Hopfian and Cohopfian Objects in the Categories of $\operatorname{Gr}(A-M o d)$ and $\operatorname{COMP}(\operatorname{Gr}(A-M o d))$

Seydina Ababacar BALDE ${ }^{1}$, Mohamed Ben Faraj BEN MAAOUIA ${ }^{1}$ \& Ahmed Ould CHBIH ${ }^{1}$
${ }^{1}$ Gaston Berger University, Saint-Louis, Senegal
Correspondence: Mohamed Ben Faraj BEN MAAOUIA, Gaston Berger University, Saint-Louis, Senegal.
E-mail: maaouiaalg@hotmail.com

Received: January 1, 2020 Accepted: January 29, 2020 Online Published: February 19, 2020
doi:10.5539/jmr.v12n2p17 URL: https://doi.org/10.5539/jmr.v12n2p17

Abstract

We study in this work the notions of hopficity and cohopficity in the categories

$A G r(A-M o d)$ and $\operatorname{COMP}(A G r(A-M o d))$ of associate complex to a graded left A-module and we show that:

1. Let M a graded left A-module, N a graded submodule of M, M_{*} be a complex associate to M. Suppose that M_{*} be a quasi-projective and N_{*} be a completely invariant and essential sub-complex of M_{*} associate to N. Then N_{*} is cohopfian if, and only, if M_{*} is cohopfian.
2. Let M a graded left A-module, N a graded submodule of M, M_{*} quasi-injective and N_{*} a completely invariant and superfluous sub-complex of M_{*}. Then M_{*} is cohopfian if, and only, if M_{*} / N_{*} is cohopfian.

Keywords: Hopfian complex, cohopfian complex, chain complex, sequence complex, quasi-injective chain complex, quasi-projective chain complex

1. Introduction

In this paper, the ring A is supposed to be associatif, unitary and not necessairly commutative, every left A-module is unifere.

The aim of this article is to study the hopfian and cohopfian objets in the category $G r(A-M o d)$ of graded left A-modules and in the category $\operatorname{COMP}(A G r(A-M o d)$)of associated complex of graded left A-modules. In particular we give conditions over M_{*} and N_{*} such that M_{*} / N_{*} be cohopfian (respectively is hopfian) and conditions over M_{*} / N_{*} and N_{*} such that M_{*} be hopfian.
We define $A G r(A-M o d)$ and $\operatorname{COMP}(A G r(A-M o d))$:

1. The category of graded of left A-modules denoted $A G r(A-M o d)$ where :
(a) The objects are the graded left A-modules;
(b) The morphisms are the graded morphisms..
2. the category of complexes associate of graded left A-modules denoted $\operatorname{COMP}(\operatorname{AGr}(A-\operatorname{Mod}))$ where
(a) the objects are the complex sequences associate of graded left A-modules;
(b) the morphisms are the complex chains associate of graded morphisms.

We note that $\operatorname{COMP}(A G r(A-M o d))$ is a sub-category of $\operatorname{COMP}(A-M o d)$.
The principal results of this article is given in the third section, which are:

1. Let M be a graded left A-module. then M is hopfian(resp. cohopfian) if for any $n \in \mathbb{Z}, M(n)$ is hopfian(resp. cohopfian).
2. Let M a graded left A-module, N a graded submodule of M, M_{*} be a complex associate to M and N_{*} be a complex associate to N. If M_{*} / N_{*} is hopfian, then M_{*} is hopfian.
3. Let M a graded left A-module, N a graded submodule of M, M_{*} be a complex associate to M and N_{*} be a complex associate to N. Suppose that N_{*} be a completely invariant and superfluous sub-complex of M_{*}. Then M_{*} is hopfian if, and only, if M_{*} / N_{*} is hopfian.
4. Let M a graded left A-module, N a graded submodule of M, M_{*} quasi-injective and N_{*} a completely invariant and superfluous sub-complex of M_{*}. Then M_{*} is cohopfian if, and only, if M_{*} / N_{*} is cohopfian.
5. Let M a graded left A-module, N a graded submodule of M, M_{*} be a complex associate to M. Suppose that N_{*} be a complex associate to N, M_{*} be a quasi-projective and N_{*} be a completely invariant and essential sub-complex of M_{*}. Then N_{*} is cohopfian if, and only, if M_{*} is cohopfian.
6. Let M a graded left A-module, N a graded submodule of M, M_{*} be a complex associate to M. If M_{*} / N_{*} is hopfian for all nonzero sub-complex N_{*} associate to N, then M_{*} is hopfian.
7. Let M a graded left A-module, M_{*} be a complex associate to M. If M_{*} / N_{*} is hopfian for all sub-complex N_{*} associate to N, then M_{*} is hopfian.
8. (p) denotes the following property:
\ll any epimorphism of sub-complex N_{*} of $M_{*}($ where M is an object of $\operatorname{COMP}(\operatorname{AGr}(A-\operatorname{Mod})))$ is an isomorphism $>$
Let M a graded left A-module, M_{*} a complex associate to M. If M_{*} is an hopfian quasi-projective , then M_{*} owns the property (p).

2. Preliminaries

Definition 1 Lets A be a ring and is a family $\left\{A_{n}\right\}_{n \in \mathbb{Z}}$ of sub-group of A. If

1. $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$;
2. $A_{n} \cdot A_{m} \subset A_{n+m}, \forall n, m \in \mathbb{Z}$.

Then we say that A is a graded ring. Else, if $A_{n}=0, \forall n<0$. Then A is called positively graded ring.
In all that follows, A and M are supposed unitary.
Definition 2 Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded ring and M be a left A-module, then M is called a graded left A-module if there exist a sequence $\left(M_{n}\right)_{n \in \mathbb{Z}}$ of sub-group of M such that:

1. $M=\bigoplus_{n \in \mathbb{Z}} M_{n}$;
2. $A_{n} \cdot M_{d} \subset M_{n+d}, \forall n, d \in \mathbb{Z}$.

