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Abstract

In the first part of this paper we point out some basic properties of the critical cones used in second-order optimality
conditions and give a simple proof of a strong second-order necessary optimality condition by assuming a “modified” first-
order Abadie constraint qualification. In the second part we give some insights on second-order constraint qualifications
related to second-order local approximations of the feasible set.
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1. Introduction

The study of second-order optimality conditions for a nonlinear programming problem is a classical subject in mathemat-
ical programming theory: second-order optimality conditions have a long history that begins with a modern approach in
the Karush’s Master Thesis (1939). In more recent years several authors have been concerned with second-order (nec-
essary and/or sufficient) optimality conditions, both from a theoretic and from an algorithmic point of view, producing
various interesting papers. See, e. g., Andreani, Behling, Haeser and Silva (2017), Andreani, Birgin, Martinez and Schu-
verdt (2010), Andreani, Echagüe and Schuverdt (2010), Andreani, Martinez and Schuverdt (2007), Arutyunov (1998),
Arutyunov and Pereira (2006), Baccari (2004), Baccari and Trad (2005), Bomze (2015), Bonnans and Shapiro (2000),
Brinkhuis (2009), Casas and Troltzsch (2002), Cominetti (1990), Di (1996), Gfrerer (2007), Huy and Tuyen (2016),
Kawasaki (1988), Minchenko and Leschov (2016), Penot (1998, 2000), Shen, Xue and An (2015).

For a survey on second-order optimality conditions in case of twice-continuously differentiable functions, see Giorgi
(2019).

In particular, Andreani, Behling, Haeser and Silva (2017) are concerned with some second-order constraint qualifications
of the Abadie-type. In the first part of this paper we shall obtain in a simple and direct way Theorem 3.3 of Andreani
and others (2017), theorem previously given without proof by Bazaraa, Sherali and Shetty (2006). We shall exploit some
properties of the contingent cone and shall make some remarks on classical necessary second-order optimality conditions
for a nonlinear programming problem, in particular on the so-called “critical cones” utilized in these conditions. In the
second part of the paper we shall make some considerations on second-order constraint qualifications expressed in terms
of second-order local approximations of sets.

The problem considered is

(P) :


min f (x)
subject to: gi(x) 5 0, ∀i ∈ M;

h j(x) = 0, ∀ j ∈ P,

where M = {1, ...,m} , P = {1, ..., p < n} , f : X ⊂ Rn −→ R; every gi : X ⊂ Rn −→ R, i = 1, ...,m; every h j : X ⊂ Rn −→
R, j = 1, ..., p. The functions involved in (P) are assumed to be twice-continuously differentiable on the open set X ⊂ Rn.
With reference to (P) let us denote by K its feasible set; given x0 ∈ K we define

I(x0) =
{
i ∈ M : gi(x0) = 0

}
as the set of indices of the active constraints at x0. The Lagrangian function associated with (P) is defined as:

L(x, u,w) = f (x) +
m∑

i=1

uigi(x) +
p∑

j=1

w jh j(x),
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where ui = 0, ∀i ∈ M.

The generalized Lagrangian function (or Fritz John-Lagrange function) associated with (P) is defined as:

L1(x, u0, u,w) = u0 f (x) +
m∑

i=1

uigi(x) +
p∑

j=1

w jh j(x)

where u0 = 0, ui = 0, ∀i ∈ M (ui, i = 0, 1, ...,m; w j ∈ R, j = 1, ..., p, not all zero).

As it is well-known, the two more used first-order necessary optimality conditions for (P) are given by the two following
statements.

Theorem 1. (Karush (1939). Kuhn and Tucker (1951)). Let x0 be a local minimizer of (P) and suppose that an appro-
priate constraint qualification holds for x0. Then, the Karush-Kuhn-Tucker (KKT) conditions hold at x0, i. e. there exist
multipliers vectors (u,w) such that

∇xL(x0, u,w) = 0;
uigi(x0) = 0, i = 1, ...,m;

ui = 0, i = 1, ...,m.

Theorem 2. (F. John (1948)). Let x0 be a local minimizer of (P). Then, the Fritz John (FJ) conditions hold at x0, i. e.
there exist multipliers (u0, u,w) such that

∇xL1(x0, u0, u,w) = 0;
uigi(x0) = 0, i = 1, ...,m;

u0 = 0, ui = 0, ∀i ∈ M, (u0, u,w) , (0, 0, 0).

The set of vectors (u,w) satisfying at x0 ∈ K the (KKT) conditions is denoted byΛ(x0),whereas the set (u0, u,w) satisfying
the (FJ) conditions at x0 ∈ K is denoted by Λ0(x0). Obviously Λ(x0) =

{
(u,w) : (1, u,w) ∈ Λ0(x0)

}
. Moreover, we note

that Λ0(x0) , ∅, whereas it may be Λ(x0) = ∅.

There are many constraint qualifications which suffice for Theorem 1 to hold (see, e. g., for a quite recent survey Giorgi
(2018)). We recall here only the following ones.

(a) The Mangasarian-Fromovitz Constraint Qualification (MFCQ) holds at x0 ∈ K if:

(i) The vectors ∇h j(x0), j = 1, ..., p, are linearly independent.

(ii) There exists z ∈ Rn such that

∇gi(x0)z < 0, i ∈ I(x0),
∇h j(x0)z = 0, j = 1, ..., p.

(b) The Linear Independence Condition (LI) holds at x0 ∈ K if the vectors{
∇gi(x0), i ∈ I(x0); ∇h j(x0), j = 1, ..., p

}
are linearly independent.

(c) The Strict Mangasarian-Fromovitz Constraint Qualification (SMFCQ) holds at x0 ∈ K if, denoting by I+(x0, u) the set
of strictly active inequality constraints at x0, i. e.

