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Abstract

Mathieu’s eigenvalue problem −y′′(x) + 2e0 cos(2x)y(x) = λy(x), 0 < x < ` is symmetric if cos(2x) = cos(2` − 2x) for
` = k0π, k0 ∈ N, and skew-symmetric if cos(2x) = − cos(2` − 2x) for ` = π/2. Two typical boundary conditions are
considered. When the eigenfunctions are expanded by the orthonormal bases of sine functions or cosine functions, we
can derive an n-dimensional matrix eigenvalue problem, endowing with a special structure of the symmetric coefficient
matrix A := [ai j], ai j = 0 if i + j is an odd integer. Based on it, we can obtain the eigenvalues easily and analytically.
When ` = k0π, k0 ∈ N, we have ai j = 0 if |i − j| > 2k0. Besides the diagonal band, A has two off-diagonal bands, and
furthermore, a cross band appears when k0 ≥ 2. The product formula, the recursion formulas of characteristic functions
and a fictitious time integration method (FTIM) are developed to find the eigenvalues of Mathieu’s equation.

Keywords: eigenvalues of Mathieu’s equation, special matrix eigenvalue problem, product formula, recursion formula,
fictitious time integration method (FTIM)

1. Introduction

Mathieu’s equation is a well known second-order ordinary differential equation (ODE), endowing with periodic coefficient
(McLachlan 1947; Bateman & Erdelyi, 1955; Meixner, Schäfke & Wolf, 1980). A number of physical phenomena
and engineering problems can be described by Mathieu’s equation, which also appears in the solution of the Helmholtz
equation of an elliptic membrane by using the method of separation of variables (Plestenjak, Gheorghiu & Hochstenbach,
2015). Mathieu’s equation comes into the realm of mathematical physics for wave propagation, electromagnetic, elastic
membrane and heat conduction, when there is some elliptic symmetry in the problems. Developing an analytic solution
of Mathieu’s equation is significant from the mathematical theoretical aspect (Gadella, Giacomini & Lara, 2015).

In the paper we consider the following Mathieu’s eigenvalue problem (Bujurke, Salimath & Shiralashetti, 2008; Gheo-
rghiu, Hochstenbach, Plestenjak & Rommes, 2012):

−y′′(x) + q(x)y(x) = λy(x), 0 < x < `, (1)

where q(x) = 2e0 cos 2x, and 2e0 is a constant amplitude. We are going to study the eigenvalues for the following four
problems:

Problem 1: y(0) = y(`) = 0, ` =
π

2
, (2)

Problem 2: y′(0) = y′(`) = 0, ` =
π

2
, (3)

Problem 3: y(0) = y(`) = 0, ` = k0π, k0 = 1, 2, 3, (4)
Problem 4: y′(0) = y′(`) = 0, ` = k0π, k0 = 1, 2, 3. (5)

For the first two problems and the last two problems we have, respectively,

q(x) = −q(` − x) = 2e0 cos(2x), (6)
q(x) = q(` − x) = 2e0 cos(2x). (7)

For Eq. (6), we have a skew-symmetric Mathieu’s eigenvalue problem, while for Eq. (7), we have a symmetric Mathieu’s
eigenvalue problem. The coefficient matrices for Problems 1 and 2 are of special type tridiagonal Jacobi matrices.
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The paper is organized as follows. In Section 2, we transform Mathieu’s eigenvalue problem to a matrix eigenvalue
problem. In Section 3 for Problems 3 and 4, the coefficient matrix is proved to have a special structure of A := [ai j],
with ai j = 0 if i + j is an odd integer. Problems 1 and 2 are solved in Section 4, where we develop a fictitious time
integration method (FTIM) to obtain eigenvalues, based on the recursion formula to compute the characteristic function.
More importantly, we develop a powerful product formula in Section 5 for Problems 3 and 4. Based on the product
formula, the FTIM is used separately, to solve the odd characteristic equation and the even characteristic equation. The
eigenvalues clustering phenomenon for Problem 3 is demonstrated in Section 6. The numerical methods to obtain the
eigenvalues by using the FTIM are carried out for Problem 3 in Section 6, and for Problem 4 with different k0 in Section
7. Finally, some conclusions are drawn in Section 8.