Definition 3 Lets $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded ring, $M=\bigoplus_{n \in \mathbb{Z}} M_{n}$ be a graded left A-module and N is a sub-module of M, then N is called a graded sub-module of M, if $\forall x=\sum_{n \in \mathbb{Z}} x_{n} \in N$, with $x_{n} \in M_{n}$, then $x_{n} \in N, \forall n \in \mathbb{Z}$.

Proposition 1

Lets $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded ring and $M=\bigoplus_{n \in \mathbb{Z}} M_{n}$ is graded left $A-$ module, then for all $n \in \mathbb{Z}$ fixed, we have

$$
M(n)=\bigoplus_{k \geq n} M_{k}=\bigoplus_{k \in \mathbb{N}} M_{n+k}
$$

is a graded sub-module of M and :

$$
\cdots M(n+2) \subset M(n+1) \subset M(n) \subset \cdots
$$

Proof

Let $n \in \mathbb{Z}$ fixed, $M(n)=\bigoplus_{k \geq n} M_{k}$ is a sub-group of M and

$$
A_{s} \cdot M(n)_{k}=A_{s} \cdot M_{n+k} \subset M_{n+k+s}=M_{n+(k+s)}=M(n)_{k+s} .
$$

Else

$$
M(n)=\bigoplus_{k \geq n} M_{k}=M_{n} \bigoplus M(n+1)=\bigoplus_{k \in \mathbb{N}} M_{k}
$$

Hence $M(n+1) \subset M(n)$. Thus

$$
\cdots M(n+2) \subset M(n+1) \subset M(n) \subset \cdots
$$

Definition 4 Lets $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded ring, $M=\bigoplus_{n \in \mathbb{Z}} M_{n}, N=\bigoplus_{n \in \mathbb{Z}} N_{n}$ are two graded left A-modules and $f: M \longrightarrow N$ is a morphism of left A-modules, then f is called a graded morphism if for any $m \in M_{s}$ then $f(m) \in N_{s+k}$. Theorem and Definition 1 Let A be a graded ring, the category of graded left A-module is the category denoted by Gr(A - Mod)-Mod whose

1. The objects are the graded left A-modules;
2. The morphisms are the graded morphisms.

Proof

See (OULD CHBIH et al., 2015).
Definition 5 A complex sequence $(C, d): \ldots \rightarrow C_{n+1} \xrightarrow{d_{n+1}} C_{n} \xrightarrow{d_{n}} C_{n-1} \xrightarrow{d_{n-1}} \ldots$ is a sequence of morphisms of A - modules satisfying $d_{n} \circ d_{n+1}=0$, for all $n \in \mathbb{Z}$.

Definition 6 A complex chain $f:(C, d) \rightarrow\left(C^{\prime}, d^{\prime}\right)$ is a sequence of homomorphisms $\left(f_{n}: C_{n} \longrightarrow C_{n}^{\prime}\right)_{n \in \mathbb{Z}}$ of A - modules making the following diagram commute :

i.e $d_{n+1}^{\prime} \circ f_{n+1}=f_{n} \circ d_{n+1}$, for all $n \in \mathbb{Z}$.

Proposition and Definition 1 Let A be a ring, then the category of complexes of left A-modules is the category denoted $\operatorname{COMP}(A-M o d)$ whose :

1. The objects are the sequences complex;
2. The morphisms are the complex chains.

Proof

See (Dade E. C. 1980).
Proposition 2 Lets $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded ring and $M=\bigoplus_{n \in \mathbb{Z}} M_{n}$ be a graded left A-module, then we have M_{*} :

$$
M_{*}: \cdots \rightarrow M(n+1) \xrightarrow{d_{n+1}} M(n) \xrightarrow{d_{n}} M(n-1) \rightarrow \cdots
$$

is an associate complex sequence of a grade A-module $M=\bigoplus_{n \in \mathbb{Z}} M_{n}$ with $M(n)=\bigoplus_{k \in \mathbb{Z}} M_{n+k}$ and

$$
\begin{aligned}
d_{n}: M(n) & \longrightarrow M(n-1) \\
x & \longmapsto y
\end{aligned}
$$

with $(y, z) \in M_{n} \times M(n+1)$.

Proof

We have $M(n)=\bigoplus_{k \in \mathbb{Z}} M_{n+k}=\bigoplus_{k \geq n} M_{k}=M_{n} \bigoplus M_{n+1}$ and

$$
M(n-1)=M_{n-1} \bigoplus M(n)=M_{n-1} \bigoplus M_{n} \bigoplus M(n+1)
$$

Let $x \in M(n) \Longrightarrow \exists!(y, z) \in M_{n} \times M(n+1)$ such that $x=y+z$.
Put

$$
\begin{gathered}
d_{n}: M(n) \longrightarrow M(n-1) \\
x=y+z \longmapsto y
\end{gathered}
$$

so $\operatorname{Im}\left(d_{n}\right)=M_{n}$; on the other hand

$$
\begin{gathered}
d_{n-1}: M(n-1) \longrightarrow M(n-2) \\
w=u+v \longmapsto u
\end{gathered}
$$

with $(u, v) \in M_{n-1} \times M(n)$ so $\operatorname{ker}\left(d_{n-1}\right)=M(n)$ so $\operatorname{Im}\left(d_{n}\right) \subset \operatorname{ker}\left(d_{n-1}\right)$ so

$$
d_{n-1} \circ d_{n}=0
$$

thus

$$
M_{*}: \cdots \rightarrow M(n+1) \xrightarrow{d_{n+1}} M(n) \xrightarrow{d_{n}} M(n-1) \rightarrow \cdots
$$

is a complex sequence.
Proposition 3 Let M be a graded left A-module, N a graded submodule of M, M_{*} the complex associate to M and for all $n \in \mathbb{Z}, N(n)$ is a submodule of $M(n)$. Then

