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Abstract

We study in this work the notions of hopficity and cohopficity in the categories

AGr(A − Mod) and COMP(AGr(A − Mod)) of associate complex to a graded left A-module and we show that:

1. Let M a graded left A−module, N a graded submodule of M, M∗ be a complex associate to M. Suppose that M∗
be a quasi-projective and N∗ be a completely invariant and essential sub-complex of M∗ associate to N. Then N∗ is
cohopfian if, and only, if M∗ is cohopfian.

2. Let M a graded left A−module, N a graded submodule of M, M∗ quasi-injective and N∗ a completely invariant and
superfluous sub-complex of M∗. Then M∗ is cohopfian if, and only, if M∗/N∗ is cohopfian.

Keywords: Hopfian complex, cohopfian complex, chain complex, sequence complex, quasi-injective chain complex,
quasi-projective chain complex

1. Introduction

In this paper, the ring A is supposed to be associatif, unitary and not necessairly commutative, every left A-module is
unifere.

The aim of this article is to study the hopfian and cohopfian objets in the category Gr(A−Mod) of graded left A−modules
and in the category COMP(AGr(A − Mod))of associated complex of graded left A−modules. In particular we give
conditions over M∗ and N∗ such that M∗/N∗ be cohopfian (respectively is hopfian) and conditions over M∗/N∗ and N∗ such
that M∗ be hopfian.

We define AGr(A − Mod) and COMP(AGr(A − Mod)) :

1. The category of graded of left A-modules denoted AGr(A − Mod) where :

(a) The objects are the graded left A−modules;

(b) The morphisms are the graded morphisms..

2. the category of complexes associate of graded left A-modules denoted COMP(AGr(A − Mod)) where

(a) the objects are the complex sequences associate of graded left A-modules ;

(b) the morphisms are the complex chains associate of graded morphisms.

We note that COMP(AGr(A − Mod)) is a sub-category of COMP(A − Mod).

The principal results of this article is given in the third section, which are:

1. Let M be a graded left A-module. then M is hopfian(resp. cohopfian) if for any n ∈ Z, M(n) is hopfian(resp.
cohopfian).

2. Let M a graded left A−module, N a graded submodule of M, M∗ be a complex associate to M and N∗ be a complex
associate to N. If M∗/N∗ is hopfian, then M∗ is hopfian.
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3. Let M a graded left A−module, N a graded submodule of M, M∗ be a complex associate to M and N∗ be a complex
associate to N. Suppose that N∗ be a completely invariant and superfluous sub-complex of M∗. Then M∗ is hopfian
if, and only, if M∗/N∗ is hopfian.

4. Let M a graded left A−module, N a graded submodule of M, M∗ quasi-injective and N∗ a completely invariant and
superfluous sub-complex of M∗. Then M∗ is cohopfian if, and only, if M∗/N∗ is cohopfian.

5. Let M a graded left A−module, N a graded submodule of M, M∗ be a complex associate to M. Suppose that N∗ be
a complex associate to N, M∗ be a quasi-projective and N∗ be a completely invariant and essential sub-complex of
M∗. Then N∗ is cohopfian if, and only, if M∗ is cohopfian.

6. Let M a graded left A−module, N a graded submodule of M, M∗ be a complex associate to M. If M∗/N∗ is hopfian
for all nonzero sub-complex N∗ associate to N, then M∗ is hopfian.

7. Let M a graded left A−module, M∗ be a complex associate to M. If M∗/N∗ is hopfian for all sub-complex N∗
associate to N, then M∗ is hopfian.

8. (p) denotes the following property :

≪any epimorphism of sub-complex N∗ of M∗ ( where M is an object of COMP(AGr(A − Mod)))is an isomorphism
≫
Let M a graded left A−module, M∗ a complex associate to M. If M∗ is an hopfian quasi-projective , then M∗ owns
the property (p).

2. Preliminaries

Definition 1 Lets A be a ring and is a family {An}n∈Z of sub-group of A. If

1. A =
⊕
n∈Z

An;

2. An · Am ⊂ An+m, ∀ n, m ∈ Z.

Then we say that A is a graded ring. Else, if An = 0,∀n < 0.Then A is called positively graded ring.

In all that follows, A and M are supposed unitary.