2. Transforming to a Matrix Eigenvalue Problem

Let

y(x) =

n∑
k=1

xkφk(x) (8)

be the eigenfunction, where xk are coefficients to be determined, and φk(x) are trial functions, satisfying the same boundary
conditions for y(x).

For the boundary conditions y(0) = y(`) = 0 the simplest orthonormal bases are

φk(x) =

√
2
`

sin
kπx
`
, (9)

while for the boundary conditions y′(0) = y′(`) = 0 the simplest orthonormal bases are

φk(x) =

√
2
`

cos
kπx
`
. (10)

Multiplying both the sides of Eq. (1) by φ j(x), integrating it by parts from x = 0 to x = ` and using the corresponding
boundary conditions, we can derive∫ `

0
[y′(x)φ′j(x) + q(x)y(x)φ j(x)]dx = λ

∫ `

0
y(x)φ j(x)dx. (11)

Inserting Eq. (8) for y(x) into Eq. (11), taking j = 1, . . . , n, and using the orthonormality of φ j(x), renders an n-dimensional
eigenvalue problem:

Ax = λx, (12)

where x = (x1, . . . , xn)T is an n-dimensional eigenvector, and simultaneously the components a jk of the symmetric coeffi-
cient matrix A are given by

a jk :=
∫ `

0
[φ′j(x)φ′k(x) + q(x)φ j(x)φk(x)]dx, j, k = 1, . . . , n, (13)

where a jk = ak j. Upon solving the above matrix eigenvalue problem (12), we can obtain the eigenvalues λ j, j = 1, . . . , n
of Eq. (12).

3. Special Matrices

Problem 1 endows a simple structure of the coefficient matrix with the components ai j given by

Problem 1 : ai j =

{
(2i)2 if i = j,
e0 if i − j = ±1. (14)

Hence, A = [ai j] is a three bands tridiagonal matrix.

For problem 2, we have

A =



0
√

2e0 0 0 . . . 0 0 0 0
√

2e0 22 e0 0 . . . 0 0 0 0
...

...
...

... . . .
...

...
...

...
0 0 0 0 . . . e0 22(n − 3)2 e0 0
0 0 0 0 . . . 0 e0 22(n − 2)2 e0
0 0 0 0 . . . 0 0 e0 22(n − 1)2


. (15)
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Let us consider Problem 3 with k0 = 1, of which the components ai j are given by

Problem 3 : ai j =


1 − e0 if i = j = 1,
i2 if i = j ≥ 2,
e0 if i − j = ±2.

(16)

A = [ai j] with ai j = a ji is a three bands symmetric matrix. Notice that i − j = ±2 is different from that i − j = ±1 in
Eq. (14).

For Problem 3 with k0 ≥ 2, it is more complex with

Problem 3 : ai j =


(

i
k0

)2
if i = j, i + j , 2k0,

1 − e0 if i = j, i + j = 2k0,
e0 if i − j = ±2k0,
−e0 if i + j = 2k0, i , j.

(17)

Upon comparing with Eq. (16), a new cross band appears due to the last term occurring when i + j = 2k0, k0 ≥ 2.

For problem 4 with k0 ≥ 1, we have

Problem 4 : ai j =



(
i−1
k0

)2
if i = j, i + j , 2k0 + 2,

1 + e0 if i = j, i + j = 2k0 + 2,
e0 if i − j = ±2k0 and i + j , 2k0 + 2,
e0 if i + j = 2k0 + 2 and i − j , ±2k0, i , j,
2e0 if i − j = ±2k0 and i + j = 2k0 + 2.

(18)

It can be seen that Problem 4 is more complex than Problem 3.

4. Corrections and Asymptotic Behavior of Problems 1 and 2

The bases in Eq. (9) can be divided into two types:

φ2k−1(x) =

√
2
`

sin
(2k − 1)πx

`
, φ2k−1(x) = φ2k−1(` − x), (19)

φ2k(x) =

√
2
`

sin
2kπx
`

, φ2k(x) = −φ2k(` − x). (20)

While the former one is symmetric (even function), the latter one is skew-symmetric (odd function).