$$
N_{*}: \cdots \rightarrow N(n+1) \xrightarrow{\delta_{n+1}} N(n) \xrightarrow{\delta_{n}} N(n-1) \rightarrow \cdots \text { with } d_{n}(x)=\delta_{n}(n)(x)
$$

is a sub-complex of M_{*}

Proof

We have $\delta_{n}: N(n+1) \longrightarrow N(n)$
let $x, y \in N(n+1): x=y$
then $d_{n}(x)=d_{n}(y)$
$\Longrightarrow \delta_{n}(x)=\delta_{n}(y)$
\Longrightarrow is well define.
Let's calculate $\delta_{n} \circ \delta_{n+1}$
Let $x \in N(n+1)$, we have :
$\delta_{n} \circ \delta_{n+1}(x)=\delta_{n}\left(\delta_{n+1}(x)\right)$
$=\delta_{n}\left(d_{n+1}(x)\right)=d_{n}\left(d_{n+1}(x)\right)=d_{n} \circ d_{n+1}(x)=0$
Thus $\delta_{n} \circ \delta_{n+1}=0$
hence N_{*} is a sub-complex of M_{*}.
Proposition 4 Lets $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded ring, $M=\bigoplus_{n \in \mathbb{Z}} M_{n}$ and $N=\bigoplus_{n \in \mathbb{Z}} N_{n}$ are two graded left A-module $f: M \longrightarrow$ N is a graded morphism of a graded left A-modules, then for all $n \in \mathbb{Z}$

$$
\begin{aligned}
f(n): M(n) & \longrightarrow N(n) \\
m & \longmapsto=f(m)
\end{aligned}
$$

is graded morphism.

Proof

We have $M(n)$ is a graded sub-module of left A-module M and $f: M \longrightarrow N$ is graded morphism, then let $m \in M(n)$, so

$$
m=\sum_{i \in \mathbb{Z}} m_{i+n} \Longrightarrow f(n)(m)=f(m)=f\left(\sum_{i \in \mathbb{Z}} m_{i+n}\right)=\sum_{i \in \mathbb{Z}} f\left(m_{i+n}\right)
$$

or $f\left(m_{i+n}\right) \in N_{i+n+k}=(N(n))_{i+k}$ thus f is graded morphism of a graded left A-modules.
Proposition 5 Lets $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded ring, $M=\bigoplus_{n \in \mathbb{Z}} M_{n}, N=\bigoplus_{n \in \mathbb{Z}} N_{n}$ are two graded left A-modules and $f: M=\bigoplus_{n \in \mathbb{Z}} M_{n} \longrightarrow N=\bigoplus_{n \in \mathbb{Z}}^{n \in \mathbb{Z}} N_{n}$ is a graded morphism of a graded A-modules, then :

is an associate chain complex f_{*} of graded morphism f

Proof

Let $x \in M(n+1) \Longrightarrow \exists!(y, z) \in M_{n+1} \times M(n+2)$ such that $x=y+z$ then

$$
\left(f(n) \circ d_{n+1}\right)(x)=f(n)\left[d_{n+1}(x)\right]=f\left[d_{n+1}(x)\right]=f[y]=f(y)
$$

and

$$
\begin{gathered}
\left(d_{n+1}^{\prime} \circ f(n+1)\right)(x)=d_{n+1}^{\prime}[f(n+1)(x)]=d_{n+1}^{\prime}[f(x)]=d_{n+1}^{\prime}[f(y+z)]=d_{n+1}^{\prime}[f(y)+f(z)]=f(y) \\
\Longrightarrow\left(f(n) \circ d_{n+1}\right)(x)=\left(d_{n+1}^{\prime} \circ f(n+1)\right)(x), \quad \forall x \in M(n+1)
\end{gathered}
$$

so

$$
f(n) \circ d_{n+1}=d_{n+1}^{\prime} \circ f(n+1)
$$

thus f_{*} is a complex chain.
Theorem 1 Let $A=\bigoplus_{n \in \mathbb{Z}} A_{n}$ be a graded ring. We called $\operatorname{COMP}(A G r(A-M o d))$ the category of associate complex of a graded left A-modules whose :

1. The objets are the associate complex sequences of a graded left A-modules;
2. The morphisms are the associate complex chains of a graded morphism.

Proof

1. Lets M_{*} and N_{*} two complex sequences associate of a graded left A-module M and N respectively.

Put $\operatorname{Hom}_{\operatorname{COMP(AGr}(A-M o d))}\left(M_{*}, N_{*}\right)=$ the class of complex chains associate of graded morphism of $M \longrightarrow N$. Then $\operatorname{Hom}_{\operatorname{COMP}(\operatorname{Gr}(A-\operatorname{Mod}))}\left(M_{*}, N_{*}\right)$ is a set, because the class of complex chain of $M_{*} \longrightarrow N_{*}$ of the category $\operatorname{COMP}(A-$ $\operatorname{Mod})\left(M_{*}, N_{*}\right)$ is a set (it suffices to remark also the class of graded of $M \longrightarrow N$ is a set).
2. $\forall f_{*} \in \operatorname{Hom}_{\operatorname{ComP(Gr}(A-M o d))}\left(M_{*}, N_{*}\right) ; g_{*} \in \operatorname{Hom}_{\operatorname{Comp}(\operatorname{Gr}(A-M o d))}\left(N_{*}, P_{*}\right)$ and $h_{*} \in \operatorname{Hom}_{\operatorname{COMP}(\operatorname{Gr}(A-M o d))}\left(P_{*}, Q_{*}\right)$ we have :

So $\left(h_{*} \circ g_{*}\right) \circ f_{*}=h_{*} \circ\left(g_{*} \circ f_{*}\right) ;$
3. Let M_{*} the object of $\operatorname{COMP}(\operatorname{Gr}(A-M o d))$ we have :