Definition 2 Let A =
⊕
n∈Z

An be a graded ring and M be a left A−module, then M is called a graded left A−module if

there exist a sequence (Mn)n∈Z of sub-group of M such that:

1. M =
⊕
n∈Z

Mn;

2. An · Md ⊂ Mn+d, ∀ n, d ∈ Z.

Definition 3 Lets A =
⊕
n∈Z

An be a graded ring, M =
⊕
n∈Z

Mn be a graded left A−module and N is a sub-module of M,

then N is called a graded sub-module of M, if ∀x =
∑

n∈Z xn ∈ N, with xn ∈ Mn, then xn ∈ N, ∀n ∈ Z.
Proposition 1
Lets A =

⊕
n∈Z

An be a graded ring and M =
⊕
n∈Z

Mn is graded left A−module , then for all n ∈ Z fixed, we have

M(n) =
⊕
k≥n

Mk =
⊕
k∈N

Mn+k

is a graded sub-module of M and :
· · ·M(n + 2) ⊂ M(n + 1) ⊂ M(n) ⊂ · · ·.
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Proof

Let n ∈ Z fixed, M(n) =
⊕
k≥n

Mk is a sub-group of M and

As · M(n)k = As · Mn+k ⊂ Mn+k+s = Mn+(k+s) = M(n)k+s.

Else
M(n) =

⊕
k≥n

Mk = Mn

⊕
M(n + 1) =

⊕
k∈N

Mk.

Hence M(n + 1) ⊂ M(n). Thus
· · ·M(n + 2) ⊂ M(n + 1) ⊂ M(n) ⊂ · · ·.

Definition 4 Lets A =
⊕

n∈Z An be a graded ring, M =
⊕
n∈Z

Mn, N =
⊕
n∈Z

Nn are two graded left A−modules and

f : M −→ N is a morphism of left A−modules, then f is called a graded morphism if for any m ∈ Ms then f (m) ∈ Ns+k.
Theorem and Definition 1 Let A be a graded ring, the category of graded left A−module is the category denoted by
Gr(A − Mod)-Mod whose

1. The objects are the graded left A−modules;

2. The morphisms are the graded morphisms.

Proof

See (OULD CHBIH et al., 2015).

Definition 5 A complex sequence (C, d) : . . . → Cn+1
dn+1→ Cn

dn→ Cn−1
dn−1→ . . . is a sequence of morphisms of A− modules

satisfying dn ◦ dn+1 = 0, for all n ∈ Z.

Definition 6 A complex chain f : (C, d) → (C′, d′) is a sequence of homomorphisms ( fn : Cn −→ C
′
n)n∈Z of A− modules

making the following diagram commute :

(C, d) : · · · //

f

��

Cn+1
dn+1 //

fn+1

��

Cn
dn //

fn
��

Cn−1 //

fn−1

��

· · ·

(C′, d′) : · · · // C′n+1

d′n+1 // C′n
d′n // C′n−1

// · · ·

i.e d′n+1 ◦ fn+1 = fn ◦ dn+1, for all n ∈ Z.

Proposition and Definition 1 Let A be a ring, then the category of complexes of left A−modules is the category denoted
COMP(A − Mod) whose :

1. The objects are the sequences complex;

2. The morphisms are the complex chains.

Proof

See (Dade E. C. 1980).

Proposition 2 Lets A =
⊕
n∈Z

An be a graded ring and M =
⊕
n∈Z

Mn be a graded left A−module, then we have M∗ :

M∗ : · · · → M(n + 1)
dn+1→ M(n)

dn→ M(n − 1)→ · · ·

is an associate complex sequence of a grade A−module M =
⊕
n∈Z

Mn with M(n) =
⊕
k∈Z

Mn+k and

dn : M(n) −→ M(n − 1)

x 7−→ y
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with (y, z) ∈ Mn × M(n + 1).

Proof

We have M(n) =
⊕
k∈Z

Mn+k =
⊕
k≥n

Mk = Mn

⊕
Mn+1 and

M(n − 1) = Mn−1

⊕
M(n) = Mn−1

⊕
Mn

⊕
M(n + 1).

Let x ∈ M(n) =⇒ ∃!(y, z) ∈ Mn × M(n + 1) such that x = y + z.