For Problems 1 and 2, if we insert Eqs. (19) and (20) into Eq. (13), we can derive two diagonal matrices, denoted by

ao
jk := (4 j − 2)2δ jk, ae

jk := 16 j2δ jk, (21)

which are independent to e0. The eigenvalues derived from the above two diagonal matrices are very simple, given as
follows:

λo
j = (4 j − 2)2, j = 1, 2, . . . , (22)

λe
j = (4 j)2, j = 1, 2, . . . . (23)

By arranging them as follows:

{4, 16, 36, 64, . . . , (4n − 2)2, (4n)2, . . .} = {(2i)2, i = 1, 2, 3, 4, . . .}, (24)

they are indeed the eigenvalues of the coefficient matrix A = [ai j] in Eq. (14) with e0 = 0. They are asymptotically
approaching to the true eigenvalues of A = [ai j] in Eq. (14).

Lemma 1 For Problem 1 the determinant of the coefficient matrix, denoted by An, n ≥ 3, satisfies the following recursion
formula:

DetAn = annDetAn−1 − e2
0DetAn−2, (25)

where An−1 = [ai j], i, j = 1, . . . , n − 1 is an (n − 1) × (n − 1) sub-matrix of An, and An−2 = [ai j], i, j = 1, . . . , n − 2 is an
(n − 2) × (n − 2) sub-matrix of An.
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Proof. Let us apply the cofactor method to the following determinant:

DetAn =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 e0 0 0 . . . 0 0 0 0
e0 a22 e0 0 . . . 0 0 0 0
...

...
...

... . . .
...

...
...

...
0 0 0 0 . . . e0 an−2,n−2 e0 0
0 0 0 0 . . . 0 e0 an−1,n−1 e0
0 0 0 0 . . . 0 0 e0 ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= ann

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 e0 0 0 . . . 0 0 0
e0 a22 e0 0 . . . 0 0 0
...

...
...

... . . .
...

...
...

0 0 0 0 . . . e0 an−2,n−2 e0
0 0 0 0 . . . 0 e0 an−1,n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−e0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 e0 0 0 . . . 0 0 0
e0 a22 e0 0 . . . 0 0 0
...

...
...

... . . .
...

...
...

0 0 0 0 . . . e0 an−2,n−2 0
0 0 0 0 . . . 0 e0 e0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= annDetAn−1 − e2

0

∣∣∣∣∣∣∣∣∣∣∣∣
a11 e0 0 0 . . . 0 0
e0 a22 e0 0 . . . 0 0
...

...
...

... . . .
...

...
0 0 0 0 . . . e0 an−2,n−2

∣∣∣∣∣∣∣∣∣∣∣∣
= annDetAn−1 − e2

0DetAn−2. (26)

For problem 1 the coefficient matrix A is a special type Jacobi matrix, whose recursion formula is already known.

In order to find the eigenvalues, we consider the following characteristic equation:

F(λ) := Det(An − λIn) = 0, (27)

where In is the n-order identity matrix. By using the recursion formula (25), it is easy to compute F(λ). The fictitious
time integration method (FTIM) developed by Liu and Atluri (2008) used to solve Eq. (27) is summarized as follows.

(i) Give n, e0, ε, ν, u0, N, and s0,

(ii) Do j = 1, . . . , n,

(iii) Do k = 1, . . . ,N,

tk =
k − 1
|F(0)|

,

uk = uk−1 − (−1) j ν

(1 + tk)|F(0)|
F(uk−1),

if |F(uk)| < ε then λ j = uk, set u0 = λ j + s0 and go to (ii); otherwise go to (iii).

For Problem 1, e0 brings some influence on the lower order eigenvalues. In Table 1, we list the first six eigenvalues
computed from the FTIM for e0 = 5.