I+(x0, u) =
{
i : i ∈ I(x0) and there is (u,w) ∈ Λ(x0) with ui > 0

}
,

it holds:

(i) The gradients {
∇gi(x0), i ∈ I+(x0, u); ∇h j(x0), j = 1, ..., p

}
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are linearly independent.

(ii) The system

∇gi(x0)z < 0, i ∈ I(x0)�I+(x0, u);
∇gi(x0)z = 0, i ∈ I+(x0, u);
∇h j(x0)z = 0, j = 1, ..., p,

has a solution z ∈ Rn.

It follows that (LI) implies (SMFCQ) and that (SMFCQ) implies (MFCQ). (SMFCQ) was introduced by Kyparisis (1985)
who has shown that this condition is both necessary and sufficient to have uniqueness of multipliers vectors u and w in
(KKT), i. e. Λ(x0) is a singleton. We note, however, that (SMFCQ) is not properly a constraint qualification, as it involves
the multipliers vectors in its definition. Usually, these multipliers vectors depend also from the objective function f ; for
this reason it is perhaps better to call (SMFCQ) a “regularity condition.

Definition 1. A sequence
{
xk
}
⊂ Rn�

{
x0
}
, with xk −→ x0 is called tangentially convergent in the direction y ∈ Rn to the

point x0 if

lim
k−→+∞

xk − x0∥∥∥xk − x0
∥∥∥ = y

and we write xk y
−→ x0.

Obviously, any convergent sequence xk −→ x0 (with xk , x0 for all k) contains at least a tangentially convergent subse-
quence.

The set of all directions y for which there exists a feasible sequence
{
xk
}
⊂ S , with S ⊂ Rn, tangentially convergent to

x0 ∈ S , form a cone which is a local cone approximation at x0 of the set S ⊂ Rn.

Definition 2. Let S ⊂ Rn and x0 ∈ S ; the cone

T (S , x0) =
{
λy ∈ Rn : ∃

{
xk
}
⊂ S , xk y

−→ x0, λ = 0
}

is called Bouligand tangent cone or contingent cone to the set S at x0. If x0 is an isolated point of S , then we set T (S , x0) =
{0} .
There are many other equivalent characterizations of T (S , x0) : see. e. g., Bazaraa and Shetty (1976), Aubin and Frankows-
ka (1990), Giorgi and Guerraggio (1992, 2002). For example, we have

T (S , x0) =
{
y ∈ Rn : ∃

{
xk
}
⊂ S , xk −→ x0, ∃ {λk} ⊂ R+ such that λk(xk − x0) −→ y

}
.

T (S , x0) =
{
y ∈ Rn : ∃

{
yk
}
−→ y, ∃tk −→ 0 such that x0 + tkyk ∈ S

}
.

Note that if x0 ∈ int(S ), then T (S , x0) = Rn. T (S , x0) is a closed cone, but not necessarily convex.

Other two local cone approximations widely used in optimization theory are the following ones.

Definition 3. Let S ⊂ Rn and x0 ∈ S ; the cone

A(S , x0) =
{
y ∈ Rn : ∃φ : R+ −→ Rn, φ(0) = x0, φ′(0) = y, ∃δ > 0, ∀θ ∈ (0, δ) : φ(θ) ∈ S

}
is called cone of attainable directions to S at x0 or Kuhn-Tucker tangent cone to S at x0.

This cone can be equivalently defined in other ways, e. g. in the following ways.

A(S , x0) =
{
y ∈ Rn : ∀ {tk} ⊂ R+, tk −→ 0, ∃

{
yk
}
−→ y such that x0 + tkyk ∈ S

}
.

A(S , x0) =
{
y ∈ Rn : ∃φ : R+ −→ Rn, ∃δ > 0, ∀θ ∈ (0, δ) it holds φ(θ) = x0 + θy + o(θ) ∈ S

}
.

The cone A(S , x0) is closed, but not necessarily convex and it holds

A(S , x0) ⊂ T (S , x0).
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Definition 4. Let S ⊂ Rn and x0 ∈ S ; the cone

F(S , x0) =
{
y ∈ Rn : ∃ᾱ > 0 such that ∀α ∈ [0, ᾱ] it holds x0 + αy ∈ S

}
is called cone of feasible directions to S at x0.

Note that F(S , x0) is a cone containing the origin, however it need not be closed or open or convex. We have the following
inclusions:

cl(F(S , x0)) ⊂ A(S , x0) ⊂ T (S , x0).

Theorem 3. Let x0 ∈ S ⊂ Rn and let S be a convex set; then it holds

cl(F(S , x0)) = A(S , x0) = T (S , x0) = cl(cone(S − x0)).

It turns out that in this case the cones F(S , x0), A(S , x0) and T (S , x0) are convex. Here cone(S ) is the convex cone
generated by S , i. e.

cone(S ) =

 k∑
i=1

λixi : xi ∈ S , λi = 0,
k∑

i=1

λi > 0, k ∈ N
 .

This cone turns out to be the intersection of all convex cones that contain S .Moreover, if S is a polyhedral set, then

F(S , x0) = A(S , x0) = T (S , x0)

and F(S , x0) consists of the vectors of the form α(y − x0), with α > 0 and y ∈ S .

If S ⊂ Rn is a nonempty set we denote by S ∗ its (negative) polar cone, given by

S ∗ =
{
y ∈ Rn : yx 5 0, ∀x ∈ S

}
.

If S is empty, then S ∗ is interpreted as the whole space Rn. S ∗ is a closed convex cone.