Put
dn : M(n) −→ M(n − 1)

x = y + z 7−→ y

so Im(dn) = Mn; on the other hand
dn−1 : M(n − 1) −→ M(n − 2)

w = u + v 7−→ u

with (u, v) ∈ Mn−1 × M(n) so ker(dn−1) = M(n) so Im(dn) ⊂ ker(dn−1) so

dn−1 ◦ dn = 0

thus
M∗ : · · · → M(n + 1)

dn+1→ M(n)
dn→ M(n − 1)→ · · ·

is a complex sequence.

Proposition 3 Let M be a graded left A-module, N a graded submodule of M, M∗ the complex associate to M and for all
n ∈ Z, N(n) is a submodule of M(n). Then

N∗ : · · · → N(n + 1)
δn+1→ N(n)

δn→ N(n − 1)→ · · · with dn(x) = δn(n)(x)

is a sub-complex of M∗

Proof

We have δn : N(n + 1) −→ N(n)

let x, y ∈ N(n + 1) : x = y

then dn(x) = dn(y)

=⇒ δn(x) = δn(y)

=⇒ is well define.

Let’s calculate δn ◦ δn+1

Let x ∈ N(n + 1), we have :

δn ◦ δn+1(x) = δn(δn+1(x))

= δn(dn+1(x)) = dn(dn+1(x)) = dn ◦ dn+1(x) = 0

Thus δn ◦ δn+1 = 0

hence N∗ is a sub-complex of M∗.

Proposition 4 Lets A =
⊕
n∈Z

An be a graded ring, M =
⊕
n∈Z

Mn and N =
⊕
n∈Z

Nn are two graded left A−module f : M −→

N is a graded morphism of a graded left A−modules, then for all n ∈ Z

f (n) : M(n) −→ N(n)

m 7−→ = f (m)

is graded morphism.
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Proof
We have M(n) is a graded sub-module of left A−module M and f : M −→ N is graded morphism, then let m ∈ M(n), so

m =
∑
i∈Z

mi+n =⇒ f (n)(m) = f (m) = f (
∑
i∈Z

mi+n) =
∑
i∈Z

f (mi+n)

or f (mi+n) ∈ Ni+n+k = (N(n))i+k thus f is graded morphism of a graded left A−modules.

Proposition 5 Lets A =
⊕
n∈Z

An be a graded ring, M =
⊕
n∈Z

Mn, N =
⊕
n∈Z

Nn are two graded left A−modules and

f : M =
⊕
n∈Z

Mn −→ N =
⊕
n∈Z

Nn is a graded morphism of a graded A−modules, then :

M∗ : · · · //

f∗
��

M(n + 1)
dn+1 //

f (n+1)
��

M(n)
dn //

f (n)
��

M(n − 1) //

f (n−1)
��

. . .

N∗ : · · · // N(n + 1)
d′n+1 // N(n)

d′n // N(n − 1) // · · ·

is an associate chain complex f∗ of graded morphism f

Proof

Let x ∈ M(n + 1) =⇒ ∃!(y, z) ∈ Mn+1 × M(n + 2) such that x = y + z then

( f (n) ◦ dn+1)(x) = f (n)[dn+1(x)] = f [dn+1(x)] = f [y] = f (y)

and

(d
′

n+1 ◦ f (n + 1))(x) = d
′

n+1[ f (n + 1)(x)] = d
′

n+1[ f (x)] = d
′

n+1[ f (y + z)] = d
′

n+1[ f (y) + f (z)] = f (y)

=⇒ ( f (n) ◦ dn+1)(x) = (d
′

n+1 ◦ f (n + 1))(x), ∀ x ∈ M(n + 1)

so
f (n) ◦ dn+1 = d

′

n+1 ◦ f (n + 1)

thus f∗ is a complex chain.

Theorem 1 Let A =
⊕
n∈Z

An be a graded ring. We called COMP(AGr(A − Mod)) the category of associate complex of a

graded left A−modules whose :

1. The objets are the associate complex sequences of a graded left A−modules;

2. The morphisms are the associate complex chains of a graded morphism.

Proof

1. Lets M∗ and N∗ two complex sequences associate of a graded left A-module M and N respectively.

Put HomCOMP(AGr(A−Mod))(M∗,N∗) = the class of complex chains associate of graded morphism of M −→ N. Then
HomCOMP(Gr(A−Mod))(M∗,N∗) is a set, because the class of complex chain of M∗ −→ N∗ of the category COMP(A −
Mod)(M∗,N∗) is a set (it suffices to remark also the class of graded of M −→ N is a set).