Table 1. For Problem 1 with e0 = 5, the first six eigenvalues

λ1 λ2 λ3 λ4 λ5 λ6

2.09946 16.6482 36.3589 64.1989 100.1297 137.2587

For problem 2, we have the recursion formula for the characteristic function F(λ):

F(λ) = −λD(m) − 2e2
0E(m), (28)
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where m = n − 1, and D(m) and E(m) are generated from

D(1) = 4 − λ,
D(2) = (4 − λ)(16 − λ) − e2

0,

Do i = 3,m,
D(i) = [(2i)2 − λ]D(i − 1) − e2

0D(i − 2),
Enddo.
E(2) = 16 − λ,
E(3) = (16 − λ)(36 − λ) − e2

0,

Do i = 4,m,
E(i) = [(2i)2 − λ]E(i − 1) − e2

0E(i − 2),
Enddo.

In Table 2, we list the first six eigenvalues computed from the FTIM for e0 = 1.

Table 2. For Problem 2 with e0 = 1, the first six eigenvalues

λ1 λ2 λ3 λ4 λ5 λ6

-0.455139 4.371301 16.033832 36.014290 64.007947 100.02776

The eigenvalues listed are close to that obtained in (McLachlan, 1947; Shivakumar, Williams & Rudraiah, 1987).

5. Product Formula for Problems 3 and 4

By observing Eqs. (17) and (18), we have the coefficient matrix A = [ai j], ai j = 0 if i + j is an odd integer. For example,
for Eq. (17) with k0 = 1 and n = 8, the matrix A looks like

A =



a11 0 e0 0 0 0 0 0
0 a22 0 e0 0 0 0 0
e0 0 a33 0 e0 0 0 0
0 e0 0 a44 0 e0 0 0
0 0 e0 0 a55 0 e0 0
0 0 0 e0 0 a66 0 e0
0 0 0 0 e0 0 a77 0
0 0 0 0 0 e0 0 a88


. (29)

Furthermore, the characteristic equation can be factored out to be

Det (A − λIn) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 − λ 0 e0 0 0 0 0 0
0 a22 − λ 0 e0 0 0 0 0
e0 0 a33 − λ 0 e0 0 0 0
0 e0 0 a44 − λ 0 e0 0 0
0 0 e0 0 a55 − λ 0 e0 0
0 0 0 e0 0 a66 − λ 0 e0
0 0 0 0 e0 0 a77 − λ 0
0 0 0 0 0 e0 0 a88 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣
a11 − λ e0 0 0

e0 a33 − λ e0 0
0 e0 a55 − λ e0
0 0 e0 a77 − λ

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣

a22 − λ e0 0 0
e0 a44 − λ e0 0
0 e0 a66 − λ e0
0 0 e0 a88 − λ

∣∣∣∣∣∣∣∣∣∣∣ = 0. (30)

Now we are ready to prove a major result; however, before that we give two Definitions.

Definition 1 A sub-matrix Bo is said to be an odd-positioned matrix, if all its elements are taken from the coefficient ma-
trix A at the i jth entry with both i and j being odd integer. Because i+ j is an even integer, the elements of Bo are non-zero.
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Definition 2 A sub-matrix Be is said to be an even-positioned matrix, if all its elements are taken from the coefficient
matrix A at the i jth entry with both i and j being even integer. Because i + j is an even integer, the elements of Be are
non-zero.

Theorem 1 For the coefficient matrix A = [ai j], ai j = 0 if i + j is an odd integer, the characteristic equation of A can be
decomposed into two factors:

Det (A − λIn) = Det (Bo − λIm1 ) × Det (Be − λIm2 ) = 0, (31)

where m1 = m2 = n/2 if n is an even integer, m1 = (n + 1)/2, m2 = (n − 1)/2 if n is an odd integer, and m1 + m2 = n.

