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Abstract

A multiple zeta value can always be represented by its Drinfel’d integral. If we add some factors appeared in the integrand
of the integral representation of the multiple zeta value, it would still represent a linear combination of multiple zeta
values, but the depths and weights may decrease. In this paper, we shall investigate some of multiple zeta values obtained
from Drinfel’d integral with additional factors aforementioned and study a class of deformation of multiple zeta values.
Results are then obtained as analogues or generalizations of the sum formula of multiple zeta values.
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1. Introduction

A multiple zeta value (resp. multiple zeta star value) is defined as (see (J. M. Borwein, D. M. Bradley, Broadhurst &
Lisonék, 2001), or (Eie, 2009))

é’((y) :é’(al,Q/Z’___,ar) = Z k;dlk;az ...k;arr

1<k <ky<-+-<k,
(resp. {*(@) =M (an ... ) = kG k),
1 2
1<k <kp<--<k,

with positive integers @y, @3, ..., a, and @, > 2 for the sake of convergence. The number r and |a| = a; + a2 + -+ + @,
are the depth and the weight of the multiple zeta value, respectively.

Due to Kontsevich (Drinfel’d, 1991), multiple zeta values can be represented by iterated integrals or Drinfel’d integrals
over simplices of weight dimension:

lay,a,...,¢,) = f Q.0 "'Q\w\
Ejo

WithEMZ 0<n <t2<~-<t|a‘<1and

dt;
1 Jt ifj=lLa+l,a1+ax+1,...,1+ax+...+a,1 +1;
= Y
Q-]_ dlj .
— otherwise.
Ij

We say that Q; is of type one if Q; = dt;/(1—t;), and is of type two if Q; = dt;/t;. Letu; = 1 —tjg11—; for j = 1,2,...,|al.
We have 0 < u; < uy <--- <upg < 1 and the dual of {(a),

\%
L) = f WIw) -+ Wia}»
0<uy <up<-<uyg <1

where
duj . .
if Qig+1-; is of type one;
= U
wj= du; ) )
— if Qg4+1-; is of type two.
U;
J

For some j, if we add the factor t’}’ or(1—t j)b to the iterated integral representations of multiple zeta values, it would lead
to the change of the depth and weight, but still represent a linear combination of multiple zeta values. For example,

4(3)=f dn_dip dts
E

L= 06t
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f tdty @%
Bl-t h B
i L -0)-1
T (k+ 1) '

Now we add the factor #3 to the integral representation of {(3), so

dr, dt
=z
Es -t b

If we add the factor ¢{, it becomes

and it can be evaluated as

represents the series

which is equal to {(2) — 1. In general, if we replace some of dt;/(1 — t;) or dt;/t; in the iterated integral representation of
multiple zeta values by dt;, the deformed iterated integral still represent a linear combination of multiple zeta values, but
their depths and weights may decrease.

As another illustrated example, let p and g be two positive integers, the multiple zeta value £({1}7~', g + 1) has the iterated

integral repression
ﬁ dt; ﬁ dtj
i 1-14]1. tj ’

Jj=p+1

Lt g+ 1)=f

Eprq
If we add the factor 411,42 « - - 1544 to the iterated integral, it becomes

L (1) (1 o)

i=1

and can be evaluated easily as

kiky - kplky + D(ky +2) - (kpy + )

1<ki <ky<--<k,

Also the dual of the iterated integral is given by

INIEES

Jj=1 i=q+1

which has the value m. Of course, we have the identity

1 1
kiky - kpky + D(ky +2) - (kp +q)  qP(q!)’

1<k <ky<--<k,

The following result is of similar fashion.

Proposition 1.1 [see Proposition 4.1, (Chen, Chung & Eie, 2016)] Suppose that {(a, ..., a1, a, + 1) is a multiple zeta
value of depth r and weight w(> r + 1) with the iterated integral representation fE Q) -+ Q. Then for real numbers
a,b > —1, we have

f (t—l) Q- Q,, = Z (6 +ay ™ (b +a)y (b +a)y e,

w 1<t <by<+<t,

and

1-u, b
Q---Q,
E, I —u

_ Z g -] I'(ky + bk, + 1)
L " Tk)T(k, +1+b)°

1<k <kp<---<k,
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where T'(s) is the gamma function.