2. ∀ f∗ ∈ HomCOMP(Gr(A−Mod))(M∗,N∗); g∗ ∈ HomCOMP(Gr(A−Mod))(N∗, P∗) and h∗ ∈ HomCOMP(Gr(A−Mod))(P∗,Q∗) we
have :

M∗ : · · · //

f∗
��

// M(n + 1)

f (n+1)
��

dn+1 // M(n)

f (n)
��

dn // . . .

N∗ : · · ·
g∗
��

// N(n + 1)

g(n+1)
��

d
′
n+1 // N(n)

g(n)
��

d
′
n+ // . . .

P∗ : · · ·

h∗
��

// P(n + 1)

h(n+1)
��

d
′′
n+1+k+r // P(n)

h(n)
��

d
′′
n+k+r // . . .

Q∗ : · · · // Q(n + 1)
d
′′′
n+1 // Q(n)

d
′′′
n // . . .
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So (h∗ ◦ g∗) ◦ f∗ = h∗ ◦ (g∗ ◦ f∗);

3. Let M∗ the object of COMP(Gr(A − Mod)) we have :

1M∗ : M∗ −→ M∗

M∗ : · · · //

1M∗

��

// M(n + 1)

1(n+1)
��

dn+1 // M(n)

1(n)
��

dn // . . .

M∗ : · · · // M(n + 1)
dn+1 // M(n)

dn // . . .

1M∗ verified f∗ ◦ 1M∗ = f∗ ∀ f∗ ∈ HomCOMP(Gr(A−Mod))(M∗,N∗).

Furthermore 1M∗ ◦ g∗ = g∗ ∀ g∗ ∈ HomCOMP(Gr(A−Mod))(N∗,M∗).

4. ∀(M∗,N∗) , (M′∗,N
′
∗) =⇒ HomCOMP(Gr(A−Mod))(M∗,N∗) , HomCOMP(Gr(A−Mod))(M′∗,N

′
∗)

Thus COMP(Gr(A − Mod)) is a category.

Remark 1 COMP(AGr(A − Mod)) is a sub-category of COMP(A − Mod)

Proposition and Definition 2 Lets (C, d) : · · · −→ Cn+1
dn+1−→ Cn

dn−→ Cn−1 −→ · · · be a complex sequence of left A-
-modules and (En) be a family of left A-modules such that for all n, En is a submodule of Cn. If dn(En) ⊂ En−1, then the
complex sequence of induced morphisms (dn : En −→ En−1) is complex sequence of left A-modules called sub-complex of
C

Proof

Let δn : En −→ En−1 be the induced morphism of dn, indeed let x ∈ En, hence dn(x) ∈ En, then δn is well defined.

δn is a morphism, since it’s composed of two morphisms.

Let’s verify that δn ◦ δn+1 = 0

Let be x ∈ En+1, hence δn+1(x) = dn+1(x) ∈ En and δ((dn+1)(x) = dn ◦ dn+1(x) = 0, then δn ◦ δn+1 = 0, ∀n ∈ Z.

Proposition and Definition 3 Lets C be a complex and E be a sub-complex of C. Suppose that K = (Kn)n∈Z, where
Kn = Cn/En. Then K is called quotient complex of C by E and denoted C/E

Proof

See (Diallo E. O. 2014).

Theorem 2 let (C, d), (C′, d′) two objects of COMP(A − Mod) and f : C −→ C′ be a complex chain. Then
f is a monomorphism of COMP(A − Mod) if, and only, if ker( f ) = 0.

Proof

If f is a monomorphism of C into C′, hense f ◦ u = f ◦ v =⇒ u = v, then ∀n ∈ Z, fn ◦ un = fn◦n =⇒ un = vn, so fn is a
monomorphism, thus ker( f )n = 0, hence ker( f ) = 0.