Proof. For n = 8 we have shown the product equation in the above. For larger n, a tedious work can complete the proof. 2

Theorem 1 is significant, which can greatly simplify the works to find the eigenvalues of symmetric Mathieu’s equation.
The odd numbered eigenvalues are solved from

Det (Bo − λIm1 ) = 0, (32)

while the even numbered eigenvalues are solved from

Det (Be − λIm2 ) = 0. (33)

6. Eigenvalues Clustering Phenomenon for Problem 3

6.1 Problem 3 With k0 = 1

For Problem 3 with k0 = 1, the asymptotic eigenvalues are very simple, given as follows:

λo
j = (2 j − 1)2, j = 1, 2, . . . , (34)

λe
j = (2 j)2, j = 1, 2, . . . . (35)

By arranging them as follows:

{λ1, λ2, λ3, λ4, 25, 36, 49, 64, . . . , (2n − 1)2, (2n)2, . . .} = {i2, i = 1, 2, 3, 4, . . .}, (36)

they are indeed the eigenvalues of the coefficient matrix A = [ai j] in Eq. (16) with e0 = 0. They are asymptotically
approaching to the true eigenvalues of A = [ai j] in Eq. (18) with k0 = 1.

However, e0 must bring some influence on the true eigenvalues. We can correct the lower orders eigenvalues by solving
the following characteristic equations:

Det(Bo
m1
− λIm1 ) (37)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 − λ e0 0 0 . . . 0 0 0 0
e0 a33 − λ e0 0 . . . 0 0 0 0
...

...
...

... . . .
...

...
...

...
0 0 0 0 . . . e0 a2m1−5,2m1−5 − λ e0 0
0 0 0 0 . . . 0 e0 a2m1−3,2m1−3 − λ e0
0 0 0 0 . . . 0 0 e0 a2m1−1,2m1−1 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

Det(Be
m2
− λIm2 ) (38)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a22 − λ e0 0 0 . . . 0 0 0 0
e0 a44 − λ e0 0 . . . 0 0 0 0
...

...
...

... . . .
...

...
...

...
0 0 0 0 . . . e0 a2m2−4,2m2−4 − λ e0 0
0 0 0 0 . . . 0 e0 a2m2−2,2m2−2 − λ e0
0 0 0 0 . . . 0 0 e0 a2m2,2m2 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

These equations are similar to that in Eq. (26), and thus the same recursion formula (25) can be applied to compute the
characteristic functions.

Now, based on the product formula we can apply the FTIM to solve the odd characteristic equation (37) and the even
characteristic equation (38), separately. In Table 3, we list the first ten eigenvalues computed from the FTIM for e0 = 5.
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Table 3. For Problem 3 with k0 = 1 and e0 = 5, the first ten eigenvalues

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

-5.7901 2.0995 9.2363 16.6482 25.5109 36.3589 49.2696 64.2047 81.7732 100.6887

6.2 Problem 3 With k0 = 2, 3

Problem 3 with k0 ≥ 2 are more complex. By observing Eqs. (17) and (18), the asymptotic eigenvalues are given by

lim
n−→∞

λn =

(
n
k0

)2

. (39)

For lower orders eigenvalues the above formula must be corrected to include the influence from e0. Before giving the
corrections of lower orders eigenvalues, we can prove the following results.

Theorem 2 For Problem 3 with k0 ≥ 2, the eigenvalues of the coefficient matrix A with dimension n = 2k0 must include
1 − e0 and 4, and 1 − e0 is the smallest eigenvalue when e0 > 1.

Proof. In Eq. (17) the bands due to i − j = ±2k0 are off-diagonal bands, while that due to i + j = 2k0 is a cross band.
For A with dimension n = 2k0 the elements at the last column and last row are all zeros besides ann. The two reasons are
that the off-diagonal bands do not appear not until the dimension n ≥ 2k0 + 1, and the cross band starts from the position
(i, j) = (n − 1, 1) and terminates at the position (i, j) = (1, n − 1) due to the constraint i + j = 2k0 = n. The intersection
position of the cross band and the diagonal band is (i, j) = (k0, k0). Therefore, the elements at the k0th column and the k0th
row are all zeros besides ak0k0 . By the cofactor method we can conclude that there are two eigenvalues ak0k0 = 1 − e0 and
ann = (n/k0)2 = (2k0/k0)2 = 4 by viewing Eq. (17). Because 1 − e0 < (1/k0)2 = a11, 1 − e0 is the smallest eigenvalue. 2

Theorem 3 For Problem 3 with k0 ≥ 2, λ = 4 is a common eigenvalue of all the coefficient matrices A with dimension
4k0 > n ≥ 2k0.