Multiple zeta values with parameters were first introduced in (Chen, Chung & Eie, 2016; Eie & Lee, 2016) in order to
provide a simple way to reprove the sum formula as well as the restricted sum formula (Eie, Liaw & Ong, 2009). Also
they provided a systematic way to evaluate iterated integrals with parameters.

In this paper, we are going to investigate some zeta values obtained from Drinfel’d integrals with additional factors. In
particular, for a real a > —1 and nonnegative integers p, r and g with r + g > 1, we consider the iterated integral

" af P g p+r ptr+q di
I 7. = ! i — 1.
P> ﬂ(a) Lﬁ+r+q(l‘p+r+q) [11:1[ 1 _tj)(l_[ dt]]( 7H tk ] (1)

Jj=p+1 k=p+r+1

In Section 2, along with multiple zeta values with parameters, we give the relation between I, ,,(a) and its dual when
g = 0 and produce some analogues of the sum formula. In Section 3, we force on the evaluation of I, ,(a) when g = 1
and g > 2 respectively and generalize the well-known sum formula from this point of view and obtain some transforms of
weighted sum formulas which are difficult to be obtained otherwise. Indeed, we derive the following result.

To state our further results more precisely, we explain some notations first. We write A + n to denote that A = (4, A2, ..., Ag)
is a partition of n,i.e., 1 <Ay <A <--- < Agand |4 = Ay + Ap + -+ - + A, = n. Also we let {a}"™ be the m repetitions of a.
When A = ({1}™, {2}, ..., {k}™), we let

= 1"m12™my! - KM my ).

Theorem 1.2 For positive integers p,r, q with q > 2, we have

5 ee oo

|a|=n+p+r+q 1<t <br<<E), i=1

1
ky k(g + 1) (kg + 1 — D)(ky + r)P*T

ey + )

1<k <kp <<k,

X Z#;lhllhﬂz s,

Arn

kg+r

where the summation ranges over all partitions A = (A1, A2, ..., Ag) of n and hy, Zk " k—m

We investigate the Euler sum with two branches G, (p, g) (see (8) below for a definition) and drive important properties in
Section 4. In Section 5, we consider the deformed iterated integral with a real parameter a > —1,

n \ sy dy V(! ar
_ 1 i Ik
Fr,q(a) - Lr+q+2 ( ) [1[:[ 1 _ tl][ 1_[ tk ]dtr+q+2’ (2)

tr+q+2 k=r+1

and prove the following.

Theorem 1.3 Suppose that n, p, q are nonnegative integers with p > 1. Then

ffm . f—a,; lf_a”_l(f + 1)_1
1 P
lel=p+g-+n 16, <br<-<L, (q + 1) p-

(3)
q
Z (1) G (g - J,n—k>+Z( 1yt 4 Z( 1B,
=0 =0
with |
m = g H, ---H ,
ﬂ 1S€I<{;_.<€q+l {71(51 + 1)(f2 + 1) e (fq + 1)({q+1 + 1)]7+1 ;nﬂ/l 12, Ag
where
[q+l+l 1
Hi= ) .
(=,
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A corollary of Theorem 1.3 (when taking ¢ = 0 into (3)) is the weighted sum formula first obtained in (Arakawa &
Kaneko, 1999; Ohno, 1999):

DT e,y + 1) =21 p D). 4@
la|l=n+p
2. Some Analogues of the Sum Formula

Here is an analogue of the sum formula obtained in the similar way by considering different iterated integrals with
additional factors.

Theorem 2.1 Suppose that p is a positive integer and

r

Pl =] |+ Pax) = xPi(0).

J=l

Then for any positive integers r and n, we have

nt’“” ]_[(5 + )T, + 1)

la|=p+r—1+n 1<t <br<<t) i=1

1< 1 1 1
= LT kZ‘ (k+ JZ; k+ )y Py=)

proof. For real a > —1, consider the iterated integral given by (1) with ¢ = 0. That is,

f a( p dr: ptr
1,,,(a)=f ( ) = dt;|, r>1.
pr Epir tp+r !:1[ 1- ti 1_[ J

j=p+1

It can be evaluated as

D H(f +a)” H(f,,+]+a) €+

1<t <ly<<t, i=1

LG (O F152)

Also its dual is given by

i=r+1

Just rewrite duy as duy /(1 — uy) — uyduy /(1 — uy) and note that

r — I'(x)Ir'ey)
x—1 1 _
fo I du_l"(x+Y)’

so the dual can be evaluated as the difference

1

3 T(k + a)[(k + r)
L k(k+ 1) (k+r=2)(k+r—Dp

Ik +r+a

1

_Z I'k+al'tk+r+1)
= k+Dk+2)--(k+r—1)(k+ rr!