Suppose that ker( f ) = 0, hence ker( f ) is a zero complex, so each terms is zero, thus fn is a monomorphism of left A-
-modules then ∀n ∈ Z it gives if fn ◦ un = fn ◦ vn hence un = vn, so ( f ◦ u)n = ( f ◦ v)n =⇒ (u)n = (v)n, finally, f is a
monomorphism of complex chains.

Theorem 3 lets (C, d), (C′, d′) two objects of COMP(A − Mod) and f : (C, d) −→ (C′, d′) be a complex chain. Then
f is an epimorphism of COMP(A − Mod) if, and only, if Im( f ) = C′.

Proof

If f is an epimorphism of COMP(A−Mod), then u◦ f = v◦ f =⇒ u = v, hence for all n ∈ Z, (u◦ f )n = (v◦ f )n =⇒ un = vn,
fn is an epimorphism of left A-modules, then Im( f )n = C′n, ∀n ∈ Z, so Im( f ) = C′.
Suppose that Im( f ) = C′, hence ∀n ∈ Z, Im( f )n = C′n, then fn is an epimorphism of left A-modules so ∀n ∈ Z,
un ◦ fn = vn ◦ fn, then (u ◦ f )n = (v ◦ fn) =⇒ un = vn then f is an epimorphism of complex chains.

3. Hopfian and Cohopfian Objects, Quasi-Injective and Quasi-Projective Objects in the Category COMP(Gr(A-
Mod))

Definition 1 Let M∗ an object of COMP(AGr(A − Mod)). Then M∗ is said to be hopfian (resp. cohopfian) if any
epimorphism (resp. monomorphism) f∗ of M∗ is an automorphism.
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Proposition 1 Let M be a graded left A-module and f a graded endomorphism of M. If f is an epimorphism (resp.
monomorphism, resp. isomorphism) then f (n) is an epimorphism (resp. monomorphism, resp. isomorphism) .

Proof

Is evident, since f (n) is the induce of f .

Proposition 2 Let M be a graded left A-module. then M is hopfian(resp. cohopfian) in AGr(A − Mod) if for any n ∈ Z,
M(n) is hopfian(resp. cohopfian) AGr(A − Mod).

Proof

let g : M(n) −→ M(n) a graded epimorphism (resp. a monomorphism), since M = M(n)
⊕
k>n

Mn+k.

Put f = g + idMn+k where f ∈ End(M) is an epimorphism (resp. monomorphism). Since M hopfian (resp. cohopfian) this
implies f is an isomorphism, thus g is an isomorphism, then M(n) is hopfian (resp. cohopfian)

Definition 2 Let M be a graded left A-module and N a graded submodule of M. Then N is called a completely invariant
if for any graded endomorphism f of M, we have f (N) ⊂ N.

Definition 3 Let M∗ an objet of COMP(AGr(A−Mod) and N∗ a sub-complex of M∗. N∗ is called completely invariant if
for any endomorphism f∗ of M∗, f (N∗) is a of M∗.

Proposition 3 Let M∗ : . . . M(n + 1)
dn+1−−−→ M(n)

dn−→ M(n − 1) −→ . . . be an objet of COMP(AGr(A − Mod)) and

N∗ : . . .N(n + 1)
δn+1−−−→ N(n)

δn−→ N(n − 1) −→ . . . be a subcomplex of M∗. Then N∗ completely invariant in AGr(A − Mod)
if, and only if, for all n ∈ Z, N(n) is a completely invariant sub-module of M(n).

Proof

Let N(n) be a completely invariant in M(n), ∀ n ∈ Z then we have :

f (n)(N(n)) ⊂ N(n) =⇒ f∗(N∗) ⊂ N∗, ∀ n ∈ Z
Suppose that N∗ completely invariant in M∗, then

f (n)(n) ⊂ N(n), ∀ n ∈ Z
Thus N(n) is completely invariant in M(n).

Definition 4 Lets M be a left A-module and N be a sub-module of M. Then N is called essential in M if for any nonzero
submodule K of M, we have K ∩ N , 0 ; M is called essential extension of E.

