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Abstract

The paper considers the problem of testing error serial correlation of partially linear additive measurement error model.
We propose a test statistic and show that it converges to the standard chi-square distribution under the null hypothesis.
Finally, a simulation study is conducted to illustrate the performance of the test approach.
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1. Introduction

Recently, testing serial correlation for semiparametric models have attracted more and more attention, see Li and Hsiao
(1998) for semiparametric panel data models, Li and Stengos (2003) for semiparametric time series models, Liu et al.
(2008) and Hu et al. (2009) for partially linear errors-in-variables models, Zhou et al. (2010) for partially nonlinear
models, and Liu et al. (2011) for partially linear single-index errors-in-variables models. Recently, Yang et al.(2015)
constructed a test statistic based on empirical likelihood method to test serial correlation for the following semiparametric
partially linear additive measurement errors model{

Y = XTβ + m1(Z1) + · · · + mq(Zq) + ε,
V = X + η,

(1.1)

where Y , X,Z1,Z2, · · · ,Zq are response variable and explanatory variables, respectively. β = (β1, β2, · · · , βl)T are unknown
regression coefficients, m j is a unknown univariate component function, model error ε has mean zero and variance σ2. We
assume that E{mk(Zk)} = 0, k = 1, 2, · · · , q for identifiability. Measurement errors η are independent of (Y,X,Z1, · · · ,Zq),
Eη = 0, Covη = Ση. In this paper, based on some results of Yang et al. (2015), we will propose an alternative test
approach for model (1.1).

The rest is organized as follows. A new test statistic is constructed in Section 2. Section 3 conducted simulation studies
to illustrate the performance of the proposed approach. Conclusion is given in Section 4.

2. Test Statistic and Its Properties

For notational simplicity, we assume q = 2 in model (1.1) as Liang et al. (2008). Suppose {Yi,Vi,Z1i,Z2i}
n
i=1 are generated

from model (1.1), then we can get

{
Yi = XT

i β + m1(Z1i) + m2(Z2i) + εi,
Vi = Xi + ηi.

(2.1)

For this model, we consider the problem of model error εi is serially uncorrelated or not. Then, The null hypothesis is
εi, i = 1, 2, · · · , n are independent, and the alternative hypothesis is a p-th order moving average (MA(p)), or p-th order
autoregression AR(p), namely,

εi = µi + α1µi−1 + · · · + αpµi−p, µi i.i.d. (0, σ2),

εi = µi + α1εi−1 + · · · + αpεi−p, µi i.i.d. (0, σ2),

where coefficients αi satisfies some stationary conditions, for example, the roots of equation α(µ) = 1−α1µ−α2µ
2 − · · · −

αpµ
p = 0 lie outside the unit circle.
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Let γ = (γ1, · · · , γp)T, γk = Eεiεi+k, k = 1, 2, · · · , p, i = 1, 2, · · · ,N, with N = n − p. We can show that testing εi

is serially uncorrelated is equivalent to testing γ = 0. By the method of Liu et al. (2008) and Hu et al. (2008), denote
ei = εi − η

T
i β, γ̄ = (γ̄1, · · · , γ̄p)T, with γ̄k = Eeiei+k. By the fact that εi is independent of ηi, then if the null hypothesis of

no serial correlation is true, we can obtain

γ̄k = Eeiei+k = E(εi − η
T
i β)(εi+k − η

T
i+kβ) = Eεiεi+k = γk. (2.2)

Let Ui = (Ui1, · · · ,Uip)T,Uik = eiei+k, k = 1, 2, · · · , p, i = 1, 2, · · · ,N, then the null hypothesis reduces to EUi = 0. To
construct the test statistics based on Ui, we can replace unknown ei in Ui by its estimator. In the following, the corrected
profile least-squares approach of Liang et al. (2008) is applied to estimate model (1.1).

If X can be observed exactly, and β is known, model (2.1) can be rewritten as the following standard bivariate additive
model of Opsomer and Ruppert (1997)£

Yi − XT
i β = m1(Z1i) + m2(Z2i) + εi, i = 1, 2, · · · , n. (2.3)

Let Y = (Y1,Y2, · · · ,Yn)T,mk = (mk(Zk1),mk(Zk2), · · · ,mk(Zkn)), X = (X1,X2, · · · ,Xn)T,

sT
1,z1

= eT
1 {D

T
1 K1D1}

−1DT
1 K1, sT

2,z2
= eT

1 {D
T
2 K2D2}

−1DT
2 K2,

with e1 = (1, 0)T, K1 = diag{Kh1 (Z11 − z1),Kh1 (Z12 − z1), · · · ,Kh1 (Z1n − z1)}, K2 = diag{Kh2 (Z21 − z2),Kh2 (Z22 −

z2), · · · ,Kh2 (Z2n − z2)} , Khk (·) = K(·/hk)/hk, K(·) is a kernel function and hk is a bandwidth, k = 1, 2.