TOTk+r+1+a)|’

or with a term by term cancellation

1 - a
rl’(a+1)(a+2)-~(a+r)+k:1 k+rrk+a)k+1+a)---(k+r+a)

Note that
1

@+ )@a+2)--(a+r L (a+ j)Pi(=))

43



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 11, No. 5; 2019

and

1 -y v
k+a)k+1+a)---(k+r+a) = (k+ j+a)Py(=j)
so that
vy
L4 (k+ )y Py=))

( 1)11] dnl 1
(n=D!'\da' | (k+a)k+1+a)---(k+r+a)|,_,

This proves our assertion.

Here we exhibit the cases r = 1,2 and 3, respectively. For a positive integer p and a nonnegative integer n, we have

®
—a = 1
GG 0 (G + ) =8+ p) - n '
laf=n+p 15[.4;-«[,, ; k*(k + 1)P
(i)
D GGG 1 2
|a|=n+p+1 1<l <br <<l
_ [N L
_kz:; e+ 24 k+2)P - 24(’“””)+ ; (=2
(iii)

4
[ 167+ o, + 272, + 3!

l@|=n+p+2 1<l <br<<l), j=1

I I 1 lm

"yt g\l > 2).
6;/(”(/{4-3)1’ * 2+l 6( + 2n+1) (p=2)

3. A Generalization of the Sum Formula

Recall the iterated integral given by (1). Theorem 2.1 deals with the case ¢ = 0. For the case ¢ = 1, we can even study
more general form. Let b be a nonnegative integer. In our next consideration, we begin with the double-attached iterated

integral
a( p ptr b
5] dti (1 - tp+r+1) dtp+r+l
— dt; . 5
fE( ) [1_1[ 1_t,.]( [ ,] )

tp+r+] j=p+l tp+r+l

Note that the above is the integral 1, ,.1(a) with an additional attached factor (1 — tp+,+1)” and it can be evaluated as

Z b‘l_[(t’ +a)! ]_[(5 va+ ) ]_[(f +r+m) L

1<t <br<<t), m=0

From this, we obtain the contribution of the additional attached factor (1 — 7,44 b corresponds to the factor b! and the
increment of the product anzo(f p T+ m)~! after the evaluation. Also notice that the term ]—[;;}(f p+a+ /)" vanishes
when r < 1.

In the following, we need the differentiation of quotients of gamma functions

6, = (= 1)”(

n!

L'k + 0L'(k)
) Lk (ky + x)

dx" x=0
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with positive integers k; < k,. Let
I'(ky + 0)I'(k2)

89 F)Tks + )
and y(x) be the digamma function defined by
#0 = 4 logI(y = =
I(x)

It is easy to see that
g () = —g)Y(ky + x) — (kg + x)] = —g(x)h (x)
with
ko—1 1
So that »
né, = Z 0;h,_(0).
=0

We also need the following result from combinatorics (MacDonald, 1995; Stanley, 1999).

Proposition 3.1 For two fixed positive integers ki, ky, with k; < ky, we have

=" [ d" \ T'ky + x)I'(k2) 1
= AT BRI 2 LiLy L
o= (dx")F(kl)F(k2+x) ;”ﬁ Ay A

x=0

where L, Z pl k] {,,,,
Theorem 3.2 Let p be a positive integer and a > —1 be a real. For nonnegative integers b, n and r, we have

r—1 b

> > b ]_[5 a ]—[(f ey ]y +r+myt

l@|=p+r+n 1<b,<br<-<C) m=0

oo

1
Z(k+b)(k+b+1) k+b+r—Dk+b+rpH Z”ﬂ Ve Vi

here
r+b

_Z(k+€)’"

proof. For real number a > —1, the dual of the double-attached iterated integral (5) is given by

1— ; a ubdu r+l r+p+1 )
f ( ul) N 1—[%
Evipn 1—u 1 —u i U;

i=r+2

and it can be evaluated as
Z ;
Hk+b)k+b+1)---(k+b+r—1k+b+rp!