Definition 5 Lets M∗ : . . . M(n + 1)
dn+1−−−→ M(n)

dn−→ M(n − 1) −→ . . . be a complex sequence of left A-modules and

N∗ : . . .N(n + 1)
δn+1−−−→ N(n)

δn−→ N(n − 1) −→ . . . be a subcomplex of M∗. Then N∗ is called essential of M∗ if N(n) is an
essential submodule of M(n), ∀n ∈ Z
Definition 6 Lets M be a left A-module and N be a submodule of M. Then N is called superfluous in M if for any
submodule K of M, we have K + N = M, then K = M.

Definition 7 Lets M∗ : . . . M(n + 1)
dn+1−−−→ M(n)

dn−→ M(n − 1) −→ . . . be an objet of COMP(AGr(A − Mod)) and

N∗ : . . .N(n + 1)
δn+1−−−→ N(n)

δn−→ N(n − 1) −→ . . . be a subcomplex of M∗. Then N∗ is called superfluous of M∗ if N(n) is
superfluous submodule of M(n), ∀n ∈ Z.

Definition 8 Let M a graded left A-module. Then M is called quasi-injective, if for any graded monomorphism g : N −→
M of graded left A-modules and for any graded morphism f : N −→ M, there exists a graded endomorphism h of M such
f = h ◦ g.

M

N

f

OO

g
// M

h
``

Definition 9 Lets M∗ and N∗ are two objets of COMP(AGr(A−Mod)). M∗ is called quasi-injective, if for any monomor-
phism g : N∗ −→ M∗ and for any complex chain f : N∗ −→ M∗, there exists a complex chain h : M∗ −→ M∗ verifying
f = h ◦ g

Theorem 1 Given M∗ : . . . M(n + 1)
dn+1−−−→ M(n)

dn−→ M(n − 1) −→ . . . an object of COMP(Gr(A − Mod)). M∗ is
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quasi-injective in COMP(Gr(A − Mod)) if, and only, if for all n ∈ Z, M(n) is a quasi-injective in COMP(Gr(A − Mod)).

Proof

See (OULD CHBIH et al., 2015).

Definition 10 Let P a graded left A-module. Then P is called quasi-projective, if for any graded left A-module N and
any graded epimorphism π : P −→ N of graded left A-modules and for any graded morphism ϕ : P −→ N, there exists a
graded endomorphism ψ of P such ϕ = π ◦ ψ.

P
ψ

��
ϕ

��
P

π
// N // 0

Definition 11 Lets M∗ and N∗ are two objects of COMP(Gr(A − Mod)). M∗ is called quasi-projective, if for any
epimorphism g : M∗ −→ N∗ and for any complex chain f : M∗ −→ N∗, there exists a complex chain h : M∗ −→ M∗
verifying f = h ◦ g.

Theorem 2 Let be M∗ : . . . M(n + 1)
dn+1−−−→ M(n)

dn−→ M(n − 1) −→ . . . an object of COMP(Gr(A − Mod)). M∗ is
quasi-projective if, and only, if for all n ∈ Z, M(n) is a quasi-injective left A-modules

Proof

See (OULD CHBIH et al., 2015).

Proposition 4 Lets M be a graded left A−module, N be a graded submodule of M, M∗ be a complex associate to M and
N∗ be a complex associate to N. If M∗/N∗ is hopfian, then M∗ is hopfian.

Proof

If M∗/N∗ is hopfian and M∗ is not hopfian, hence there exists n ∈ Z such f (n) : M(n) −→ M(n) be an epimorphism and no
monomorphic, i.e ker( f )(n) , 0. Put N(n) = ker( f )(n). Thus f (n) induce an isomorphism f (n) : M(n)/N(n) −→ M(n). If
π(n) : M(n) −→ M(n)/N(n) the canonical surjection, π(n) ◦ f (n) : M(n)/N(n) −→ M(n)/N(n) is an epimorphism and no
monomorphic, this is a contradiction because all epimorphism of M(n)/N(n) is an isomorphism.

Lemma 1 if f : M −→ N and g : N −→ M such that f ◦ g = idN , then M = ker( f ) ⊕ Img.

Proof

Let m ∈ ker( f ) ∩ Img =⇒ f (m) = 0 and there exists n ∈ N, g(n) = m =⇒ f (m) = f ◦ g(n) = n and f (m) = 0 =⇒ n =
0 =⇒ g(0) = m =⇒ ker( f ) ∩ Img = 0.