$1_{M_{*}}$ verified $f_{*} \circ 1_{M_{*}}=f_{*} \quad \forall f_{*} \in \operatorname{Hom}_{\operatorname{Comp(Gr}(A-M o d))}\left(M_{*}, N_{*}\right)$.
Furthermore $1_{M_{*}} \circ g_{*}=g_{*} \quad \forall g_{*} \in \operatorname{Hom}_{\operatorname{Comp}(G r(A-M o d))}\left(N_{*}, M_{*}\right)$.
4. $\forall\left(M_{*}, N_{*}\right) \neq\left(M_{*}^{\prime}, N_{*}^{\prime}\right) \Longrightarrow \operatorname{Hom}_{\operatorname{COMP}(G r(A-M o d))}\left(M_{*}, N_{*}\right) \neq \operatorname{Hom}_{\operatorname{ComP}(G r(A-M o d))}\left(M_{*}^{\prime}, N_{*}^{\prime}\right)$

Thus $\operatorname{COMP}(G r(A-M o d))$ is a category.
Remark $1 \operatorname{COMP}(A G r(A-M o d))$ is a sub-category of $\operatorname{COMP}(A-\operatorname{Mod})$
Proposition and Definition 2 Lets $(C, d): \cdots \longrightarrow C_{n+1} \xrightarrow{d_{n+1}} C_{n} \xrightarrow{d_{n}} C_{n-1} \longrightarrow \cdots$ be a complex sequence of left A --modules and $\left(E_{n}\right)$ be a family of left A-modules such that for all n, E_{n} is a submodule of C_{n}. If $d_{n}\left(E_{n}\right) \subset E_{n-1}$, then the complex sequence of induced morphisms $\left(d_{n}: E_{n} \longrightarrow E_{n-1}\right)$ is complex sequence of left A-modules called sub-complex of C

Proof

Let $\delta_{n}: E_{n} \longrightarrow E_{n-1}$ be the induced morphism of d_{n}, indeed let $x \in E_{n}$, hence $d_{n}(x) \in E_{n}$, then δ_{n} is well defined.
δ_{n} is a morphism, since it's composed of two morphisms.
Let's verify that $\delta_{n} \circ \delta_{n+1}=0$
Let be $x \in E_{n+1}$, hence $\delta_{n+1}(x)=d_{n+1}(x) \in E_{n}$ and $\delta\left(\left(d_{n+1}\right)(x)=d_{n} \circ d_{n+1}(x)=0\right.$, then $\delta_{n} \circ \delta_{n+1}=0, \forall n \in \mathbb{Z}$.
Proposition and Definition 3 Lets C be a complex and E be a sub-complex of C. Suppose that $K=\left(K_{n}\right)_{n \in \mathbb{Z}}$, where $K_{n}=C_{n} / E_{n}$. Then K is called quotient complex of C by E and denoted C / E

Proof

See (Diallo E. O. 2014).
Theorem 2 let $(C, d),\left(C^{\prime}, d^{\prime}\right)$ two objects of $\operatorname{COMP}(A-M o d)$ and $f: C \longrightarrow C^{\prime}$ be a complex chain. Then f is a monomorphism of $\operatorname{COMP}(A-M o d)$ if, and only, if $\operatorname{ker}(f)=0$.

Proof

If f is a monomorphism of C into C^{\prime}, hense $f \circ u=f \circ v \Longrightarrow u=v$, then $\forall n \in \mathbb{Z}, f_{n} \circ u_{n}=f_{n} \circ{ }_{n} \Longrightarrow u_{n}=v_{n}$, so f_{n} is a monomorphism, thus $\operatorname{ker}(f)_{n}=0$, hence $\operatorname{ker}(f)=0$.
Suppose that $\operatorname{ker}(f)=0$, hence $\operatorname{ker}(f)$ is a zero complex, so each terms is zero, thus f_{n} is a monomorphism of left A --modules then $\forall n \in \mathbb{Z}$ it gives if $f_{n} \circ u_{n}=f_{n} \circ v_{n}$ hence $u_{n}=v_{n}$, so $(f \circ u)_{n}=(f \circ v)_{n} \Longrightarrow(u)_{n}=(v)_{n}$, finally, f is a monomorphism of complex chains.
Theorem 3 lets $(C, d),\left(C^{\prime}, d^{\prime}\right)$ two objects of $\operatorname{COMP}(A-M o d)$ and $f:(C, d) \longrightarrow\left(C^{\prime}, d^{\prime}\right)$ be a complex chain. Then f is an epimorphism of $\operatorname{COMP}(A-M o d)$ if, and only, if $\operatorname{Im}(f)=C^{\prime}$.

Proof

If f is an epimorphism of $\operatorname{COMP}(A-M o d)$, then $u \circ f=v \circ f \Longrightarrow u=v$, hence for all $n \in \mathbb{Z},(u \circ f)_{n}=(v \circ f)_{n} \Longrightarrow u_{n}=v_{n}$, f_{n} is an epimorphism of left A-modules, then $\operatorname{Im}(f)_{n}=C_{n}^{\prime}, \forall n \in \mathbb{Z}$, so $\operatorname{Im}(f)=C^{\prime}$.
Suppose that $\operatorname{Im}(f)=C^{\prime}$, hence $\forall n \in \mathbb{Z}, \operatorname{Im}(f)_{n}=C_{n}^{\prime}$, then f_{n} is an epimorphism of left A-modules so $\forall n \in \mathbb{Z}$, $u_{n} \circ f_{n}=v_{n} \circ f_{n}$, then $(u \circ f)_{n}=\left(v \circ f_{n}\right) \Longrightarrow u_{n}=v_{n}$ then f is an epimorphism of complex chains.