S1 =


sT

1,Z11

sT
1,Z12
...

sT
1,Z1n

 ,S2 =


sT

1,Z21

sT
1,Z22
...

sT
1,Z2n

 ,D1 =


1 Z11 − z1
1 Z12 − z1
...

...
1 Z1n − z1

 ,D2 =


1 Z21 − z2
1 Z22 − z2
...

...
1 Z2n − z2

 ,
By the backfitting method of Opsomer and Ruppert (1997), the estimators of m1 and m2 can be defined as

m̂1 = W1(Y − Xβ), m̂2 = W2(Y − Xβ), (2.4)

with S∗k = (In − 11T)Sk, k = 1, 2,

W1 = In − (In − S∗1S∗2)−1(In − S∗1), W2 = In − (In − S∗2S∗1)−1(In − S∗2).

Replaced m1 and m2 of model (2.3) by their estimators m̂1 and m̂2, respectively, we can obtain the following linear model

Yi − Ŷi = (Xi − X̂i)Tβ + εi − ε̂i, i = 1, 2, · · · , n, (2.5)

with Ŷ = (Ŷ1, · · · , Ŷn)T = SY, X̂ = (X̂1, · · · , X̂n)T = SX, ε̂ = (ε̂1, · · · , ε̂n)T = Sε, and S = W1 + W2, ε = (ε1, ε2, · · · , εn).

If we can observe Xi without measurement error, Then the profile least squares estimator of β can be obtained by applying
the least-squares approach to linear model (2.5). To solve the problem that Xi cannot be observed exactly, Liang et al.
(2008) constructed the following corrected profile least-squares estimator of β by the correction for attenuation technique,

β̂ = arg min
β∈Rl

[
(Ȳ − V̄β)T(Ȳ − V̄β) − nβTΣηβ

]
= (V̄TV̄ − nΣη)−1V̄TȲ, (2.6)

where Ȳ = Y − Ŷ, V̄ = V − V̂, V̂ = (V̂1, · · · , V̂n)T = SV and V = (V1, · · · ,Vn)T. Therefore, the estimators of m1 and m2
can be defined as

m̂1 = W1(Y − Vβ̂), m̂2 = W2(Y − Vβ̂). (2.7)

By the idea of Li and Stengos (2003) and Hu et al. (2009), we construct the following test statistic based on Ui with ei

replaced by êi = yi − VT
i β̂ − m̂1(Z1i) − m̂2(Z2i) as

TN = σ̂−2VT
NVN (2.8)

with σ̂−2 = 1
n

n∑
i=1

ê2
i ,VN = 1

√
N

N∑
i=1
ξi, and ξi = (ξi1, · · · , ξip)T, ξik = êiêi+k.

For VN and TN , we have the following result. The following assumptions are given by Liang et al. (2008) and they are
can be easily satisfied.
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Assumption 1. The function K(·) is a bounded symmetric density function with compact support.

Assumption 2. The densities fk(Zk) of Zk are Lipschitz continuous and bounded away from 0, and have bounded
supports Ωk for k = 1, 2.

Assumption 3. The second derivatives of mk(·), k = 1, 2 exist and are bounded and continuous.

Assumption 4. As n→ ∞, hk → 0, nhk/ log n→ ∞ and nh8
k → 0 for k = 1, 2.

Theorem 2.1 Under the assumptions 1-4, if the null hypothesis of no serial correlation is true, we have

VN
D
−→ N(0, σ2

0Ip), TN
D
−→ χ2

p.

where σ0 = σ2 + βTΣηβ, χ2
p is a χ2-distribution with p degrees of freedom.

Proof of Theorem 2.1 By the Lemma 4.3 of Yang et al. (2015), we have

1
√

N

N∑
i=1

ξi
D
−→ N(0, σ2

0), σ0 = σ2 + βTΣηβ.

Therefore, we can obtain TN
D
−→ χ2

p as N → ∞. This completes the proof.

3. Simulation Studies

To illustrate the performance of our test statistic, we conduct a simulation study in this section. Following Yang et al.
(2015), we consider the following model

yi = xiβ + m1(z1i) + m2(z2i) + εi, vi = xi + ηi, i = 1, 2, · · · , n,

with xi ∼ N(0, 1), z1i ∼ U(0, 1), z2i ∼ U(−1, 1), ηi ∼ N(0, 0.25), and β = 1, m1(z1i) = 2 cos(2πz1i), m2(z2i) = z4
2i + 2z3

2i +

3z2
2i − 2z2i − 2, and εi are generated from the following different processes:

(1) AR(1) error: εi = ρεi−1 + µi; (2) MA(1) error: εi = ρµi−1 + µi;
(3) AR(2) error: εi = α1εi−1 + α2εi−2 + µi; (4) MA(2) error: εi = α1µi−1 + α2µi−2 + µi.