ITF'k+a)l'k+r+b+1)
Frrk+r+b+a+1)

Our assertion then follows from the identity

> b ﬁ(a +a)”! ﬁ(f,, +a+j) ﬁ(fp +r+m)”!
i=1 j=1 m=0

1<t <by<<t),
= !
T L (k+ D)k + b+ D) (k+b+r—1)(k+b+rpt!

I'k+al'tk+r+b+1)
Irerk+r+b+a+1)
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after applying the operator % (%) "

o and Proposition 3.1.

When b = r = 0 in Theorem 3.2, we get the well-known sum formula of multiple zeta values.

Corollary 3.3 [Sum Formula (Granville, 1997)] For a nonnegative integer n, we have

—ay | p @t p=@p— 1
ae e,
la|=n+p 1<l <lr<-<C),

= Z {(al,az,...,al,+1):§(n+p+1)_

|l|=n+p

Some other special cases of (6) are also of special interesting. For any nonnegative integer n, we have
® b=0,r=1
L N (A VI

|a|=n+p+1 1<l <br<<E)

1
:;m—é’(n+p+l)+l,

(i) (b=1,r=0)
GG 01 + D]
lal=n+p 1<, <by<<L),

—é’(n+p+1)—§(n+p)+zkn(k+1)p for p > 2;

(i) (b=2,r=0)
Z 616" 0,16, + D(C, + )]

la|=n+p 1<t <br<<t)

[e]

k1 S 2k 1)
k+2y S+ 1y |

1 (o]
:Z[g’(n—i-p—1)—3{(n+p)+2§(n+p+l)+;kn
for p > 3.

The general case g > 2 of the evaluation of the integral (1) in terms of infinite sum is given by

> ]_[(f +a)y 1]_[(5 ta+ )N ra+ U, 07

1<t <by<<t, i=1 j=

On the other hand, the dual of (1) is given by

a( q q+r q+r+p
— Ugsr+p d’/h duk
I, (@)= j;qu( = ) [1—[ 1— ]( l_[ duj][ l_[ M_k]

i=1 Jj=q+1 k=g+r+1

and which is, in terms of infinite sum,
1 Ltky + a)l(ky + 7+ 1)
cokglhy + 1) (kg + 17— D(ky + )Pt Tk (kg +7+a+ 1)

1<ky <ky<--<k,

Proof of Theorem 1.2. From the above discussion we simply obtain the identity

> {]_[(f +a)ﬁ(€ +a+ ), +a+niC,+r)

I<ti<br<<ty Li=1 Jj=1

-1

-y ! (7
1 --kq(kq-i-1)-~-(kq-i-r—1)(kq+r)P+1
T(ky +a)l(ky +r+ 1)

C(k)C(ky+r+a+1)

1<k <ky<-<kgy
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The assertion follows by applying the operator - l!) ( a ")

o On the both sides of the identity (7) and a simple differential
result as follows B

=D

n!

li+a)b+a)-- Ly +a)ly + a)’”+2}

a=0

_ ( @p ) 1
- 1 pts oy pp+1”
= m+1 [1’152 “'gpillfpl

|a|=p+m+n
form,n > 0.
4. Euler Sums With Two Branches

For three nonnegative integers n, p, ¢ with n > 2, we define the Euler sum with two branches G, (p, ¢) (Eie, Liaw & Ong,
2009) by

1 1
Gu(p,q) = — — . 8
l<k1<kzz<;--<k,, ] kiky---k ka 1<[1<ZZ ke €1€2"'£q ()
According to (p.246, Eie, 2009), it has the simple integral representation
1 1 ’ 1 1 %) n-2 dtdt,
_ 1 1 log = —_— 9
Plgl(n—2)! sz(og 1 —tl) (Og 1 —tz) (ogtl) =16 ©)
and can be decomposed into usual multiple zeta values as (Proposition 5, Eie, Liaw, & Ong, 2009)
p+q+1 k—1
Gulp, ) = Z( ) >l aen - 1), (10)
k=p+1 lal=p+q+1