3. Hopfian and Cohopfian Objects, Quasi-Injective and Quasi-Projective Objects in the Category $\operatorname{COMP}(\mathbf{G r}(\mathrm{A}-$ Mod)

Definition 1 Let M_{*} an object of $\operatorname{COMP}\left(A G r(A-M o d)\right.$. Then M_{*} is said to be hopfian (resp. cohopfian) if any epimorphism (resp. monomorphism) f_{*} of M_{*} is an automorphism.

Proposition 1 Let M be a graded left A-module and f a graded endomorphism of M. If f is an epimorphism (resp. monomorphism, resp. isomorphism) then $f(n)$ is an epimorphism (resp. monomorphism, resp. isomorphism).

Proof

Is evident, since $f(n)$ is the induce of f.
Proposition 2 Let M be a graded left A-module. then M is hopfian(resp. cohopfian) in $A G r(A-M o d)$ iffor any $n \in \mathbb{Z}$, $M(n)$ is hopfian(resp. cohopfian) $A G r(A-M o d)$.

Proof
let $g: M(n) \longrightarrow M(n)$ a graded epimorphism (resp. a monomorphism), since $M=M(n) \bigoplus_{k>n} M_{n+k}$.
Put $f=g+i d_{M_{n+k}}$ where $f \in \operatorname{End}(M)$ is an epimorphism (resp. monomorphism). Since M hopfian (resp. cohopfian) this implies f is an isomorphism, thus g is an isomorphism, then $M(n)$ is hopfian (resp. cohopfian)
Definition 2 Let M be a graded left A-module and N a graded submodule of M. Then N is called a completely invariant if for any graded endomorphism f of M, we have $f(N) \subset N$.

Definition 3 Let M_{*} an objet of $\operatorname{COMP}\left(A G r(A-\operatorname{Mod})\right.$ and N_{*} a sub-complex of $M_{*} . N_{*}$ is called completely invariant if for any endomorphism f_{*} of $M_{*}, f\left(N_{*}\right)$ is a of M_{*}.
Proposition 3 Let $M_{*}: \ldots M(n+1) \xrightarrow{d_{n+1}} M(n) \xrightarrow{d_{n}} M(n-1) \longrightarrow \ldots$ be an objet of $\operatorname{COMP}(\operatorname{AGr}(A-\operatorname{Mod}))$ and $N_{*}: \ldots N(n+1) \xrightarrow{\delta_{n+1}} N(n) \xrightarrow{\delta_{n}} N(n-1) \longrightarrow \ldots$ be a subcomplex of M_{*}. Then N_{*} completely invariant in $A G r(A-\operatorname{Mod})$ if, and only if, for all $n \in \mathbb{Z}, N(n)$ is a completely invariant sub-module of $M(n)$.
Proof
Let $N(n)$ be a completely invariant in $M(n), \forall n \in \mathbb{Z}$ then we have :
$f(n)(N(n)) \subset N(n) \Longrightarrow f_{*}\left(N_{*}\right) \subset N_{*}, \forall n \in \mathbb{Z}$
Suppose that N_{*} completely invariant in M_{*}, then
$f(n)(n) \subset N(n), \forall n \in \mathbb{Z}$
Thus $N(n)$ is completely invariant in $M(n)$.
Definition 4 Lets M be a left A-module and N be a sub-module of M. Then N is called essential in M if for any nonzero submodule K of M, we have $K \cap N \neq 0$; M is called essential extension of E.
Definition 5 Lets $M_{*}: \ldots M(n+1) \xrightarrow{d_{n+1}} M(n) \xrightarrow{d_{n}} M(n-1) \longrightarrow \ldots$ be a complex sequence of left A-modules and $N_{*}: \ldots N(n+1) \xrightarrow{\delta_{n+1}} N(n) \xrightarrow{\delta_{n}} N(n-1) \longrightarrow \ldots$ be a subcomplex of M_{*}. Then N_{*} is called essential of M_{*} if $N(n)$ is an essential submodule of $M(n), \forall n \in \mathbb{Z}$
Definition 6 Lets M be a left A-module and N be a submodule of M. Then N is called superfluous in M if for any submodule K of M, we have $K+N=M$, then $K=M$.

Definition 7 Lets $M_{*}: \ldots M(n+1) \xrightarrow{d_{n+1}} M(n) \xrightarrow{d_{n}} M(n-1) \longrightarrow \ldots$ be an objet of $\operatorname{COMP}(A G r(A-M o d))$ and $N_{*}: \ldots N(n+1) \xrightarrow{\delta_{n+1}} N(n) \xrightarrow{\delta_{n}} N(n-1) \longrightarrow \ldots$ be a subcomplex of M_{*}. Then N_{*} is called superfluous of M_{*} if $N(n)$ is superfluous submodule of $M(n), \forall n \in \mathbb{Z}$.
Definition 8 Let M a graded left A-module. Then M is called quasi-injective, iffor any graded monomorphism $g: N \longrightarrow$ M of graded left A-modules and for any graded morphism $f: N \longrightarrow M$, there exists a graded endomorphism h of M such $f=h \circ g$.

Definition 9 Lets M_{*} and N_{*} are two objets of $\operatorname{COMP}(A G r(A-M o d))$. M_{*} is called quasi-injective, iffor any monomorphism $g: N_{*} \longrightarrow M_{*}$ and for any complex chain $f: N_{*} \longrightarrow M_{*}$, there exists a complex chain $h: M_{*} \longrightarrow M_{*}$ verifying $f=h \circ g$

Theorem 1 Given $M_{*}: \ldots M(n+1) \xrightarrow{d_{n+1}} M(n) \xrightarrow{d_{n}} M(n-1) \longrightarrow \ldots$ an object of $\operatorname{COMP}(\operatorname{Gr}(A-\operatorname{Mod})) . M_{*}$ is
quasi-injective in $\operatorname{COMP}(\operatorname{Gr}(A-M o d))$ if, and only, if for all $n \in \mathbb{Z}, M(n)$ is a quasi-injective in $\operatorname{COMP}(G r(A-M o d))$.

