(n) and N(n) superfluous in M(n), $\forall n \in \mathbb{Z}$, then M(n) = Ims(n), so K(n) = ker(f)(n) = 0, $\forall n \in \mathbb{Z}$, hence f(n) is an monomorphism, $\forall n \in \mathbb{Z}$

At last, f_* is an monomorphism, thus M_* is hopfian.

Reciprocally,

If M_* is hopfian and show that M_*/N_* est hopfian.

Let $\varphi(n) : M_*/N_* \longrightarrow M_*/N_*$ an epimorphism of complex chains, as M_* is quasi-projective, hence $\forall n \in \mathbb{Z}, M(n)$ is projective. We Consider $\pi(n) : M(n) \longrightarrow M(n)/N(n)$, then there exists $f(n) \in End(M(n))$ such that $\pi(n) \circ f(n) = \varphi(n) \circ \pi$. Since $\varphi(n)$ is an epimorphism, $\forall \bar{x} \in M(n)/N(n), \exists \bar{y} \in M(n)/N(n)$ such that

 $\varphi(n)(\bar{y}) = \bar{x} = \varphi(n)(\pi(n)(y))$

 $\pi(n) \circ f(n)(y) = \varphi(n) \circ \pi(n)(y)$

 $\pi(n)(f(n)) = \varphi(\bar{y})$

 $\implies \varphi(n)(\bar{y}) = \overline{f}(n)(\bar{y}) = \bar{x}$

$$\implies \overline{f(n)(y) - x} = \overline{0}$$

$$\implies f(n) - x = 0$$

 $\implies f(n) - x \in N(n).$

then M = Im(f)(n) + N, as N is superfluous, then $Im(f)(n) = M(n) \implies f(n)$ is an epimorphism. Thus, f(n) is an automorphism, because M(n) is hopfian for all $n \in \mathbb{Z}$.

Hence the restriction of f(n) over N(n) is an automorphism of N(n).

If $\varphi(\bar{x}) = \overline{f}(n)(x) = \overline{0}$, then $f(n)(x) \in N(n)$, or N(n) is completely invariant, then $x \in N$, so $\bar{x} = \overline{0} \implies ker\varpi(n) = N = \overline{0} \implies \varphi(n)$ is an monomorphism $\implies \varphi(n)$ is an automorphism for all $n \in \mathbb{Z}$, finally M(n)/N(n) is hopfian.

Proposition 6 Lets M a graded left A-module, N a graded submodule of M, M_* quasi-injective and N_* a completely invariant and superfluous subcomplex of M_* . Then M_* is cohopfian if, and only, if M_*/N_* is cohopfian.

Proof

Suppose that M_* is cohopfian and let $f_* : N_* \longrightarrow N_*$ be a monomorphism. As M_* is quasi-injective, then for all $n \in \mathbb{Z}$ is quasi-injective. Then there exists $g(n) \in End(M(n)) \ \forall n \in \mathbb{Z}$ such that $g_{|N(n)|} = f(n)$.

g(n) is injective because N_* is essential in M_* , hence $\forall n \in \mathbb{Z}$, N(n) is essential, and since M_* is cohopfian, g is invertible. Let $x \in N(n)$, there exists $y \in M$ such that x = g(n)(y). Or $g^{-1}(n) \in End(N(n))$ and N(n) is completely invariant, thus $y = g^{-1}(x) \in N$, hence f(n) is an epimorphism for all $n \in \mathbb{Z}$. Thus f_* is an automorphism, consequently N_* is cohopfian.

Reciprocally, suppose that N_* is cohopfian an let $f_*: M_* \longrightarrow M_*$ be a monomorphism. Then $f_{*|N_*}$ is an injective endomorphism of N_* , hence for all $n \in \mathbb{Z}$, $f(n)_{|N(n)}$ is an injective endomorphism of N(n). Thus, $f(n) \in Aut(N(n))$, hence f(n)(N(n)) = N(n). As M(n) is quasi-injective, then there exists L(n) a submodule of M(n) such that $M(n) = f(M(n)) \oplus L(n)$. Thus, we have $0 = f(n)(N) \cap L(n) = N(n) \cap L(n)$, as N(n) is essential, then L(n) = 0, hence M(n) = f(n)(M(n)), thus f(n) is an epimorphism for all $n \in \mathbb{Z} \implies f_*$ is a graded epimorphism complex chain, consequently, M_* is cohopfian.

Proposition 7 Let M a graded left A-module. If M_*/N_* is hopfian for all submodule N of M, then M_* is hopfian.

Proof

Suppose on the contrary M_* is not hopfian. Then there exists $n \in \mathbb{Z}$ such that $f(n) : M(n) \longrightarrow M(n)$ is an epimorphism which is not an automorphism. Put N(n) = ker(f)(n), thus $N(n) \neq 0$ and f(n) induces an isomorphism $\overline{f}(n) : M(n)/N(n) \longrightarrow M(n)/N(n)$.

If $\pi(n) : M(n)/N(n) \longrightarrow M(n)/N(n)$ denotes the canonical quotient map, then $\pi(n) \circ \overline{f}(n) : M(n)/N(n) \longrightarrow M(n)/N(n)$ is an epimorphism which is not an isomorphism $\forall n \in \mathbb{Z}$, contradicting the hopfian nature of M(n)/N(n).

Proposition 8 Let M a graded left A-module. If all owns submodule N of M is cohopfian, then M_* itself is cohopfian.