Let m ∈ M, show that m − g ◦ f (m) ∈ ker( f ).

We have f (m − g ◦ f (m)) = f (m) − ( f ◦ g)( f (m)) = f (m) − f (m) = 0.

Since m = g ◦ f (m) + (m − g ◦ f (m)).

More than g ◦ f (m) ∈ Img and m − g ◦ f (m) ∈ ker( f ), hence M = ker( f ) + Img. Thus M = ker( f ) ⊕ Img.

Proposition 5 Lets M be a left graded module, N a graded submodule of M. If M∗ quasi-projective and N∗ is a completely
invariant and essential subcomplex of M∗. Then N∗ is cohopfian if, and only, if M∗ is cohopfian.

Proof

Suppose that M∗/N∗ is hopfian and let f∗ : M∗ −→ M∗ be an epimorphism.

As N∗ is completely invariant, then ∀n ∈ Z, f (n)(N(n)) ⊂ N(n), implies f (n) induce an epimorphism f (n) : M(n)/N(n) −→
M(n)/N(n), since M∗/N∗ is hopfian, then f (n) is an automorphism. Put K(n) = ker( f )(n) and π(n) : M(n) −→ M(n)/N(n)
be the canonical projection, we have :

f (n) ◦ π(n)(K(n)) = π(n) ◦ f (n)(K) = 0
Indeed, ∀x ∈ K(n), we have :

f (n) ◦ π(n)(x) = π(n) ◦ f (n)(x), so

π(n) ◦ f (n)(x) = π(n)( f (n)(x) = π(n)(0) = 0, hence f (n) ◦ π(n)(K) = 0.

we have :
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f (n) ◦ π(n)(K(n)) = π(n) ◦ f (n)(K(n)) = 0 =⇒ f (n)(π(n)(K(n))) = 0 =⇒ π(n)(K(n)) ⊂ N(n) =⇒ K(n) ⊂ N(n)

Since M∗ is quasi- projective, there exists an endomorphism s(n) : M(n) −→ M(n) such that f (n) ◦ s(n) = id(n)M ,
which implies M = K(n) ⊕ Ims(n), or K(n) = N(n) and N(n) superfluous in M(n),∀n ∈ Z, then M(n) = Ims(n), so
K(n) = ker( f )(n) = 0,∀n ∈ Z, hence f (n) is an monomorphism, ∀n ∈ Z
At last, f∗ is an monomorphism, thus M∗ is hopfian.

Reciprocally,

If M∗ is hopfian and show that M∗/N∗ est hopfian.

Let φ(n) : M∗/N∗ −→ M∗/N∗ an epimorphism of complex chains, as M∗ is quasi-projective, hence ∀n ∈ Z,M(n) is
projective. We Consider π(n) : M(n) −→ M(n)/N(n), then there exists f (n) ∈ End(M(n)) such that π(n) ◦ f (n) = φ(n) ◦ π.

Since φ(n) is an epimorphism, ∀x̄ ∈ M(n)/N(n),∃ȳ ∈ M(n)/N(n) such that

φ(n)(ȳ) = x̄ = φ(n)(π(n)(y)

π(n) ◦ f (n)(y) = φ(n) ◦ π(n)(y)

π(n)( f (n)) = φ(ȳ)

=⇒ φ(n)(ȳ) = f (n)(ȳ) = x̄

=⇒ f (n)(y) − x = 0̄

=⇒ f (n) − x = 0

=⇒ f (n) − x ∈ N(n),

then M = Im( f )(n) + N, as N is superfluous, then Im( f )(n) = M(n) =⇒ f (n) is an epimorphism. Thus, f (n) is an
automorphism, because M(n) is hopfian for all n ∈ Z.

Hence the restriction of f (n) over N(n) is an automorphism of N(n).

If φ(x̄) = f (n)(x) = 0̄, then f (n)(x) ∈ N(n), or N(n) is completely invariant, then x ∈ N, so x̄ = 0̄ =⇒ kerϖ(n) = N =
0̄ =⇒ φ(n) is an monomorphism =⇒ φ(n) is an automorphism for all n ∈ Z, finally M(n)/N(n) is hopfian.