Proof

See (OULD CHBIH et al., 2015).
Definition 10 Let P a graded left A-module. Then P is called quasi-projective, if for any graded left A-module N and any graded epimorphism $\pi: P \longrightarrow N$ of graded left A-modules and for any graded morphism $\phi: P \longrightarrow N$, there exists a graded endomorphism ψ of P such $\phi=\pi \circ \psi$.

Definition 11 Lets M_{*} and N_{*} are two objects of $\operatorname{COMP}(\operatorname{Gr}(A-\operatorname{Mod})) . M_{*}$ is called quasi-projective, if for any epimorphism $g: M_{*} \longrightarrow N_{*}$ and for any complex chain $f: M_{*} \longrightarrow N_{*}$, there exists a complex chain $h: M_{*} \longrightarrow M_{*}$ verifying $f=h \circ g$.
Theorem 2 Let be $M_{*}: \ldots M(n+1) \xrightarrow{d_{n+1}} M(n) \xrightarrow{d_{n}} M(n-1) \longrightarrow \ldots$ an object of $\operatorname{COMP}(\operatorname{Gr}(A-\operatorname{Mod})) . M_{*}$ is quasi-projective if, and only, if for all $n \in \mathbb{Z}, M(n)$ is a quasi-injective left A-modules

Proof

See (OULD CHBIH et al., 2015).
Proposition 4 Lets M be a graded left A-module, N be a graded submodule of M, M_{*} be a complex associate to M and N_{*} be a complex associate to N. If M_{*} / N_{*} is hopfian, then M_{*} is hopfian.

Proof

If M_{*} / N_{*} is hopfian and M_{*} is not hopfian, hence there exists $n \in \mathbb{Z} \operatorname{such} f(n): M(n) \longrightarrow M(n)$ be an epimorphism and no monomorphic, i.e $\operatorname{ker}(f)(n) \neq 0$. Put $N(n)=\operatorname{ker}(f)(n)$. Thus $f(n)$ induce an isomorphism $\bar{f}(n): M(n) / N(n) \longrightarrow M(n)$. If $\pi(n): M(n) \longrightarrow M(n) / N(n)$ the canonical surjection, $\pi(n) \circ f(n): M(n) / N(n) \longrightarrow M(n) / N(n)$ is an epimorphism and no monomorphic, this is a contradiction because all epimorphism of $M(n) / N(n)$ is an isomorphism.
Lemma 1 if $f: M \longrightarrow N$ and $g: N \longrightarrow M$ such that $f \circ g=i d_{N}$, then $M=\operatorname{ker}(f) \oplus \operatorname{Img}$.

Proof

Let $m \in \operatorname{ker}(f) \cap \operatorname{Img} \Longrightarrow f(m)=0$ and there exists $n \in N, g(n)=m \Longrightarrow f(m)=f \circ g(n)=n$ and $f(m)=0 \Longrightarrow n=$ $0 \Longrightarrow g(0)=m \Longrightarrow \operatorname{ker}(f) \cap \operatorname{Img}=0$.
Let $m \in M$, show that $m-g \circ f(m) \in \operatorname{ker}(f)$.
We have $f(m-g \circ f(m))=f(m)-(f \circ g)(f(m))=f(m)-f(m)=0$.
Since $m=g \circ f(m)+(m-g \circ f(m))$.
More than $g \circ f(m) \in \operatorname{Img}$ and $m-g \circ f(m) \in \operatorname{ker}(f)$, hence $M=\operatorname{ker}(f)+\operatorname{Img}$. Thus $M=\operatorname{ker}(f) \oplus \operatorname{Img}$.
Proposition 5 Lets M be a left graded module, N a graded submodule of M. If M_{*} quasi-projective and N_{*} is a completely invariant and essential subcomplex of M_{*}. Then N_{*} is cohopfian if, and only, if M_{*} is cohopfian.

Proof

Suppose that M_{*} / N_{*} is hopfian and let $f_{*}: M_{*} \longrightarrow M_{*}$ be an epimorphism.
As N_{*} is completely invariant, then $\forall n \in \mathbb{Z}, f(n)(N(n)) \subset N(n)$, implies $f(n)$ induce an epimorphism $\bar{f}(n): M(n) / N(n) \longrightarrow$ $M(n) / N(n)$, since M_{*} / N_{*} is hopfian, then $\bar{f}(n)$ is an automorphism. Put $K(n)=\operatorname{ker}(f)(n)$ and $\pi(n): M(n) \longrightarrow M(n) / N(n)$ be the canonical projection, we have :
$\bar{f}(n) \circ \pi(n)(K(n))=\pi(n) \circ f(n)(K)=0$
Indeed, $\forall x \in K(n)$, we have :
$\bar{f}(n) \circ \pi(n)(x)=\pi(n) \circ f(n)(x)$, so
$\pi(n) \circ f(n)(x)=\pi(n)(f(n)(x)=\pi(n)(0)=0$, hence $\bar{f}(n) \circ \pi(n)(K)=0$.
we have :

$$
\bar{f}(n) \circ \pi(n)(K(n))=\pi(n) \circ f(n)(K(n))=0 \Longrightarrow \bar{f}(n)(\pi(n)(K(n)))=0 \Longrightarrow \pi(n)(K(n)) \subset N(n) \Longrightarrow K(n) \subset N(n)
$$