We note that (9) and (10) together imply the well-known restricted sum formula (Eie, Liaw, & Ong, 2009),
Z (1Y, @y + 1) = Z L(ct, .. sCpCprr + 0+ 1),
la|=m+n+1 lel=p+m+1
for nonnegative integers m, n and p.
It is quite surprising that G,,(p, g) comes from the differentiation of some multiple zeta values with parameters.
Proposition 4.1 Suppose that p, g are nonnegative integers and

1 T(1+a)(6yer + 1)
Tl +1+a) |

Hﬁ,q(a) = ¢ ¢ €p+1
I<bi<by<e<lyn V177" Yalgy

Then for nonnegative integer n

(G0N 1)"

= Gp+l (‘I, n)
a=0
proof. Let w = p + g + 1. The multiple zeta value H), ;,(a) can be expressed as the iterated integral

g+1 ptq
f 1—[ duj 1—[ dug | (1= up+q+l)adup+q+l
Eprgr1 \Uj=1 - Uuj k=g+2 U Uptq+l

j=

( n g+l p+q+1 du
H(”) ‘ = — f (10 ) —"
( ) Epigsl ST 1= tpige 1_[ 1- “J 1—[ Uk

k=q+2

So that

Fix w441 and u, 4.1 as new dummy variables #; and #, and then integrate with respect to the rest of variables, the above

iterated integral becomes
1 f | 1\ | 1\ o 2 Uty
_— 0 0 og — —_—
dn(p- e 1= ) V2 T=0) %) U =mn
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which is precisely the double integral representation of G.1(q, n) by (8).
In light of Proposition 3.1, we obtain another expression of Gp.1(q, n).

Proposition 4.2 For integers p,q,n with p > 1 and g, n > 0, we have

1 - ! ! !
Gpilg,n) = Z — Z#AIHAIHAZ"'H/lg
1<l <ly<<lys by--- €q€q+1 Arn

. L,
’ _ g+l 1
with Hm = 2l o

5. Deformation of Multiple Zeta Values

Throughout this section, fix w = p + g + 1. Recall the deformed iterated integral F, ,(a) defined by (2). Simply its dual is

given by

1= g2 \* A R Caac duy,
FY (a) = 1ty i du |
WM)-ﬁwu(l—m WITI_W IT Uk

i=2 k=q+3
In addition, we need a representation of the alternating sum of H,, ;(a) with 0 < j < g.

Proposition 5.1 For a pair of integers p,qwithp > 1, g > 0, let

— 1 T(1 + )L, + 1)
Hyq@) = P [ Tl + T )
1<l <ly<<lys fl c £q£q+1 g+l
Then
_ 9 ) L1
H,,(a) = ;(—1>pr,q_j(a> D
and

D" =
A

q
= 2 DTG G + (<
a=! =0

proof. The first assertion follows from
Hp,q(a) = Hp,q(a) - Hp,q—](a)

and

_ 1
H,o(a) = Hpp(a) - T+a

The second assertion follows from Proposition 4.1.

On the other hand, let K, ,(a) be the multiple zeta value with a parameter a defined by

K, (@)

O+ DG+ 1) (b + D(lyrr + 1)PH!

1<l <ly<<lyn

which comes from the evaluation of the iterated integral
q+2

1= tyi1 )a duy duj wtl du
PR du )
LWI( l—ul 1—M1 2 gl_uj 1—[ Uy

k=g+3

However, for g > 1, if we rewrite K, ;(a) as the difference

1
[fl({’z + 1) (b + D(Lgsr + 1P

1<l <ly<<lyp

1 Tl + ) (L +2)
[r(fl)r(€q+1 +2+a)

1 L't + a)l(lye1 +2)
] [F(ZQF(QH +2+a)

T D)l F ) (g + D(lye + 1P

48
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Then it is equal to the evaluation of the difference of two integrals

f l—uw “ du1 Mzduz ﬁ duj ﬁ duk
E, 1—141 1—1411—142 l—uj k 1274

j=3 =q+2
a q+1 w
f (1 —MW) M]dbl] du2 1—1 duj l—l duk
e \L—u) 1—u1—u i 1—u; g W ’
or
1-u,\" du £ du; 1 du
S e L L
E, 1 — U 1 — U =3 1 - Mj k=q+2 Uy
1— " a d g+1 du: w d
i ] | ] 2
e, \ 1 —ug I —up i3 I —u; k=g UK

which is equal to —K, ;,_(a) + F ;”q_l(a). So that we have proved the following.