The next theorem states the classical second-order necessary conditions for (local) optimality of a point x0 ∈ K. This
result is essentially due to McCormick (1967). See also Fiacco and McCormick (1968) and McCormick (1976, 1983).
With reference to problem (P) let us define the so-called critical cone or cone of critical directions Z(x0), where x0 ∈ K :

Z(x0) =


z ∈ Rn : ∇gi(x0)z = 0, i ∈ I+(x0, u);
∇gi(x0)z 5 0, i ∈ I(x0)�I+(x0, u);
∇h j(x0)z = 0, j = 1, ..., p

 .
Theorem 4. Suppose that x0 ∈ K is a local solution of (P) and that the (LI) condition holds at x0. Then, the (KKT)
conditions hold at x0 with associated unique multipliers vectors u and w; moreover, the following additional second-order
necessary conditions hold at x0 :

z⊤∇2
xL(x0, u,w)z = 0, ∀z ∈ Z(x0).

The second-order necessary conditions expressed in Theorem 4 are called by some authors “strong second-order necessary
optimality conditions” for (P). We draw the reader’s attention to the fact that there is not uniformity in the literature on
this denomination. The same is true for the “weak second-order necessary optimality conditions” (see further).

Note (see Kyparisis (1985)) that the (LI) condition can be substituted by the weaker (SMFCQ) but not by (MFCQ). In
other words, (MFCQ) is not a second-order constraint qualification which assures the strong second-order conditions of
Theorem 4. This has been remarked by Anitescu (2000), Arutyunov (1991), Baccari (2004).

2. Abadie Constraint Qualification in Second-Order Optimality

In the previous section we have remarked that (MFCQ) does not assure the validity of Theorem 4, however this constraint
qualification assures the validity of second-order necessary optimality conditions with non fixed multipliers vectors. In
other words, this approach, considered by Ben-Tal (1980) but also by Hettich and Jongen (1977), does not guarantee
that the same multipliers vectors u and w can be taken such that the corresponding second-order necessary optimality
conditions are satisfied for all z ∈ Z(x0). We may call “weak second-order necessary optimality conditions” the results
contained in the next theorem.
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Theorem 5. Assume that x0 ∈ K is a local minimum point for (P) that satisfies the (MFCQ) condition. Then, we have
that for every z ∈ Z(x0) there exist multipliers vectors u and w such that Λ(x0) , ∅ (more precisely Λ(x0) is a convex and
compact set) and

z⊤∇2
xL(x0, u,w)z = 0.

For an example of a problem (P) where, at a minimizer x0, different multipliers are required to get (weak) second-order
necessary conditions, see Ben-Tal (1980), Example 2.1.

In the literature another description of the cone Z(x0) often appears; it is the cone (again called “critical cone”):

C(x0) =


z ∈ Rn : ∇ f (x0)z = 0;
∇gi(x0)z 5 0, i ∈ I(x0);
∇h j(x0)z = 0, j = 1, ..., p

 .
Indeed, it can be proved that, under the validity of the (KKT) conditions at x0 ∈ K, the two cones C(x0) and Z(x0) coincide
(in Han and Mangasarian (1979) there are some minor inaccuracies).

Theorem 6. Let x0 ∈ K verify the (KKT) conditions. Then

C(x0) = Z(x0).

Proof. We first show that C(x0) ⊂ Z(x0). Let z ∈ C(x0); clearly we only need to show that for i ∈ I+(x0, u) we have
∇gi(x0)z = 0. By (KKT) we have that

∇ f (x0)z +
∑

i∈I(x0)

ui∇gi(x0)z +
p∑

j=1

w j∇h j(x0)z = 0.

Because ∇h j(x0)z = 0, j = 1, ..., p, and ui = 0 for i ∈ I(x0)�I+(x0, u), we have

∇ f (x0)z +
∑

i∈I+(x0,u)

ui∇gi(x0)z = 0.

Because ∇ f (x0)z = 0, and every ui > 0 for all i ∈ I+(x0, u), we have

∇gi(x0)z = 0, i ∈ I+(x0, u).

Now we prove that Z(x0) ⊂ C(x0). Let z be any point in Z(x0). It suffices to show that ∇ f (x0)z = 0. As before, we have

∇ f (x0)z +
∑

i∈I(x0)

ui∇gi(x0)z +
p∑

j=1

w j∇h j(x0)z = 0.

Clearly ∇ f (x0)z = 0, because all the other terms are zero. �
It is possible to obtain also weak necessary second-order optimality conditions of the Fritz John -type, as done by Hettich
and Jongen (1977) and by Ben-Tal (1980). Usually, under the said approach, the following cone of critical directions is
considered:

C1(x0) =


z ∈ Rn : ∇ f (x0)z 5 0;
∇gi(x0)z 5 0, i ∈ I(x0);
∇h j(x0)z = 0, j = 1, ..., p

 .
We may call C1(x0) the extended critical cone at x0 ∈ K. Between C(x0) and C1(x0), besides the fact that obviously it
holds C(x0) ⊂ C1(x0), there is the relationship specified in the following result, not often pointed out.

Theorem 7. Let x0 be a local minimum point for (P). Then the (FJ) conditions are satisfied at x0 with u0 > 0 if and only
if C(x0) = C1(x0).

Proof. If C(x0) , C1(x0), it will exist z ∈ Rn such that
z ∈ Rn : ∇ f (x0)z < 0;
∇gi(x0)z 5 0, i ∈ I(x0);
∇h j(x0)z = 0, j = 1, ..., p.

(1)
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We write the first basic (FJ) relation in the form:

u0∇ f (x0) +
∑

i∈I(x0)

ui∇gi(x0) +
p∑

j=1

w j∇h j(x0) = 0.

