Perception of Polynomial for Weighted Directed Graph

Hend El- Morsy
Correspondence: Hend El-Morsy, College of the Preparatory Year, Department of Mathematics, Umm Al-Qura University, Mecca, Kingdom of Saudi Arabia. E-mail: heebrahim@uqu.edu.sa, hendelmorsy@yahoo.com

Received: October 5, 2019 Accepted: November 18, 2019 Online Published: November 20, 2019
doi:10.5539/jmr.v11n6p84
URL: https://doi.org/10.5539/jmr.v11n6p84

Abstract

In this paper we will apply a polynomial for directed weighted graph. We will introduce notion of deletion and contraction in directed weighted graph. Some examples and propositions will be illustrated.

Keywords: directed graph, weighted graph, contraction, deletion, polynomials

1. Introduction

In mathematics, a polynomial is an expression consisting of variables (also called indeterminates) and coefficients, that involves only the operations of addition, subtraction, multiplication, and non-negative integer exponents of variables. An example of a polynomial of a single indeterminate, x, is $x^{2}-4 x+7$. An example in three variables is $x^{3}+2 x y z^{2}-y z+1$.
Polynomials appear in many areas of mathematics and science. For example, they are used to form polynomial equations, which encode a wide range of problems.
Let $\overrightarrow{\mathrm{G}}_{\mathrm{w}}(\mathrm{V}, \mathrm{A})$ be a directed weighted graph, a directed weighted polynomial of \vec{G} maping C from V to the set of X_{n} satisfying :

$$
\text { i. } \forall(\mathrm{x}, \mathrm{y}) \boldsymbol{\epsilon} \mathrm{A}, \overrightarrow{\mathrm{xy}} \neq \mathrm{yx} .
$$

ii. A weighted graph consists of finite graph \vec{G} with vertex set $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \ldots . . \mathrm{v}_{\mathrm{n}}\right\}$, edge set E together with weight function $\mathrm{W}: \mathrm{V} \rightarrow \mathrm{Z}^{+}$then $\mathrm{W}\left(\mathrm{V}_{\mathrm{i}}\right)$ the weight of V_{i}.
iii. If $\mathrm{U} \subset \mathrm{V}$ we define weight of $\mathrm{U}, \mathrm{W}(\mathrm{U})$ to be $\sum_{v \in V} W(v)$

2. Polynomial for Weighted Directed Graph

We need to introduce notion of deletion and contraction in directed weighted graph \vec{G}_{w} as follows:

* If e is edge of ($\overrightarrow{\mathrm{G}}$, w), then let ($\vec{G}_{\mathrm{e}}{ }^{\prime}$, w) denote the graph obtained from $\overrightarrow{\mathrm{G}}$ by deleting e and leaving weight unchanged, see Fig.(1)
*If e is an edge of simple directed weighted graph $(\overrightarrow{\mathrm{G}}, \mathrm{w})$, then $\left(\overrightarrow{\mathrm{G}}^{\mathrm{c}}{ }_{\mathrm{e}}, w\right)$ is graph formed from $\left(\overrightarrow{\mathrm{G}}^{\prime \prime}, w\right)$ by replacing every parallel class by single edge. Fig. (1)
*If e is not loop of (G, w), then let ($\vec{G}^{\prime \prime}$ e, w) be a graph obtained by contracting e that is deleting identifying its end points $\mathrm{V}, \mathrm{V}^{\prime}$ into a single vertex $\mathrm{V}^{\prime \prime}$ and setting $\mathrm{W}\left(\mathrm{V}^{\prime \prime}\right)=\mathrm{W}(\mathrm{V})+\mathrm{W}^{\prime}\left(\mathrm{V}^{\prime}\right)$ if the edges in the same direction Fig. $(2-\mathrm{a})$, and $\mathrm{W}\left(\mathrm{V}^{\prime \prime}\right)=$ $\mathrm{W}(\mathrm{V})-\mathrm{W}\left(\mathrm{V}^{\prime}\right)$ if the edges in opposite directions. Fig.(2,b).

Figure 1.

\longrightarrow

\longrightarrow

Figure 2-a.
We associate with any directed weighted graph $(\vec{G}, \mathrm{~W})$, a multivariate polynomial $\mathrm{W}_{\mathrm{G}}(\mathrm{x}, \mathrm{y})$ which define as follows:
Let $y_{1}, x_{1} x_{2}, \ldots \ldots x_{n}$ be commuting indeterminates.
Now let $\mathrm{W}_{\mathrm{G}}(\mathrm{x}, \mathrm{y})$ be defined recursively by the following rules:
i. If \vec{G}_{W} consists of m isolated vertices with weights $\mathrm{w}_{1}, \mathrm{w}_{2} \ldots \ldots \mathrm{~W}_{\mathrm{m}}$ then $\mathrm{W}_{\mathrm{G}}(\mathrm{x}, \mathrm{y})=\mathrm{X}_{\mathrm{w} 1} \ldots \ldots \mathrm{X}_{\mathrm{Wm}}$.
ii. If \vec{G}_{w} has loop, then $\mathrm{W}_{\mathrm{G}}(\mathrm{x}, \mathrm{y})=\mathrm{y} \mathrm{W}_{\mathrm{Gle}}(\mathrm{x}, \mathrm{y})$.
iii. The polynomial take the form: $X_{n} X_{m}+X_{z}+X_{z} y,(z=n+m)$.