Proof. The case with n = 2k0 was proven in Theorem 2. We only consider the cases with n ≥ 2k0 + 1, from which the
two off-diagonal bands immense. Because A is symmetric, we only need to look the end position (i, j) = (1, 2k0 − 1) of
the cross band and the starting position (i, j) = (1, 2k0 + 1) of the upper off-diagonal band. Owing to 2k0 − 1 < 2k0 + 1,
these two bands have no intersection point. At the gap 2k0, the whole column (similarly the whole row) is filled with zero
elements, besides the diagonal element a2k0,2k0 , which has the value (2k0/k0)2 = 4 in view of Eqs. (17) and (18). Then, by
using the cofactor method we assure that there exists an eigenvalue λ = 4. The intersection of the i = 2k0 row with the
upper off-diagonal band is happened at j − i = 2k0, such that j = 4k0. If n ≥ 4k0, 4 is not an eigenvalue. Hence, we take
n < 4k0. 2

With the help from Theorems 1-3, now for Problem 3, we can carry out the corrections of the first six eigenvalues for
k0 = 2 and the corrections of the first eight eigenvalues for k0 = 3. First we discuss k0 = 2 and n = 2k0 = 4, of which A is
given by

A =


1
4 0 −e0 0
0 1 − e0 0 0
−e0 0 9

4 0
0 0 0 4

 . (40)

If we take e0 = 2, the eigenvalues are found to be

(λ1, λ2, λ3, λ4) =

(
−1,

5
4
−

√
1 + e2

0,
5
4

+

√
1 + e2

0, 4
)

= (−1,−0.98607, 3.48607, 4). (41)

We can see that the second eigenvalue is close to the first one. Next we discuss k0 = 2 and n = 2k0 + 2 = 6, of which A is
given by

A =



1
4 0 −e0 0 e0 0
0 1 − e0 0 0 0 e0

−e0 0 9
4 0 0 0

0 0 0 4 0 0
e0 0 0 0 25

4 0
0 e0 0 0 0 9


. (42)

The off-diagonal bands appear. 4 is still an eigenvalue, but 1 − e0 is no more an eigenvalue. By using Theorem 1 and the
Cardano formula, we can find the closed-form solutions of all eigenvalues:

(λ1, λ2, λ3, λ4, λ5, λ6)
= (−1.385165,−1.3772, 3.19137, 4, 6.93585, 9.385165). (43)
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The smallest eigenvalue shifts to -1.385165.

In Table 4, we list the first ten eigenvalues computed from the FTIM for e0 = 2.

Table 4. For Problem 3 with k0 = 2 and e0 = 2, the first ten eigenvalues

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

-1.4541 -1.3907 2.8572 3.6754 6.6653 9.1422 12.6476 16.3246 21.1072 23.4643

Next we consider the corrections of the first eight eigenvalues for k0 = 3, n = 8 and e0 = 2, of which we have

A =



1
9 0 0 0 −e0 0 e0 0
0 4

9 0 −e0 0 0 0 e0
0 0 1 − e0 0 0 0 0 0
0 −e0 0 16

9 0 0 0 0
−e0 0 0 0 25

9 0 0 0
0 0 0 0 0 4 0 0
e0 0 0 0 0 0 49

9 0
0 e0 0 0 0 0 0 64

9


. (44)

The off-diagonal bands appear. 1 − e0 and 4 are eigenvalues. By using Theorem 1 and the Cardano formula, we can find
the closed-form solutions of all eigenvalues:

(λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8)
= (−1.42342,−1.32084,−1, 2.93694, 3.5096, 4, 6.24716, 7.71723). (45)

In Table 5, we list the first ten eigenvalues computed from the FTIM for e0 = 2, where the first three eigenvalues are close.