Multiplying this relation by z, we have that u0 = 0. On the other hand, if C(x0) = C1(x0), we conclude that system (1)
has no solution z ∈ Rn. From the well-known Farkas lemma (see, e. g., Mangasarian (1969)), we deduce the existence of
multipliers ui = 0, i ∈ I(x0); w j ∈ R, j = 1, ..., p, such that

∇ f (x0) +
∑

i∈I(x0)

ui∇gi(x0) +
p∑

j=1

w j∇h j(x0) = 0. �

Theorem 5 (weak necessary second-order conditions for (P)) holds also under a constraint qualification weaker than
(MFCQ): the second-order Ben-Tal constraint qualification (which is also a first-order constraint qualification). See
Ben-Tal (1980), Giorgi (2019), Still and Streng (1996) and Section 3 of the present paper. However, Theorem 5 does
not hold under other weak first-order constraint qualifications, such as, for example, the well-known Abadie constraint
qualification (see, e. g., Bazaraa and Shetty (1976), Giorgi, Guerraggio and Thierfelder (2004), Giorgi (2018)). We recall
that the linearizing cone at x0 ∈ K is given by

L(K, x0) = L(x0) =
{
y ∈ Rn : ∇gi(x0)z 5 0, i ∈ I(x0); ∇h j(x0)z = 0, j = 1, ..., p

}
.

The Abadie constraint qualification is said to hold at x0 ∈ K if

L(x0) = T (K, x0). (2)

Quite recently, Andreani, Behling, Haeser and Silva (2017) have obtained for (P) strong second-order necessary optimality
conditions by means of a “modified” Abadie constraint qualification. In particular, these authors prove the following result
(their Theorem 3.3), previously given, without proof, by Bazaraa, Sherali and Shetty (2006, Exercise 5.9).

Theorem 8. Let x0 ∈ K be a local minimum point for (P) and suppose that x0 fulfils the (KKT) conditions. Let us define
the set

K1 =
{
x ∈ K : gi(x) = 0, ∀i ∈ I+(x0, u)

}
.

If the following “modified” Abadie constraint qualification holds at x0 :

Z(x0) = T (K1, x0), (3)

then we have
z⊤∇2

xL(x0, u,w)z = 0, ∀z ∈ Z(x0).

The previous theorem can be obtained in a simple and direct way as a consequence of more general results which make
reference to the Bouligand tangent cone.

Let us consider a minimization problem with an abstract constraint (or a set constraint):

(P1) : min f (x), x ∈ S ,

where f : Rn −→ R is twice-continuously differentiable on an open set containing the set S ⊂ Rn, on which no particular
topological property is a priori made. We have the following result.

Theorem 9. Let x0 ∈ S be a local minimum point for (P1); then we have:

(i)
∇ f (x0)y = 0, ∀y ∈ T (S , x0),

i. e.
−∇ f (x0) ∈ (T (S , x0))∗.

(ii) Let ∇ f (x0) = 0; then it holds:
y⊤∇2 f (x0)y = 0, ∀y ∈ T (S , x0).
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Proof.

(i) This result is well-known: see, e. g., Bazaraa and Shetty (1976), Giorgi, Guerraggio and Thierfelder (2004), Gould
and Tolle (1971).

(ii) Let y , 0 be any vector of T (S , x0). Without loss of generality let ∥y∥ = 1; then there exists a feasible sequence{
xk
}
⊂ S , with xk y

−→ x0. Being x0 a local minimum point of (P1), the quotients

f (xk) − f (x0)∥∥∥xk − x0
∥∥∥2 =

1
2 (xk − x0)⊤∇2 f (x0)(xk − x0) + o(

∥∥∥xk − x0
∥∥∥2)∥∥∥xk − x0

∥∥∥2
for k ∈ N large enough, are nonnegative and convergent to 1

2 y⊤∇2 f (x0)y. The thesis is therefore proved. �

Remark 1. If x0 ∈ int(S ), then T (S , x0) = Rn and (i) collapses to the classical Fermat necessary condition ∇ f (x0) = 0,
whereas condition (ii) recovers the classical second-order necessary optimality condition for an unconstrained optimiza-
tion problem.

Remark 2. It is possible to weaken the requirement ∇ f (x0) = 0 appearing in condition (ii) of Theorem 9. We have the
following result.

Theorem 10. Let x0 ∈ S be a local minimum point for (P1); then we have{
y⊤∇ f (x0) = 0, y ∈ F(S , x0)

}
=⇒ y⊤∇2 f (x0)y = 0.

Proof. By assumption there exists ᾱ such that x0 + αy ∈ S , ∀α ∈ [0, ᾱ] . The Taylor expansion gives

f (x0 + αy) − f (x0) = αy⊤∇ f (x0) +
1
2
α2y⊤∇2 f (x0)y + o(∥αy∥2) =

=
1
2
α2y⊤∇2 f (x0)y + o(∥αy∥2).

As the first member of the previous equalities is nonnegative, for sufficient small α, it will result y⊤∇2 f (x0)y = 0. �
If S is polyhedral it is then possible to substitute in Theorem 10 the cone F(S , x0) with the cone T (S , x0), but this
substitution is not possible in general, in order to obtain the thesis of Theorem 10.

Let us now consider the problem with both inequality and equality constraints, i. e. problem (P). Let x0 ∈ K be a local
minimum point for (P) and let some first-order constraint qualification be satisfied at x0 : for example (MFCQ) or the
Abadie constraint qualification (2) or the Guignard-Gould-Tolle constraint qualification:

(L(x0))∗ = (T (K, x0))∗

which is the weakest first-order constraint qualification for (P). See, e. g., Gould and Tolle (1971), Giorgi (2018). There-
fore at x0 the (KKT) conditions hold. We recall the definition of K1 :

K1 =
{
x ∈ K : gi(x) = 0, ∀i ∈ I+(x0, u)

}
.