Since M_{*} is quasi- projective, there exists an endomorphism $s(n): M(n) \longrightarrow M(n)$ such that $f(n) \circ s(n)=i d(n)_{M}$, which implies $M=K(n) \oplus \operatorname{Ims}(n)$, or $K(n)=N(n)$ and $N(n)$ superfluous in $M(n), \forall n \in \mathbb{Z}$, then $M(n)=\operatorname{Ims}(n)$, so $K(n)=\operatorname{ker}(f)(n)=0, \forall n \in \mathbb{Z}$, hence $f(n)$ is an monomorphism, $\forall n \in \mathbb{Z}$
At last, f_{*} is an monomorphism, thus M_{*} is hopfian.
Reciprocally,
If M_{*} is hopfian and show that M_{*} / N_{*} est hopfian.
Let $\varphi(n): M_{*} / N_{*} \longrightarrow M_{*} / N_{*}$ an epimorphism of complex chains, as M_{*} is quasi-projective, hence $\forall n \in \mathbb{Z}, M(n)$ is projective. We Consider $\pi(n): M(n) \longrightarrow M(n) / N(n)$, then there exists $f(n) \in \operatorname{End}(M(n))$ such that $\pi(n) \circ f(n)=\varphi(n) \circ \pi$. Since $\varphi(n)$ is an epimorphism, $\forall \bar{x} \in M(n) / N(n), \exists \bar{y} \in M(n) / N(n)$ such that
$\varphi(n)(\bar{y})=\bar{x}=\varphi(n)(\pi(n)(y)$
$\pi(n) \circ f(n)(y)=\varphi(n) \circ \pi(n)(y)$
$\pi(n)(f(n))=\varphi(\bar{y})$
$\Longrightarrow \varphi(n)(\bar{y})=\bar{f}(n)(\bar{y})=\bar{x}$
$\Longrightarrow \overline{f(n)(y)-x}=\overline{0}$
$\Longrightarrow f(n)-x=0$
$\Longrightarrow f(n)-x \in N(n)$,
then $M=\operatorname{Im}(f)(n)+N$, as N is superfluous, then $\operatorname{Im}(f)(n)=M(n) \Longrightarrow f(n)$ is an epimorphism. Thus, $f(n)$ is an automorphism, because $M(n)$ is hopfian for all $n \in \mathbb{Z}$.
Hence the restriction of $f(n)$ over $N(n)$ is an automorphism of $N(n)$.
If $\varphi(\bar{x})=\bar{f}(n)(x)=\overline{0}$, then $f(n)(x) \in N(n)$, or $N(n)$ is completely invariant, then $x \in N$, so $\bar{x}=\overline{0} \Longrightarrow k e r \varpi(n)=N=$ $\overline{0} \Longrightarrow \varphi(n)$ is an monomorphism $\Longrightarrow \varphi(n)$ is an automorphism for all $n \in \mathbb{Z}$, finally $M(n) / N(n)$ is hopfian.
Proposition 6 Lets M a graded left A-module, N a graded submodule of M, M_{*} quasi-injective and N_{*} a completely invariant and superfluous subcomplex of M_{*}. Then M_{*} is cohopfian if, and only, if M_{*} / N_{*} is cohopfian.

Proof

Suppose that M_{*} is cohopfian and let $f_{*}: N_{*} \longrightarrow N_{*}$ be a monomorphism. As M_{*} is quasi-injective, then for all $n \in \mathbb{Z}$ is quasi-injective. Then there exists $g(n) \in \operatorname{End}(M(n)) \forall n \in \mathbb{Z}$ such that $g_{\mid N(n)}=f(n)$.
$g(n)$ is injective because N_{*} is essential in M_{*}, hence $\forall n \in \mathbb{Z}, N(n)$ is essential, and since M_{*} is cohopfian, g is invertible. Let $x \in N(n)$, there exists $y \in M$ such that $x=g(n)(y)$. Or $g^{-1}(n) \in \operatorname{End}(N(n))$ and $N(n)$ is completely invariant, thus $y=g^{-1}(x) \in N$, hence $f(n)$ is an epimorphism for all $n \in \mathbb{Z}$. Thus f_{*} is an automorphism, consequently N_{*} is cohopfian.
Reciprocally, suppose that N_{*} is cohopfian an let $f_{*}: M_{*} \longrightarrow M_{*}$ be a monomorphism. Then $f_{* \mid N_{*}}$ is an injective endomorphism of N_{*}, hence for all $n \in \mathbb{Z}, f(n)_{\mid N(n)}$ is an injective endomorphism of $N(n)$. Thus, $f(n) \in \operatorname{Aut}(N(n))$, hence $f(n)(N(n))=N(n)$. As $M(n)$ is quasi-injective, then there exists $L(n)$ a submodule of $M(n)$ such that $M(n)=f(M(n)) \oplus$ $L(n)$. Thus, we have $0=f(n)(N) \cap L(n)=N(n) \cap L(n)$, as $N(n)$ is essential, then $L(n)=0$, hence $M(n)=f(n)(M(n))$, thus $f(n)$ is an epimorphism for all $n \in \mathbb{Z} \Longrightarrow f_{*}$ is a graded epimorphism complex chain, consequently, M_{*} is cohopfian.
Proposition 7 Let M a graded left A-module. If M_{*} / N_{*} is hopfian for all submodule N of M, then M_{*} is hopfian.

Proof

Suppose on the contrary M_{*} is not hopfian. Then there exists $n \in \mathbb{Z}$ such that $f(n): M(n) \longrightarrow M(n)$ is an epimorphism which is not an automorphism. Put $N(n)=\operatorname{ker}(f)(n)$, thus $N(n) \neq 0$ and $f(n)$ induces an isomorphism $\bar{f}(n): M(n) / N(n) \longrightarrow M(n) / N(n)$.
If $\pi(n): M(n) / N(n) \longrightarrow M(n) / N(n)$ denotes the canonical quotient map, then $\pi(n) \circ \bar{f}(n): M(n) / N(n) \longrightarrow M(n) / N(n)$ is an epimorphism which is not an isomorphism $\forall n \in \mathbb{Z}$, contradicting the hopfian nature of $M(n) / N(n)$.
Proposition 8 Let M a graded left A-module. If all owns submodule N of M is cohopfian, then M_{*} itself is cohopfian.