Table 5. For Problem 3 with k0 = 3 and e0 = 2, the first ten eigenvalues

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

-1.4235 -1.4161 -1.3851 2.6144 3.5096 4 6.2472 7.7081 9.3852 11.5381

6.3 Clustering Behavior of Eigenvalues

In order to further explore the clustering behavior of the eigenvalues for Problem 3, we take a 6 × 6 sub-matrix of A in
Eq. (44), which is the coefficient matrix for the case k0 = 3 and n = 6. The six eigenvalues are obtained in closed-form:

λ1 = 1 − e0, λ2 =
1
2

[a22 + a44 −

√
(a44 − a22)2 + 4e2

0],

λ3 =
1
2

[a11 + a55 −

√
(a55 − a11)2 + 4e2

0], λ4 =
1
2

[a22 + a44 +

√
(a44 − a22)2 + 4e2

0],

λ5 =
1
2

[a11 + a55 +

√
(a55 − a11)2 + 4e2

0], λ6 = 4. (46)

When we take e0 = 2, they are

(λ1, λ2, λ3, λ4, λ5, λ6)
= (−1,−0.997074,−0.95926, 3.219296, 3.848145, 4). (47)

It can be seen that the first three eigenvalues (−1,−0.997074,−0.95926) are clustered.

In Figure 1, we plot the inverses of the characteristic functions for the full matrix A, odd-positioned matrix Bo and even-
positioned matrix Be. Because the first three eigenvalues (−1,−0.997074,−0.95926) are clustered, the first three picks of
the curve for the full matrix merge together. However, with the help of the product formula, the eigenvalues are separated
into two groups, which are solved from the characteristic equations belong to Bo and Be. Therefore, as shown in Figure 1,
we can observe that the peaks are corresponding to the eigenvalues.

The closeness between the first eigenvalue and second eigenvalue prompts us a question that does there exist a certain
value of e0 for the equality λ1 = λ2.

8
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Figure 1. The eigenvalues of Problem 3 with n=6, k0=3 and e0=2. The black line obtained from full matrix indicates the
first, second, third, fourth, fifth and sixth eigenvalues, and the odd matrix indicates the first, third and fifth eigenvalues,

while the even matrix indicates the second, fourth and sixth eigenvalues

Corollary 1 For Problem 3 with k0 = 3 and n = 6, λ1 = λ2 = −17/18 if e0 = 35/18.

Proof. From Eq. (46) it follows that

2 − 2e0 = a22 + a44 −

√
(a44 − a22)2 + 4e2

0.

By using a22 = 4/9 and a44 = 16/9, it yields

2 − 2e0 =
20
9
−

√
16
9

+ 4e2
0.

A further arrangement, leads to √
144 + 324e2

0 = 2 + 18e0.

After taking square on both sides, we have
18e0 = 35.

Hence, both the first eigenvalue and second eigenvalue are

λ1 = λ2 = 1 − e0 = −
17
18
.

For Problem 3, the happening of the double point at real parameter value e0 = 35/18, which is close to e0 = 2, is
unusual. For Problem 1, the equality λ1 = λ2 can occur, only for complex e0; the first such example (Meixner, Schäfke
& Wolf, 1980; Blanch & Clemm, 1969; Shivakumar & Xue, 1999) happens when e0 = (6.9289547587 . . .)i, at which
λ1 = λ2 = 11.1904735991 . . . For Problem 2, the equality λ1 = λ2 can occur, only for complex e0; the first such
example (Meixner, Schäfke & Wolf, 1980; Blanch & Clemm, 1969) happens when e0 = (1.4687686137 . . .)i, at which
λ1 = λ2 = 2.0886989027 . . .

7. The Eigenvalues of Problem 4

For Problem 4 the asymptotic eigenvalues are given by

lim
n−→∞

λn =

(
n − 1

k0

)2

. (48)

9
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We first discuss k0 = 1 for Problem 4, of which we have the recursion formulas for the characteristic functions Fo(λ) and
Fe(λ) of Bo

m1
and Be

m2
, respectively,

Fo(λ) = Do(m1), Fe(λ) = De(m2), (49)

where Do(m1) and De(m2) are generated from

Do(1) = −λ,

Do(2) = λ(λ − 4) − 4e2
0,

Do i = 3,m1,

Do(i) = [(2(i − 1))2 − λ]Do(i − 1) − e2
0Do(i − 2),

Enddo.
De(1) = 1 + e0 − λ,

De(2) = (1 + e0 − λ)(9 − λ) − e2
0,

Do i = 3,m2,

De(i) = [(2i − 1)2 − λ]De(i − 1) − e2
0De(i − 2),

Enddo.