For model error µi, three different distributions are discussed, (1)µi ∼ N(0, 0.52), (2)µi ∼ U(−
√

3/2,
√

3/2), (3) µi ∼
1
8χ

2
8 − 1. The Epanechnikov kernel K(x) = 0.75(1 − x2)I|x|≤1 and bandwidths h1 = h2 = n−1/5 are used in the simulations.

Take ρ = 0,±0.2,±0.5,±0.8 and (α1, α2) = (0, 0), (0, 0.5), (0.3, 0.4), (0.2,−0.6),(−0.4, 0.5) and n = 100, 200. For each
case, 1000 replications were run, we let the significance level α = 0.05, the rejection rate at was computed as the estimated
size and power of the test. The results are presented in Tables 1-4.

Table 3.1. Empirical size and power for H0 : ρ = 0 when εi = ρεi−1 + µi

Error Distribution
n ρ N(0, 0.52) U(−

√
3/2,

√
3/2) 1

8χ
2
8 − 1

n=100 0 0.048 0.042 0.048
0.2 0.082 0.093 0.094
-0.2 0.114 0.145 0.130
0.5 0.507 0.462 0.474
-0.5 0.570 0.588 0.552
0.8 0.956 0.956 0.947
-0.8 0.980 0.978 0.972

n=200 0 0.059 0.045 0.044
0.2 0.192 0.195 0.231
-0.2 0.246 0.260 0.239
0.5 0.872 0.880 0.891
-0.5 0.89 0.906 0.904
0.8 1.000 1.000 1.000
-0.8 1.000 1.000 1.000

From the results, we can found that if the null hypothesis is true (that is ρ = 0 or (α1, α2) = (0, 0)), the estimated sizes are
quite good, and the estimated sizes converge toward their nominal sizes as n increases . Under the alternative hypothesis,
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Table 3.2. Empirical size and power for H0 : ρ = 0 when εi = ρui−1 + µi

Error Distribution
n ρ N(0, 0.52) U(−

√
3/2,

√
3/2) 1

8χ
2
8 − 1

n=100 0 0.047 0.040 0.041
0.2 0.080 0.100 0.091
-0.2 0.123 0.113 0.113
0.5 0.295 0.336 0.314
-0.5 0.413 0.394 0.380
0.8 0.547 0.601 0.585
-0.8 0.626 0.649 0.658

n=200 0 0.049 0.053 0.041
0.2 0.182 0.171 0.202
-0.2 0.222 0.232 0.217
0.5 0.719 0.745 0.713
-0.5 0.781 0.792 0.761
0.8 0.937 0.957 0.946
-0.8 0.958 0.957 0.959

Table 3.3. Empirical size and power for H0 : α1 = α2 = 0 when εi = α1εi−1 + α2εi−2 + µi

Error Distribution
n (α1, α2) N(0, 0.52) U(−

√
3/2,

√
3/2) 1

8χ
2
8 − 1

n=100 (0,0) 0.047 0.053 0.044
(0,0.5) 0.434 0.434 0.438

(0.3,0.4) 0.669 0.667 0.637
(0.2,-0.6) 0.651 0.624 0.616
(-0.4,0.5) 0.980 0.987 0.980

n=200 (0,0) 0.050 0.041 0.056
(0,0.5) 0.810 0.827 0.833

(0.3,0.4) 0.956 0.961 0.966
(0.2,-0.6) 0.960 0.957 0.964
(-0.4,0.5) 1.000 1.000 1.000

Table 3.4. Empirical size and power for H0 : α1 = α2 = 0 when εi = α1ui−1 + α2ui−2 + µi

Error Distribution
n (α1, α2) N(0, 0.52) U(−

√
3/2,

√
3/2) 1

8χ
2
8 − 1

n=100 (0,0) 0.055 0.048 0.043
(0,0.5) 0.288 0.254 0.265

(0.3,0.4) 0.297 0.295 0.300
(0.2,-0.6) 0.358 0.358 0.343
(-0.4,0.5) 0.511 0.522 0.510

n=200 (0,0) 0.048 0.055 0.055
(0,0.5) 0.617 0.615 0.631

(0.3,0.4) 0.711 0.668 0.669
(0.2,-0.6) 0.748 0.758 0.774
(-0.4,0.5) 0.888 0.893 0.899
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the rejection rate seems very robust to the variation of the type of error distribution, and increases rapidly as the alternative
hypothesis deviates from the null hypothesis. Compared with the results of Yang et al. (2015), our test performs well.

4. Conclusion

To test serial correlation of partially linear additive measurement errors models, a test statistic was proposed. The test
statistic is shown to have asymptotic chi-square distribution under the null hypothesis of no serial correlation. Some
simulations are conducted to illustrate the performance of the proposed method and and the results are satisfactory.
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