But then, by the complementarity slackness conditions, we have

L(x, u,w) = f (x), ∀x ∈ K1.

As x0 is a local solution of(P), the same point is also a local solution of the problem

min
x∈K1
L(x, u,w) = f (x).

But, thanks to the Karush-Kuhn-Tucker conditions, it holds∇xL(x0, u.w) = 0.Applying Theorem 9, we have the following
result.
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Theorem 11. Let x0 ∈ K be a local solution of (P) and let (x0, u,w) be a triple satisfying the related Karush-Kuhn-Tucker
conditions. Then we have

y⊤∇2
xL(x0, u,w)y = 0, ∀y ∈ T (K1, x0).

Theorem 11 may be viewed as a relaxed version of Theorem 4, as it holds under any first-order constraint qualification.
On the other hand, it is not difficult to prove that it holds

T (K1, x0) ⊂ Z(x0).

Note that Z(x0) is just the linearizing cone at x0 referred to K1.Obviously, if the “modified” Abadie constraint qualification
(3) holds, we get the thesis of Theorem 8. A sufficient condition to have (3) is (LI) but also (SMFCQ).

We point out that similar questions have been treated also by Bomze (2016) who introduces an apparently new “modified”
Abadie constraint qualification, called by this author reflected Abadie constraint qualification:

L(x0) ⊂ T (K, x0) ∪
[
−T (K, x0)

]
. (4)

In the same paper Bomze (2016) remarks that the usual Abadie constraint qualification (2) implies (4) (and it implies
also the Guignard-Gould-Tolle constraint qualification, as it is well-known), but in general there are no inclusion relations
between the reflected Abadie constraint qualification and the Guignard-Gould-Tolle constraint qualification. Moreover, it
must be stressed that the reflected Abadie constraint qualification is not a first-order constraint qualification, i. e. it does
not assure (KKT) at an optimal point x0 of (P). Bomze (2016) proves the following result.

Theorem 12. Let x0 be a local solution of (P), let the Karush-Kuhn-Tucker conditions be verified at x0, with multipliers
vectors (u,w) and let the reflected Abadie constraint qualification (4) be satisfied, with respect to the set K1. Then we have

z⊤∇2
xL(x0, u,w)z = 0, ∀z ∈ Z(x0) = C(x0).

3. Constraint Qualifications via Second-Order Tangent Sets

Local second-order approximations of sets have been used by various authors in obtaining optimality conditions for
optimization problems, both for the scalar case and for the vector case. We quote the works of Aghezzaf and Hachimi
(1999), Aubin and Frankowska (1990), Bigi and Castellani (2000), Bonnans and Cominetti (1996), Bonnans, Cominetti
and Shapiro (1999), Bonnans and Shapiro (2000), Cambini, Martein and Vlach (1999), Castellani and Pappalardo (1996),
Cominetti (1990), Jiménez and Novo (2003, 2004), Kawasaki (1988), Penot (1994, 1998, 2000), Ruszczynski (2006).
See, for a survey and other bibliographical references, the paper of Giorgi, Jiménez and Novo (2010).

One of the first authors to treat second-order optimality conditions for (P) via a second-order tangent set is Kawasaki
(1988) who makes use of the lexicographic order. In the present section we add further results and information to the ones
obtained by Kawasaki (1988).

Definition 5. Let S ⊂ Rn and x0 ∈ S . The second-order contingent set of S at x0 in the direction v ∈ Rn is the set

T 2(S , x0, v) =
{

w ∈ Rn : ∃tn −→ 0+, ∃wn −→ w such that x0 + tn +
1
2

t2
nwn ∈ S , ∀n ∈ N

}
.

This set can be equivalently described as follows:

T 2(S , x0, v) =

w ∈ Rn : ∃tn −→ 0+, ∃xn ∈ S such that lim
n−→∞

xn − x0 − tnv
1
2 t2

n

= w

 =
= lim sup

t−→0+

S − x0 − tv
1
2 t2

.

(In the last expression the limit is intended in the Kuratowski sense).

It follows from the above definitions that the points on the parabolic trajectory

x(t) = x0 + tv +
t2

2
w, t = 0,

23



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 11, No. 5; 2019

are, for t = tk and k −→ ∞, very close to the set S :

dist(x(tk), S ) = o(t2
k ),

where dist(x, S ) denotes the Euclidean point-to-set distance from x to S .

Remark 3.

(i) T 2(S , x0, v) is a closed set contained in cl
[
cone(cone(S − x0) − v

]
. Here cone(A) is the cone generated by the (non

necessarily convex) set A.

(ii) If T 2(S , x0, v) , ∅, then v ∈ T (S , x0), but the viceversa does not hold. Therefore, the second-order contingent set may
be empty even if the direction v is chosen in the (first-order) contingent cone.

(iii) If v = 0, the second-order contingent set collapses into the contingent cone T (S , x0).

(iv) It holds
T 2(S , x0, λv) = λ2T 2(S , x0, v), ∀λ > 0

and
T 2(S , x0, v) + αv ⊂ T 2(S , x0, v), ∀α ∈ R.

(v) If S is a polyhedral set, then we have, with v ∈ T (S , x0),

T 2(S , x0, v) = T (T (S , x0), v).

Therefore in this case T 2(S , x0, v) is a convex cone (see Ruszczynski (2006)).

(vi) When S is a convex set, x0 ∈ S and v ∈ T (S , x0), then

T 2(S , x0, v) + T (T (S , x0), v) ⊂ T 2(S , x0, v).

See Bonnans, Cominetti and Shapiro (1999).