In Table 6, we list the first ten eigenvalues computed from the FTIM for e0 = 5. Table 6. For Problem 4 with k0 = 1 and
e0 = 5, the first ten eigenvalues

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

-8.6285 1.8583 9.6734 11.5488 17.6986 25.5501 36.3750 49.2696 64.8814 81.7733

Theorem 4 For Problem 4 with k0 ≥ 2, the eigenvalues of the coefficient matrix A with dimension n = 2k0 must include
1 + e0.

Proof. The proof is similar to that for Theorem 2. In Eq. (18), we can see that 1 − e0 in Theorem 2 is replaced by 1 + e0.
But it is not the smallest eigenvalue. 2

Now, we discuss k0 = 2 and n = 2k0 + 2 = 6 for the corrections of the first six eigenvalues, of which A is given by

A =



0 0 0 0 2e0 0
0 1

4 0 e0 0 e0
0 0 1 + e0 0 0 0
0 e0 0 9

4 0 0
2e0 0 0 0 4 0
0 e0 0 0 0 25

4


. (50)

The off-diagonal bands appear and 1 + e0 is an eigenvalue. By using Theorem 1 and the Cardano formula, we can find the
closed-form solutions of all eigenvalues for e0 = 2:

(λ1, λ2, λ3, λ4, λ5, λ6)
= (−2.47214,−1.37721, 3, 3.19137, 6.47214, 6.93585). (51)

Next we consider the corrections of the first eight eigenvalues for k0 = 3, n = 8 and e0 = 2, of which we have

A =



0 0 0 0 0 0 2e0 0
0 1

9 0 0 0 e0 0 e0

0 0 4
9 0 e0 0 0 0

0 0 0 1 + e0 0 0 0 0
0 0 e0 0 16

9 0 0 0
0 e0 0 0 0 25

9 0 0
2e0 0 0 0 0 0 4 0
0 e0 0 0 0 0 0 49

9


. (52)

The off-diagonal bands appear, and 1 + e0 is an eigenvalue. By using Theorem 1 and the Cardano formula, we can find
the closed-form solutions of all eigenvalues:

(λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8)
= (−2.47214,−1.42342,−0.99707, 3, 3.219296, 3.509597, 6.24716, 6.47214). (53)

10
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For this case the FTIM also leads to the same eigenvalues with very small errors.

In Table 7, we list the first ten eigenvalues computed from the FTIM for e0 = 2.

Table 7. For Problem 4 with k0 = 3 and e0 = 2, the first ten eigenvalues

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 λ10

-2.4721 -1.4234 -1.3208 2.3944 2.9369 3.5096 6.2472 6.4721 7.7172 9.6056

8. Conclusions

Resorting on the orthonormal bases and taking the advantage of the skew-symmetry for Problems 1 and 2 and the symme-
try for Problems 3 and 4, the eigenvalues problem of Mathieu’s equation is transformed to the matrix eigenvalue problem.
When the coefficient matrices for Problems 1 and 2 are tridiagonal, the coefficient matrices for Problems 3 and 4 endow
with a special structure of the coefficient matrix: A = [ai j], ai j = 0 if i+ j is an odd integer. The odd-positioned sub-matrix
and even-positioned sub-matrix of A were introduced. We have proven that the characteristic equation of A can be decom-
posed into two factors which are the characteristic equations for the odd-positioned sub-matrix and the even-positioned
sub-matrix. Therefore, the order of the nonlinear characteristic equation is reduced to one half. As a consequence, the
lower-order eigenvalues were solved in closed-form owing to the specialty of A. The recursion formulae for Problems 1
and 2 and Problems 3 and 4 with k0 = 1 were developed, by which and together with the product formula we have devel-
oped a fictitious time integration method (FTIM) to easily find more eigenvalues. We can conclude that the eigenvalues
obtained from the matrix eigenvalue problem are very accurate for Mathieu’s equation.
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