Example2.1:

If $(\vec{G}, \mathrm{~W})=$
Then $\mathrm{W}_{\mathrm{G}}(\mathrm{x}, \mathrm{y})=\mathrm{X}_{3} \mathrm{X}_{7} \mathrm{y}$ (G a loop)
b. If $(\vec{G}, \mathrm{~W})=$

$=\mathrm{X}_{8} \mathrm{X}_{6}+\mathrm{X}_{14}+\mathrm{X}_{14} \mathrm{Y}$.
Theorem 2.2:
Let \vec{G} (V,W) be weighted directed graph, and let $\overrightarrow{\mathrm{G}}_{1}, \overrightarrow{\mathrm{G}}_{2}$ be two non-empty subsets of G , such that $\quad \vec{G}=\overrightarrow{\mathrm{G}}_{1} \mathrm{U} \overrightarrow{\mathrm{G}}_{2}$, and if
$\mathrm{X}_{\mathrm{n} 1}, \mathrm{X}_{\mathrm{n} 2}, \ldots \ldots . . \mathrm{X}_{\mathrm{ni}} \in \overrightarrow{\mathrm{G}}_{1} \quad, \quad \mathrm{X}_{\mathrm{m} 1}, \mathrm{X}_{\mathrm{m} 2}, \mathrm{X}_{\mathrm{m} j} \in \overrightarrow{\mathrm{G}}_{2}$ then:
$\mathrm{X}_{\mathrm{wn}} \mathrm{X}_{\mathrm{wm}}=\sum_{i=w}^{n} \sum_{j=w}^{m} x_{\mathrm{i}} \mathrm{X}_{\mathrm{j} \boldsymbol{\epsilon} \mathrm{G}}$
Then we have :
$\mathrm{P}(\vec{G}, \mathrm{~W})=\mathrm{P}\left(\vec{G}_{1}, \mathrm{~W}_{1}\right) \odot \mathrm{P}\left(\vec{G}_{2}, \mathrm{~W}_{2}\right) . \quad$ (Where P is the related polynomial).

Proof:

Let $\overrightarrow{\mathrm{G}}(\mathrm{V}, \mathrm{A})$ be a weighted directed graph, $\overrightarrow{\mathrm{G}}_{1}, \overrightarrow{\mathrm{G}}_{2}$ are subsets of G such that $\overrightarrow{\mathrm{G}}=\vec{G}_{1} \mathrm{U} \vec{G}_{2}$
If $\vec{G}_{1}=X_{n 1} X_{n 2} \ldots . . X_{n i}+X_{n 11} X_{n 21}+X_{n 11}+X_{n 11} y_{i}$
$\vec{G}_{2}=X_{m 1} X_{m 2} \ldots . . X_{m j}+X_{m 1 \mid} X_{m 2 \mid}+X_{m \| \mid}+X_{m| |} y_{j}$

Then $\vec{G}=\mathrm{Xn}_{1+} \mathrm{m}_{1} \mathrm{Xn}_{2+} \mathrm{m}_{2}$
$\ldots . \mathrm{Xn}_{\mathrm{i}+} \mathrm{m}_{\mathrm{j}}+\mathrm{Xn}_{1 \backslash+} \mathrm{m}_{1 \backslash} \mathrm{Xn}_{2 \backslash+} \mathrm{m}_{2 \backslash}+\mathrm{Xn}_{\ \backslash+} \mathrm{m}_{\|}+\mathrm{Xn}_{\ \backslash+} \mathrm{m}_{\| \mid} \mathrm{y}_{\mathrm{i}+\mathrm{j}}$
It follows that this polynomial can be found in its factorial form by taken the factorial forms of X_{n} and X_{m} and adding there as if the factorials were weights.
This process that we denoted symbolically by $\vec{G}_{1} \odot \vec{G}_{2}$.