Definition 6. Let S ⊂ Rn and x0 ∈ S . The second-order set of attainable directions of S at x0 in the direction v ∈ Rn is
the set

A2(S , x0, v) =

 w ∈ Rn : ∃δ > 0, ∃γ : [0, δ] −→ R, such that
γ(0) = x0, γ(t) ∈ S , ∀t ∈ (0, δ] , lim

t−→0+
γ(t)−x0−tv

1
2 t2 = w

 .
This set can be equivalently described as follows:

A2(S , x0, v) =
{

w ∈ Rn : ∀tn −→ 0+ ∃wn −→ w such that x0 + tnv +
1
2

t2
nwn ∈ S , ∀n ∈ N

}
;

A2(S , x0, v) =

w ∈ Rn : ∀tn −→ 0+, ∃xn ∈ S such that lim
n−→∞

xn − x0 − tnv
1
2 t2

n

= w

 =
= lim inf

t−→0+

S − x0 − tv
1
2 t2

.

(The limit operation in the last expression is in the Kuratowski sense).

Remark 4. The set A2(S , x0, v) has properties similar to the ones of T 2(S , x0, v), for example:

(a)
A2(S , x0, v) , ∅ =⇒ v ∈ A(S , x0),

where A(S , x0) is the first-order cone of attainable directions (see Section 2).

(b) If v = 0, then A2(S , x0, v) = A(S , x0).

(c)
A2(S , x0, λv) = λ2A2(S , x0, v), ∀λ > 0.
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For other properties of T 2(S , x0, v) and A2(S , x0, v) see, e. g., Aubin and Frankowska (1990), Castellani and Pappalardo
(1996), Ward (1993). It is quite easy to prove that for any S ⊂ Rn it holds

A2(S , x0, v) ⊂ T 2(S , x0, v), ∀v ∈ Rn.

A first result concerning second-order necessary conditions in terms of T 2(S , x0, v) takes into consideration the following
problem (P1) :

(P1) : min f (x), x ∈ S ⊂ Rn.

This result is due to Penot (1994); see also Giorgi (2019) and Rusczynski (2006).

Theorem 13. Assume that x0 is a local solution of (P1). Then, for every v ∈ T (S , x0) such that ∇ f (x0)v = 0, we have

∇ f (x0)w + v⊤∇2 f (x0)v = 0, ∀w ∈ T 2(S , x0, v).

If we denote by C( f , x0) and C2( f , x0, v), respectively, the sets

C( f , x0) =
{
v ∈ Rn : ∇ f (x0)v = 0

}
,

C2( f , x0, v) =
{
w ∈ Rn : ∇ f (x0)w + v⊤∇2 f (x0)v < 0

}
,

Theorem 13 can be expressed as: ∀v ∈ T (S , x0) ∩C( f , x0) it holds

T 2(S , x0, v) ∩C2( f , x0, v) = ∅.

We recall that the linearizing cone for (P) at x0 ∈ K is given by

L(K, x0) ≡ L(x0) =
{
v ∈ Rn : ∇gi(x0)v 5 0, i ∈ I(x0); ∇h j(x0)v = 0, j = 1, ..., p

}
.

Therefore, if the (KKT) conditions hold, the critical cone Z(x0) = C(x0) is given by

C(x0) = C( f , x0) ∩ L(x0).

In order to discuss constraint qualifications related to second-order local approximations of sets we need some definitions.

We define the strict linearizing cone for (P) at x0 ∈ K as

L<(x0) =
{
v ∈ Rn : ∇gi(x0)v < 0, i ∈ I(x0); ∇h j(x0)v = 0, j = 1, ..., p

}
.

We define the second-order linearizing set for (P) at x0 ∈ K in the direction v as

L2(x0, v) =
{

w ∈ Rn : ∇gi(x0)w + v⊤∇2gi(x0)v 5 0, i ∈ I∗(x0, v);
∇h j(x0)w + v⊤∇2h j(x0)v = 0, j = 1, ..., p

}
,

where, if I(x0) , ∅,
I∗(x0, v) =

{
i ∈ I(x0) : ∇gi(x0)v = 0

}
.

Note that L2(x0, v) is a closed and convex polyhedral set.

We define the strict second-order linearizing set for (P) at x0 ∈ K in the direction v as

L2
<(x0, v) =

{
w ∈ Rn : ∇gi(x0)w + v⊤∇2gi(x0)v < 0, i ∈ I∗(x0, v);

∇h j(x0)w + v⊤∇2h j(x0)v = 0, j = 1, ..., p

}
.

Now we consider some second-order constraint qualifications for (P) in terms of the definitions previously given.

Let be given K =
{
x ∈ Rn : gi(x) 5 0, i = 1, ...,m; h j(x) = 0, j = 1, ..., p

}
, let x0 ∈ K and v ∈ L(x0).We say that at (x0, v)

the following second-order constraint qualifications are satisfied if the related properties described below hold.

(1) Slater constraint qualification, if each gi, i ∈ I(x0), is a convex function, each h j, j = 1, ..., p, is an affine function and
there exists x̄ ∈ K such that

gi(x̄) < 0, i ∈ I(x0); h j(x̄) = 0, j = 1, ..., p.
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(2) Second-order linear independence condition, if the vectors

∇gi(x0), i ∈ I∗(x0, v); ∇h j(x0), j = 1, ..., p,

are linearly independent.

(3) Second-order Mangasarian-Fromovitz constraint qualification or second-order Ben-Tal constraint qualification, if:

a) The vectors
{
∇h j(x0), j = 1, ..., p

}
are linearly independent;

b) It holds L2
<(x0, v) , ∅.

Still and Streng (1996) call this constraint qualification “second-order Mangasarian-Fromovitz constraint qualification”,
while Kawasaki (1988) calls the same “second-order Ben-Tal constraint qualification”. Indeed, Ben-Tal (1980, page 158)
introduced this constraint qualification.