Proposition 5.2 For a pair of positive integers p, q and real number a > -1, let K, ,(a) be defined as (13). Then

Ky @) =F,, (@)~ K,41(a) (14)
and

q-1
K, (a) = Z(—nq-l-fF; (@ + (1)K o).
J=0

Proposition 5.3 Notations as shown in (11), (12) and (13). Then for real number a > —1 and a # 1, we have

1 = a
Fy (@)= T aH,,,q(a) - me(a).

proof. The dual can be expressed as the difference

f 1=\ duy ﬁ du; ﬁ%
g, \ 1—m 1—u I —u; . Uy,

j=2 =g+3
1=y \* wrduy g+2 du; ad duy,
) j’;' ( I=w ) L= (j—Z 1 _”f](kgs ”_"]
and hence can be evaluated as
1 Lt +a)l(lyer + 1)
1<t <brmcty O "‘€q+l€,§:21 |:F(€])r(€q+2 +1+a)

15)

1 (1 + T (Cger +2)
- L1+ 1) (Lgsr + D(Lgyr + 1P [r(fl)r(5q+2 +2+a)

1<l <ly<<lysr

According to £; = 1 or £, > 1, the first series is separated into two sum

H,,(a) +

1<t <ba<<lyrr

1 Tl +1+a) (€ +2)
(6 + 1) - (Lge1 + Dz + P Tl + DI(Ggez + 2 +a)

So after a term by term cancellation between the above series and the negative part of F, (a) in (15) in light of the
functional equation
[t +1+a) (6 +al(6 +a)
T+ are)

we conclude that N
F]\,/,q(a) =H, (a) + aKp 4.1(a).
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Our assertion then follows by (14).
We are now at the stage of giving a proof of Theorem 1.3.

Proof of Theorem 1.3. Suppose that

_ D" =
Ym = WHM (@) -

The relation

1
(Ll) p q(a) PR Kp q(a)

then implies that the sum on the left side (3) is equal to

Z( l)kynk+Z< 1y~

k=0

Now it suffices to evaluate y,_; in more explicit form. By Proposition 4.1 and 5.1, we have

Z( ) m-ZZ( "G ,,+1(q—j,n—k)+zn]<—1>k+q“
k=0

=0 k=0

and hence our assertion follows.

Separating multiple zeta value of largest weight p + ¢ + n + 1 from both sides of (3), we obtain the following corollary.

Corollary 5.4 Suppose that n, p are positive integers. Then for integer g with 0 < g < n, we have

|al=p+q+n

Z ( Cf:)l)g(als~--7ap],ap+1):Gp+1(q’n)

n+l k-1
=k;1( . ) D LB Bt Bt p),

Bl=g+n+1

Corollary 5.5(Arakawa & Kaneko, 1999; Ohno, 1999) The identity (4) holds.

Remark Here is another identity concerning weighted sums of multiple zeta values (Chung & Eie, 2017):

Z apl(ay,...,ap_1,ap+ 1)

|@|=n+p

={+p+ D)+ Z ZM (Rahay -+

1<6,<t, tLt 2 Arn

where

ZZ and h), = ng'

=t =t

So that we have another expression of £*({1}", p + 1):
S p+ 1)

=l+pr e Yo Zu (A, -,

1<6,<t Ot 2 An

6. Conclusion

— W H, -

’ ’
-y h), -

h:lzz) ’

hﬁ)

This paper establishes two main results (Theorem 1.2 and Theorem 1.3) that derives many extensions and generalizations
of sum formula of multiple zeta values. The proof of sum formula given by A. Granville (Granville, 1997) used generating
functions. Our approach is based on the iterated integral representation (Drinfel’d integral) of multiple zeta values with
additional factors or its deformation. A number of multiple-zeta-values-identities (allied infinite sums) have been shown

directly along this direction. We hope these ideas will interest an array of scholars from.
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