Proof

Suppose on the contrary M_{*} is not cohopfian. Then there exists $n \in \mathbb{Z}$ such that the injective map $f(n): M(n) \longrightarrow M(n)$
is not an automorphism. Put $N(n)=\operatorname{Im}(f)(n)$, thus $N(n) \subset M(n)$ and $f(n)$ induces an isomorphism $\bar{f}(n): M(n) \longrightarrow N(n)$ s an injective map which is not an isomorphism, contradicting the cohopfian nature of $N(n)$ for all $n \in \mathbb{Z}$.

Remark 1 (p) denotes the following property: <<any epimorphism of subcomplex N_{*} of M_{*} (where M is an object of $\operatorname{COMP}(\operatorname{Gr}(A-M o d)))$ is an isomorphism \gg
Proposition 9 Let M a graded left A-module. If M_{*} is hopfian quasi-injective object of $\operatorname{COMP}(A G r(A-M o d))$, then M_{*} owns the property (p).

Proof

Let N_{*} be a subcomplex of M_{*} and $f_{*}: N_{*} \longrightarrow M_{*}$ be an graded epimorphism complex chain. Since M_{*} is quasi-injective, then for all $n \in \mathbb{Z}, M(n)$ is quasi-injective, thus there exists $\tilde{f}(n) \in \operatorname{End}(M(n))$ such that $\tilde{f}(n)_{\mid N(n)}=f(n)$. Or $f(n)$ is surjective, then for all $x \in M(n)$, there exists $y \in N(n)$ such that $x=f(n)(y)$, hence $\tilde{f}(n)$ is surjective, as $M(n)$ is hopfian, thus $\tilde{f}(n) \in \operatorname{Aut}(N(n))$ for all $n \in \mathbb{Z}$. We deduce that $f(n)$ is a monomorphism of $N(n)$ into $M(n)$, for all $n \in \mathbb{Z}$. Consequently, f_{*} is a graded isomorphism of complex chain.

References

Abu-Dawwas, R. (2010). More on crossed product over the support of graded rings. International Mathematical Forum, 5(63), 3121-3126.
Abu-Dawwas, R., \& Refai, M. (2010). Further results on graded Prime submodules. International Journal of Algebra, 4(28), 1413-1419.

Artin, M. (1966). Commutative rings, course notes, M.I.T.
Atiyah, M. F., \& Macdonald, I. G. (1969). Introduction to commutative algebra. Addison - Wesley Publishing Company, University of OXFORD.
Dade, E. C. (1980). Group graded rings and modules. Math. Z., 174, 241-262.
Diallo, E. O. (2014). Thèse de Doctorat unique, Faculté des Sciences et Techniques. Universit Cheikh Anta DIOP, Dakar.
Diallo, E. O., Maaouia, M. F., \& Sanghare, M. (2013). Hopfian Objects, Cohopfian Objects in the category of complexes of left A-Modules. International Mathematical Forum, 8(39), 1903-1920. http://dx.doi.org/10.12988/imf.2013.37128
Eelbert, M. P. (1984). Localisation in duo - Ring. Publ. Math. Debrecen, 31, 47-52.
Faye, D., Maaouia, M. F., \& Sanghare, M. (2016). Localization in a Duo-Ring and Polynomials Algebra. In Gueye C., \& Molina, M. (Eds), Non-Associative Algebra and Operator Theory. Springer Proceedings in Mathematics and Statistics, Vol 160. Springer, Cham. http://doi.org/10.1007/978-3-319-32902-4_13
Hmainou, A., Kaidi, A., \& Sanchez, E. C. (2006). Generalising Fitting modules and rings. Journal of Algebra.
Maaouia, M. F. (2011). These d'etat, Faculté des Sciences et Techniques. Universit Cheikh Anta DIOP, Dakar.
Maaouia, M. F., \& Sanghare, M. (2012). Module de Fractions, Sous-modules S-saturée et Foncteur S^{-1}. International Journal of Algebra, 6(16), 775-798.
Maaouia, M. F., \& Sanghare, M. (2012). Anneau de valuation non Nécessairement commutatif et duo-anneau de Dedekind. Global Journal of Pures and Applied Mathematics, 8(1), 49-63.
Maaouia, M. F., \& Sanghare, M. (2009). Localisation dans les duo - anneaux. Afrika Mathematika, 3(20), 163-179.
Mendelson, M. (1970). Graded rings, modules and algebras. M.I.T.
Nastasescu, C. (1983). Strongly graded rings of finite groups. Communication in Algebra, 11(10), 1033-1071.
Nastasescu, C., \& Van Oystaeyen, F. (1982). Graded ring theory. Mathematical Library, 28, North Holland, Amesterdam.
OULD, C. A. (2016). Thèse de Doctorat unique,Unit de Formation de la Recherche de Sciences Appliquées et de Technologie. Universit Gaston Berger, Saint-Louis.

OULD, C. A., Maaouia, M. F., \& Sanghare, M. (2018). LOCALISATION DES DUO-ANNEAUX GRADUS ET GRADUATION DES MODULES DE FRACTIONS SUR DES DUO-ANNEAUX GRADUS. Annales Mathmatiques Africaines, 7(39), 73-88.
OULD, C. A., Maaouia, M. F., \& Sanghare, M. (2016). Factorization of graded modules of Fraction. International Mathematical Forum, 11(22), 1067-1088. https://doi.org/10.12988/imf.2016.67100
OULD, C. A., Maaouia, M. F., \& Sanghare, M. (2015). Graduation of Module of Fraction on a Graded Domain Ring Not

Necessarily Commutative. International Journal of Algebra, 9(10), 457-474. http://dx.doi.org/10.12988/ija.2015.5852

Renault, G. (1975). Algèbre non commutative, Gauthier-Villars, Paris - Bruxelles - Montréal .

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