(4) Second-order Kuhn-Tucker constraint qualification, if

A2(K, x0, v) = L2(x0, v) , ∅.

(5) Second-order Abadie constraint qualification, if

T 2(K, x0, v) = L2(x0, v) , ∅.

We note that the second-order versions of the Abadie and of the Kuhn-Tucker constraint qualifications are in fact stronger
than their first-order counterparts, while the second order (MFCQ) is weaker than the first-order (MFCQ). More precisely,
we have the following results.

Theorem 14.

(a) If the Slater constraint qualification holds, then the first-order (MFCQ) holds.

(b) If the first-order (LI) constraint qualification holds, then the first-order (MFCQ) holds.

(c) If the first-order (LI) constraint qualification holds, then the second-order linear independence condition is satisfied at
(x0, v), ∀v ∈ L(x0).

(d) If the first-order (MFCQ) holds, then the second-order Mangasarian-Fromovitz constraint qualification holds at (x0, v),
∀v ∈ L(x0).

(e) If the second-order linear independence condition holds, then the second-order Mangasarian-Fromovitz constraint
qualification holds.

(f) If the second-order Mangasarian-Fromovitz constraint qualification holds, then the second-order Kuhn-Tucker con-
straint qualification holds.

(g) If the second-order Kuhn-Tucker constraint qualification holds, then the second-order Abadie constraint qualification
holds.

(h) If T 2(K, x0, v) , ∅, ∀v ∈ L(x0), then L(x0) = T (K, x0), i. e. the first-order Abadie constraint qualification holds. In
other words, if the second-order Abadie constraint qualification holds, then the first-order Abadie CQ holds.

(i) If A2(K, x0, v) , ∅, ∀v ∈ L(x0), then L(x0) = A(K, x0), i. e. the first-order Kuhn-Tucker constraint qualification holds.
In other words, if the second-order Kuhn-Tucker CQ holds, then the first-order kuhn-Tucker CQ holds.

For the proof of the above theorem we need some previous results. In the next lemma some relations between the second
order sets previously introduced are given.

Lemma 1. Let K ⊂ Rn be the feasible set of (P). Then:

1)
T 2(K, x0, v) ⊂ L2(x0, v),∀v ∈ L(x0).

2) If, moreover, the gradients
{
∇h j(x0), j = 1, ..., p

}
are linearly independent, then

L2
<(x0, v) ⊂ A2(, x0, v), ∀v ∈ L(x0)

and hence
L2
<(x0, v) ⊂ A2(, x0, v) ⊂ T 2(K, x0, v) ⊂ L2(x0, v),∀v ∈ L(x0).
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Proof. Property 1) is a consequence of the relations

(a)  lim
n−→∞

xn − x0 − tnv
1
2 t2

n

= w, with tn −→ 0+
 =⇒

=⇒ lim
n−→∞

f (xn) − f (x0) − tn∇ f (x0)v
1
2 t2

n

=

= ∇ f (x0)w + v⊤∇2 f (x0)v.

(b) If γ : [0, ε] −→ Rn gives

lim
t−→0+

γ(t) − x0 − tv
1
2 t2

= w,

then

lim
t−→0+

f (γ(t)) − f (x)0 − t∇ f (x0)v
1
2 t2

=

= ∇ f (x0)w + v⊤∇2 f (x0)v.

For the proof of part 2) let us define the sets

G =
{
x ∈ Rn : g(x) 5 0

}
, H = {x ∈ Rn : h(x) = 0} .

(Obviously K = G ∩ H). Applying proposition 4.5 of Ward (1993) we obtain

A2(H, x0, v) = T 2(H, x0, v) = K2(H, x0, v),

where
K2(H, x0, v) =

{
w ∈ Rn : ∇h(x0)w + v⊤∇2h(x0)v = 0

}
.

Let w ∈ L2
<(x0, v) and hence w ∈ K2(H, x0, v). Then w ∈ A2(H, x0, v). This means that there exists γ : [0, δ] −→ Rn such

that γ(0) = x0, γ(t) ∈ H, ∀t ∈ (0, δ] ,

lim
t−→0+

γ(t) − x0 − tv
1
2 t2

= w (5)

and
lim

t−→0+

γ(t) − γ(0)
t

= v. (6)

We see that for t sufficiently small γ(t) ∈ G. If i ∈ M�I(x0), i. e. gi(x0) < 0, we have gi(γ(t)) < 0, ∀t ∈ (0, εi). If
i ∈ I(x0)�I∗(x0, v), then gi(x0) = 0 and ∇gi(x0)v < 0 (v ∈ L(x0)). Hence, by (6)

lim
t−→0+

gi(γ(t)) − gi(x0)
t

= ∇gi(x0)v < 0.

Therefore gi(γ(t)) < 0, ∀t ∈ (0, εi). If i ∈ I∗(x0, v), then gi(x0) = ∇gi(x0)v = 0 and by (5) and applying the relations
appearing in the proof of part 1) we get

lim
t−→0+

gi(γ(t)) − gi(x0) − t∇gi(x0)v
1
2 t2

= lim
t−→0+

gi(γ(t))
1
2 t2

=

= ∇gi(x0)w + v⊤∇2gi(x0)v < 0.

Hence gi(γ(t)) < 0, ∀t ∈ (0, εi).

For ε = min {εi, i ∈ M} , we have g(γ(t)) < 0, ∀t ∈ (0, ε). Therefore γ(t) ∈ G ∩ H = K and hence w ∈ A2(K, x0, v). �

Lemma 2. If L2
<(x0, v) , ∅, then cl(L2

<(x0, v)) = L2(x0, v).