Example 2.3:

Weighted directed graph $\overrightarrow{\mathrm{G}}, \overrightarrow{\mathrm{G}}_{1}, \overrightarrow{\mathrm{G}}_{2}$
$\ni \overrightarrow{\mathrm{G}}=\overrightarrow{\mathrm{G}}_{1} \mathrm{U} \overrightarrow{\mathrm{G}}_{2}$
First we find polynomial of $\overrightarrow{\mathrm{G}}_{1}$ and $\overrightarrow{\mathrm{G}}_{2}$

$\mathrm{P}\left(\vec{G}_{1}\right)=\mathrm{X}_{4} \mathrm{X}_{2} \mathrm{X}_{3}+\mathrm{X}_{2} \mathrm{X}_{7}+\mathrm{X}_{9}+\mathrm{X}_{9} \mathrm{Y}$.

$\mathrm{P}\left(\overrightarrow{\mathrm{G}}_{2}\right)=\mathrm{X}_{7} \mathrm{X}_{5} \mathrm{X}_{1}+\mathrm{X}_{5} \mathrm{X}_{8}+\mathrm{X}_{13}+\mathrm{X}_{13} \mathrm{Y}$.
Then $\mathrm{P}(\overrightarrow{\mathrm{G}})=\mathrm{P}\left(\overrightarrow{\mathrm{G}}_{1}\right)+\mathrm{P}\left(\overrightarrow{\mathrm{G}}_{2}\right)$
$\mathrm{P}(\overrightarrow{\mathrm{G}})=\mathrm{X}_{4} \mathrm{X}_{2} \mathrm{X}_{3}+\mathrm{X}_{2} \mathrm{X}_{7}+\mathrm{X}_{9}+\mathrm{X}_{9} \mathrm{Y}+\mathrm{X}_{7} \mathrm{X}_{5} \mathrm{X}_{1}+\mathrm{X}_{5} \mathrm{X}_{8}+\mathrm{X}_{13}+\mathrm{X}_{13} \mathrm{Y}$
$=\mathrm{X}_{5} \mathrm{X}_{7} \mathrm{X}_{10}+\mathrm{X}_{7} \mathrm{X}_{15}+\mathrm{X}_{22}+\mathrm{X}_{22} \mathrm{Y}_{2}$.

$\mathrm{P}(\vec{G})=\mathrm{X}_{2} \mathrm{X}_{15} \mathrm{X}_{5}+\mathrm{X}_{17} \mathrm{X}_{5}+\mathrm{X}_{22}+\mathrm{X}_{22} \mathrm{Y}_{2}$.
The weights of X in all terms are equal.

Proposition 2.4:

For any weighted directed graph $\vec{G}(\mathrm{~V}, \mathrm{~W})$ with n vertices, we have:
The coefficient of $X_{n} X_{m} \ldots . .+X_{n} Y_{m m}$ are 1 .
ii. Polynomial $\mathrm{P}(\vec{G}, \mathrm{~W})$ has no constant term.
iii. Loop write only on the last term with the final X_{n} remaining.

Example 2.5:
For weighted directed cycle graph C_{6} We can compute polynomial as follows:

1. $\mathrm{X}_{2} \mathrm{X}_{9}+\mathrm{X}_{11}+\mathrm{X}_{11} \mathrm{Y}$
2. $\mathrm{X}_{11} \mathrm{X}_{16}+\mathrm{X}_{27}+\mathrm{X}_{27} \mathrm{Y}$

3. $X_{27} X_{35}+X_{62}+X_{62} Y$
4. $X_{62} X_{3}+X_{65}+X_{65} Y$

$$
\text { 5. } \mathrm{X}_{4} \mathrm{X}_{65}+\mathrm{X}_{69}+\mathrm{X}_{69} \mathrm{Y}
$$

By adding the five equations we obtain the polynomial of C_{6} as follows:
$\mathrm{X}_{106} \mathrm{X}_{128}+\mathrm{X}_{234}+\mathrm{X}_{234} \mathrm{Y}$.

References

Epp, S. S. (2010). Discrete mathematics with applications. Cengage learning.
Leung, K. T., Suen, S. N., \& Mok, I. A. (1992). Polynomials and Equations: A Chinese Merchant Elite in Colonial Hong Kong (with a new preface) (Vol. 1). Hong Kong University Press.
Read, R. C. (1968). An introduction to chromatic polynomials. Journal of Combinatorial Theory, 4(1), 52-71. https://doi.org/10.1016/S0021-9800(68)80087-0
Satu, E. S. (2007). Graph clustering. Computer Science Review, 1(1), 27-64. https://doi.org/10.1016/j.cosrev.2007.05.001
Sopena, E. (1993). On the chromatic number of oriented partial k-trees. Internal Report, University Bordeaux I, submitted.

Tutte, W. T. (1954). A contribution to the theory of chromatic polynomials. Canadian Journal of Mathematics, 6, 80-91. https://doi.org/10.4153/CJM-1954-010-9

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