Proposition 6 Lets M a graded left A−module, N a graded submodule of M, M∗ quasi-injective and N∗ a completely
invariant and superfluous subcomplex of M∗. Then M∗ is cohopfian if, and only, if M∗/N∗ is cohopfian.

Proof

Suppose that M∗ is cohopfian and let f∗ : N∗ −→ N∗ be a monomorphism. As M∗ is quasi-injective, then for all n ∈ Z is
quasi-injective. Then there exists g(n) ∈ End(M(n)) ∀n ∈ Z such that g|N(n) = f (n).

g(n) is injective because N∗ is essential in M∗, hence ∀n ∈ Z, N(n) is essential, and since M∗ is cohopfian, g is invertible.
Let x ∈ N(n), there exists y ∈ M such that x = g(n)(y). Or g−1(n) ∈ End(N(n)) and N(n) is completely invariant, thus
y = g−1(x) ∈ N, hence f (n) is an epimorphism for all n ∈ Z. Thus f∗ is an automorphism, consequently N∗ is cohopfian.

Reciprocally, suppose that N∗ is cohopfian an let f∗ : M∗ −→ M∗ be a monomorphism. Then f∗|N∗ is an injective
endomorphism of N∗, hence for all n ∈ Z, f (n)|N(n) is an injective endomorphism of N(n). Thus, f (n) ∈ Aut(N(n)), hence
f (n)(N(n)) = N(n). As M(n) is quasi-injective, then there exists L(n) a submodule of M(n) such that M(n) = f (M(n)) ⊕
L(n). Thus, we have 0 = f (n)(N) ∩ L(n) = N(n) ∩ L(n), as N(n) is essential, then L(n) = 0, hence M(n) = f (n)(M(n)),
thus f (n) is an epimorphism for all n ∈ Z =⇒ f∗ is a graded epimorphism complex chain, consequently, M∗ is cohopfian.

Proposition 7 Let M a graded left A−module. If M∗/N∗ is hopfian for all submodule N of M, then M∗ is hopfian.

Proof

Suppose on the contrary M∗ is not hopfian. Then there exists n ∈ Z such that f (n) : M(n) −→ M(n) is an epi-
morphism which is not an automorphism. Put N(n) = ker( f )(n), thus N(n) , 0 and f (n) induces an isomorphism
f (n) : M(n)/N(n) −→ M(n)/N(n).

If π(n) : M(n)/N(n) −→ M(n)/N(n) denotes the canonical quotient map, then π(n) ◦ f (n) : M(n)/N(n) −→ M(n)/N(n) is
an epimorphism which is not an isomorphism ∀n ∈ Z, contradicting the hopfian nature of M(n)/N(n).

Proposition 8 Let M a graded left A−module. If all owns submodule N of M is cohopfian, then M∗ itself is cohopfian.

Proof

Suppose on the contrary M∗ is not cohopfian. Then there exists n ∈ Z such that the injective map f (n) : M(n) −→ M(n)
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is not an automorphism. Put N(n) = Im( f )(n), thus N(n) ⊂ M(n) and f (n) induces an isomorphism f (n) : M(n) −→ N(n)
s an injective map which is not an isomorphism, contradicting the cohopfian nature of N(n) for all n ∈ Z.

Remark 1 (p) denotes the following property: ≪any epimorphism of subcomplex N∗ of M∗ ( where M is an object of
COMP(Gr(A − Mod)))is an isomorphism≫
Proposition 9 Let M a graded left A−module. If M∗ is hopfian quasi-injective object of COMP(AGr(A − Mod)), then
M∗ owns the property (p).

Proof

Let N∗ be a subcomplex of M∗ and f∗ : N∗ −→ M∗ be an graded epimorphism complex chain. Since M∗ is quasi-injective,
then for all n ∈ Z, M(n) is quasi-injective, thus there exists f̃ (n) ∈ End(M(n)) such that f̃ (n)|N(n) = f (n). Or f (n)
is surjective, then for all x ∈ M(n), there exists y ∈ N(n) such that x = f (n)(y), hence f̃ (n) is surjective, as M(n) is
hopfian, thus f̃ (n) ∈ Aut(N(n)) for all n ∈ Z. We deduce that f (n) is a monomorphism of N(n) into M(n), for all n ∈ Z.
Consequently, f∗ is a graded isomorphism of complex chain.
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