Perception of Polynomial for Weighted Directed Graph

Hend El- Morsy

Correspondence: Hend El-Morsy, College of the Preparatory Year, Department of Mathematics, Umm Al-Qura University, Mecca, Kingdom of Saudi Arabia. E-mail: heebrahim@uqu.edu.sa, hendelmorsy@yahoo.com

Received: October 5, 2019	Accepted: November 18, 2019	Online Published: November 20, 2019
doi:10.5539/jmr.v11n6p84	URL: https://doi.org/10.5539/jmr.v11n6p84	

Abstract

In this paper we will apply a polynomial for directed weighted graph. We will introduce notion of deletion and contraction in directed weighted graph. Some examples and propositions will be illustrated.

Keywords: directed graph, weighted graph, contraction, deletion, polynomials

1. Introduction

In mathematics, a polynomial is an expression consisting of variables (also called indeterminates) and coefficients, that involves only the operations of addition, subtraction, multiplication, and non-negative integer exponents of variables. An example of a polynomial of a single indeterminate, x, is $x^2 - 4x + 7$. An example in three variables is $x^3 + 2xyz^2 - yz + 1$.

Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems.

Let $\vec{G}_w(V, A)$ be a directed weighted graph, a directed weighted polynomial of \vec{G} mapping C from V to the set of X_n satisfying :

i.
$$\forall (x, y) \in A$$
, $\overrightarrow{xy} \neq \overrightarrow{yx}$.

ii. A weighted graph consists of finite graph \vec{G} with vertex set { v_1, v_2, \dots, v_n }, edge set E together with weight function W: V $\rightarrow Z^+$ then W(V_i) the weight of V_i.

iii. If $U \subset V$ we define weight of U, W(U) to be $\sum_{v \in V} W(v)$

2. Polynomial for Weighted Directed Graph

We need to introduce notion of deletion and contraction in directed weighted graph \vec{G}_{w} as follows:

* If e is edge of (\vec{G}, w) , then let $(\vec{G}_e^{(n)}, w)$ denote the graph obtained from \vec{G} by deleting e and leaving weight unchanged, see Fig.(1)

*If e is an edge of simple directed weighted graph (\vec{G}, w) , then (\vec{G}_{e}^{c}, w) is graph formed from (\vec{G}_{e}^{W}, w) by replacing every parallel class by single edge. Fig. (1)

*If e is not loop of (G, w), then let $(\vec{G}^{||}_{e}, w)$ be a graph obtained by contracting e that is deleting identifying its end points V, V[|] into a single vertex V^{||} and setting W(V^{||}) = W(V) + W (V[|]) if the edges in the same direction Fig.(2-a), and W(V^{||}) = W(V) - W (V[|]) if the edges in opposite directions. Fig.(2,b).

$$(\overrightarrow{G},\omega) = 3 \quad \overbrace{e}^{5} \qquad (\overrightarrow{G'_{e}},\omega) = 3 \quad \overbrace{6}^{5} \qquad (\overrightarrow{G''_{e}},\omega) = \underbrace{6}^{8} \qquad$$

Figure 1.

Figure 2-a.

We associate with any directed weighted graph (\vec{G} , W), a multivariate polynomial W_G(x, y) which define as follows: Let y₁, x₁ x₂,x_n be commuting indeterminates.

Now let $W_G(x,y)$ be defined recursively by the following rules:

i. If \vec{G}_W consists of m isolated vertices with weights w_1, w_2, \dots, w_m then $W_G(x, y) = X_{w_1}, \dots, X_{W_m}$.

ii. If \vec{G}_{w} has loop, then $W_{G}(x, y) = y W_{G \setminus e}(x, y)$.

iii. The polynomial take the form: $X_nX_m + X_z + X_z$ y, (z=n+m).

Example2.1:

If (\vec{G}, W) = Then W_G(x, y) = X₃ X₇ y (\exists a loop) b. If (\vec{G}, W) =

 $= X_8 X_6 + X_{14} + X_{14} Y.$

Theorem 2.2:

Let \vec{G} (V, W) be weighted directed graph, and let \vec{G}_1 , \vec{G}_2 be two non-empty subsets of G, such that $\vec{G} = \vec{G}_1 \cup \vec{G}_2$, and if

 $X_{n1}, X_{n2,\,\ldots\ldots}X_{ni} {\in}\ \vec{G}_1$, $X_{m1}, X_{m2,\,}X_{mj} {\in}\ \vec{G}_2$ then:

 $X_{wn}X_{wm} = \sum_{i=w}^{n} \sum_{j=w}^{m} x_i x_j \epsilon_G$

Then we have :

 $P(\vec{G}, W) = P(\vec{G}_1, W_1) \odot P(\vec{G}_2, W_2)$. (Where P is the related polynomial).