Proof

Suppose on the contrary M_* is not cohopfian. Then there exists $n \in \mathbb{Z}$ such that the injective map $f(n) : M(n) \longrightarrow M(n)$

is not an automorphism. Put N(n) = Im(f)(n), thus $N(n) \subset M(n)$ and f(n) induces an isomorphism $\overline{f}(n) : M(n) \longrightarrow N(n)$ s an injective map which is not an isomorphism, contradicting the cohopfian nature of N(n) for all $n \in \mathbb{Z}$.

Remark 1 (*p*) denotes the following property: «any epimorphism of subcomplex N_* of M_* (where *M* is an object of COMP(Gr(A - Mod)))) is an isomorphism »

Proposition 9 Let M a graded left A-module. If M_* is hopfian quasi-injective object of COMP(AGr(A - Mod)), then M_* owns the property (p).

Proof

Let N_* be a subcomplex of M_* and $f_* : N_* \longrightarrow M_*$ be an graded epimorphism complex chain. Since M_* is quasi-injective, then for all $n \in \mathbb{Z}$, M(n) is quasi-injective, thus there exists $\tilde{f}(n) \in End(M(n))$ such that $\tilde{f}(n)_{|N(n)|} = f(n)$. Or f(n)is surjective, then for all $x \in M(n)$, there exists $y \in N(n)$ such that x = f(n)(y), hence $\tilde{f}(n)$ is surjective, as M(n) is hopfian, thus $\tilde{f}(n) \in Aut(N(n))$ for all $n \in \mathbb{Z}$. We deduce that f(n) is a monomorphism of N(n) into M(n), for all $n \in \mathbb{Z}$. Consequently, f_* is a graded isomorphism of complex chain.

References

- Abu-Dawwas, R. (2010). More on crossed product over the support of graded rings. *International Mathematical Forum*, 5(63), 3121-3126.
- Abu-Dawwas, R., & Refai, M. (2010). Further results on graded Prime submodules. *International Journal of Algebra*, 4(28), 1413-1419.
- Artin, M. (1966). Commutative rings, course notes, M.I.T.
- Atiyah, M. F., & Macdonald, I. G. (1969). *Introduction to commutative algebra*. Addison Wesley Publishing Company, University of OXFORD.
- Dade, E. C. (1980). Group graded rings and modules. Math. Z., 174, 241-262.
- Diallo, E. O. (2014). Thèse de Doctorat unique, Faculté des Sciences et Techniques. Universit Cheikh Anta DIOP, Dakar.
- Diallo, E. O., Maaouia, M. F., & Sanghare, M. (2013). Hopfian Objects, Cohopfian Objects in the category of complexes of left A-Modules. *International Mathematical Forum*, 8(39), 1903-1920. http://dx.doi.org/10.12988/imf.2013.37128
- Eelbert, M. P. (1984). Localisation in duo Ring. Publ. Math. Debrecen, 31, 47-52.
- Faye, D., Maaouia, M. F., & Sanghare, M. (2016). Localization in a Duo-Ring and Polynomials Algebra. In Gueye C., & Molina, M. (Eds), *Non-Associative Algebra and Operator Theory*. Springer Proceedings in Mathematics and Statistics, Vol 160. Springer, Cham. http://doi.org/10.1007/978-3-319-32902-4_13
- Hmainou, A., Kaidi, A., & Sanchez, E. C. (2006). Generalising Fitting modules and rings. Journal of Algebra.
- Maaouia, M. F. (2011). These d'etat, Faculté des Sciences et Techniques. Universit Cheikh Anta DIOP, Dakar.
- Maaouia, M. F., & Sanghare, M. (2012). Module de Fractions, Sous-modules S-saturée et Foncteur S^{-1} . International Journal of Algebra, 6(16), 775-798.
- Maaouia, M. F., & Sanghare, M. (2012). Anneau de valuation non Nécessairement commutatif et duo-anneau de Dedekind. *Global Journal of Pures and Applied Mathematics*, 8(1), 49-63.
- Maaouia, M. F., & Sanghare, M. (2009). Localisation dans les duo anneaux. Afrika Mathematika, 3(20), 163-179.
- Mendelson, M. (1970). Graded rings, modules and algebras. M.I.T.
- Nastasescu, C. (1983). Strongly graded rings of finite groups. Communication in Algebra, 11(10), 1033-1071.
- Nastasescu, C., & Van Oystaeyen, F. (1982). Graded ring theory. Mathematical Library, 28, North Holland, Amesterdam.
- OULD, C. A. (2016). Thèse de Doctorat unique, Unit de Formation de la Recherche de Sciences Appliquées et de Technologie. Universit Gaston Berger, Saint-Louis.
- OULD, C. A., Maaouia, M. F., & Sanghare, M. (2018). LOCALISATION DES DUO-ANNEAUX GRADUS ET GRADUATION DES MODULES DE FRACTIONS SUR DES DUO-ANNEAUX GRADUS. *Annales Mathmatiques Africaines*, 7(39), 73-88.
- OULD, C. A., Maaouia, M. F., & Sanghare, M. (2016). Factorization of graded modules of Fraction. *International Mathematical Forum*, 11(22), 1067-1088. https://doi.org/10.12988/imf.2016.67100
- OULD, C. A., Maaouia, M. F., & Sanghare, M. (2015). Graduation of Module of Fraction on a Graded Domain Ring Not

Necessarily Commutative. *International Journal of Algebra*, *9*(10), 457-474. http://dx.doi.org/10.12988/ija.2015.5852

Renault, G. (1975). Algèbre non commutative, Gauthier-Villars, Paris - Bruxelles - Montréal .

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).