Proof:

Let \vec{G} (V, A) be a weighted directed graph, \vec{G}_1 , \vec{G}_2 are subsets of G such that $\vec{G} = \vec{G}_1 \cup \vec{G}_2$ If $\vec{G}_1 = X_{n1}X_{n2}....X_{ni} + X_{n1\backslash}X_{n2\backslash} + X_{n\backslash\backslash} + X_{n\backslash\backslash}y_i$ $\vec{G}_2 = X_{m1}X_{m2}....X_{mj} + X_{m1\backslash}X_{m2\backslash} + X_{m\backslash\backslash} + X_{m\backslash\backslash}y_j$ Then $\vec{G} = Xn_{1+}m_1Xn_{2+}m_2 \qquad \dots Xn_{i+}m_j + Xn_{1+}m_{1-}Xn_{2+}m_{2-} + Xn_{1+}m_{1-}Xn_{2+}m_{2-}$

It follows that this polynomial can be found in its factorial form by taken the factorial forms of X_n and X_m and adding there as if the factorials were weights.

This process that we denoted symbolically by $\vec{G}_1 \Theta \vec{G}_2$.

Example 2.3:

Weighted directed graph \vec{G} , \vec{G}_1 , \vec{G}_2 $\ni \vec{G} = \vec{G}_1 \cup \vec{G}_2$

First we find polynomial of \vec{G}_1 and \vec{G}_2

 $P(\vec{G}_1) = X_4 X_2 X_3 + X_2 X_7 + X_9 + X_9 Y_1$

$$\begin{split} P(\vec{G}_2 \) &= X_7 X_5 X_1 + X_5 X_8 + X_{13} + X_{13} Y. \\ Then \ P(\vec{G}) &= P(\vec{G}_1) + P(\vec{G}_2) \\ P(\vec{G}) &= X_4 X_2 X_3 + X_2 X_7 + X_9 + X_9 Y + X_7 X_5 X_1 + X_5 X_8 + X_{13} + X_{13} Y \\ &= X_5 X_7 X_{10} + X_7 X_{15} + X_{22} + X_{22} Y_2. \end{split}$$

 $\mathbf{P}(\vec{G}) = \mathbf{X}_2 \mathbf{X}_{15} \mathbf{X}_5 + \mathbf{X}_{17} \mathbf{X}_5 + \mathbf{X}_{22} + \mathbf{X}_{22} \mathbf{Y}_2.$

The weights of X in all terms are equal.

Proposition 2.4:

For any weighted directed graph \vec{G} (V, W) with n vertices, we have:

The coefficient of $X_n X_m \dots + X_n Y_{mm}$ are 1.

ii. Polynomial P (\vec{G} , W) has no constant term.

iii. Loop write only on the last term with the final X_n remaining.

Example 2.5:

For weighted directed cycle graph C₆ We can compute polynomial as follows:

5. $X_4X_{65} + X_{69} + X_{69}Y$

By adding the five equations we obtain the polynomial of C_6 as follows:

 $X_{106}X_{128} + X_{234} + X_{234}Y.$

References

Epp, S. S. (2010). Discrete mathematics with applications. Cengage learning.

- Leung, K. T., Suen, S. N., & Mok, I. A. (1992). *Polynomials and Equations: A Chinese Merchant Elite in Colonial Hong Kong (with a new preface)* (Vol. 1). Hong Kong University Press.
- Read, R. C. (1968). An introduction to chromatic polynomials. *Journal of Combinatorial Theory*, 4(1), 52-71. https://doi.org/10.1016/S0021-9800(68)80087-0
- Satu, E. S. (2007). Graph clustering. *Computer Science Review*, 1(1), 27-64. https://doi.org/10.1016/j.cosrev.2007.05.001
- Sopena, E. (1993). On the chromatic number of oriented partial k-trees. Internal Report, University Bordeaux I, submitted.
- Tutte, W. T. (1954). A contribution to the theory of chromatic polynomials. *Canadian Journal of Mathematics*, 6, 80-91. https://doi.org/10.4153/CJM-1954-010-9

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).