Proof. Let w ∈ L2
<(x0, v), u ∈ L2(x0, v), ai = −v⊤∇2gi(x0)v and uλ = λw + (1 − λ)u for λ ∈ (0, 1).
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By definition, ∇gi(x0)w < ai and ∇gi(x0)u 5 ai, ∀i ∈ I∗(x0, v). Therefore, multipliying by λ and by (1 − λ) respectively
and summing, we obtain

∇gi(x0)uλ = ∇gi(x0)(λw + (1 − λ)u) < λai + (1 − λ)ai = ai.

Similarly, taking into consideration the gradients ∇h j(x0), we obtain ∇h j(x0)uλ = 0, and therefore we deduce that uλ ∈
L2
<(x0, v); being

lim
λ−→0+

uλ = u,

we conclude that u ∈ cl(L2
<(x0, v)). �

Proof of Theorem 14.

Propositions (a) and (b) are well-known. Proposition (c) is evident. For proposition (c) see Still and Streng (1996, remark
3.8). For proposition (e), let us consider the set

K∗ =
{
x ∈ Rn : gi(x) = 0, ∀i ∈ I∗(x0, v); h j(x) = 0, ∀ j = 1, ..., p

}
.

The assumptions imply that the first-order Mangasarian-Fromovitz CQ holds for the set K∗ (defined by equalities only at
x0): see Bazaraa and Shetty (1976, theorem 6.2.3 (iii)). Hence, by proposition c), it holds the second-order Mangasarian-
Fromovitz CQ at (x0, v) for all v ∈ L1(K∗, x0), where

L1(K∗, x0) =
{
v ∈ Rn : ∇gi(x0)v = 0, ∀i ∈ I∗(x0, v); ∇h j(x0)v = 0, ∀ j = 1, ..., p

}
.

Proposition (f) follows from Lemma 1 and Lemma 2, taking into account that the set A2(K, x0, v) is closed.

Proposition (g) folloes from the fact that it holds

A2(K, x0, v) ⊂ T 2(K, x0, v), ∀v ∈ Rn.

Proposition (h) follows from the fact that if T 2(K, x0, v) , ∅, then v ∈ T (K, x0); therefore L(x0) ⊂ T (K, x0). The reverse
inclusion always holds, as it is well-known.

The proof of proposition (i) is similar to the proof of proposition (h). �
Remark 5. Still and Streng (1996, example 3.1) have shown that the inclusion of proposition (d) of the previous
theorem is strict. If the second-order Mangasarian-Fromovitz CQ holds, then we have the following rule to calculate the
second-order tangent sets T 2(K, x0, v) and A2(K, x0, v) :

A2(K, x0, v) = T 2(K, x0, v) = L2(K, x0, v).

The following basic result has been obtained by Kawasaki (1988) who makes reference to the lexicographic order and,
for vector (Pareto) optimization problems, by Aghezzaf and Hachimi (1999) and by Bigi and Castellani (2000). For the
reader’s convenience we give a proof.

Theorem 15. Let x0 ∈ K be a local minimum point for (P) and let the second-order Abadie constraint qualification be
verified at (x0, v) for all v ∈ C(0) = Z(x0). Then for each v ∈ C(x0) there exist multipliers µ ∈ Rm and ν ∈ Rp such that the
(KKT) conditions hold at x0 and, moreover,

v⊤(∇2 f (x0) +
m∑

i=1

µi∇2gi(x0) +
p∑

j=1

∇2h j(x0))v = 0.

In particular, it will be µi = 0 for all i < I∗(x0, v).

Proof. As the second-order Abadie constraint qualification holds at (x0, v) for all v ∈ C(x0), then the first-order Abadie
constraint qualification holds at x0 and the (KKT) conditions will hold at x0. Then, by Theorem 13 we have the implication

v ∈ T (K, x0) ∩C( f , x0) =⇒ T 2(K, x0, v) ∩C2( f , x0, v) = ∅,

where
C2( f , x0, v) =

{
w ∈ Rn : ∇ f (x0)w + v⊤∇2 f (x0)v < 0

}
.
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In other words, we have, being T (K, x0) = L(x0) and C(x0) = L(x0) ∩C( f , x0),

L2(x0, v) ∩C2( f , x0, v) = ∅, ∀v ∈ C(x0).

This means that the following system, with v ∈ C(x0),
∇ f (x0)w + v⊤∇2 f (x0)v < 0
∇gi(x0)w + v⊤∇2gi(x0)v 5 0, ∀i ∈ I∗(x0, v)
∇h j(x0)w + v⊤∇2h j(x0)v = 0, ∀ j = 1, ..., p,

has no solution w ∈ Rn.

By the nonhomogeneous Farkas lemma of Still and Streng (1996, lemma 4.2), it will exist therefore scalars α, λ and
vectors µ, ν, with (α, λ, µ) = 0, (α, λ) , 0, such that, with v ∈ C(x0),

λ∇ f (x0) +
∑

i∈I∗(x0,v)

µi∇gi(x0) +
p∑

j=1

ν j∇h j(x0) = 0 (7)

v⊤
λ∇2 f (x0) +

∑
i∈I∗(x0,v)

µi∇2gi(x0) +
p∑

j=1

ν j∇2h j(x0)

 v = α = 0 (8)

If α = 0, then λ , 0 and the theorem is proved.

Then, let α > 0 and suppose λ = 0. Let us multiply relation (7) by w ∈ Rn; by summing to (8), we obtain, for each w ∈ Rn

∑
i∈I∗(x0,v)

µi(∇gi(x0)w + v⊤∇2gi(x0)v) +
p∑

j=1

ν j(∇h j(x0)w + v⊤∇2h j(x0)v) = α > 0.

But, being the second-order Abadie constraint qualification be verified, we can choose w ∈ L2(x0, v) and thus obtaining a
contradiction with the last relation, as in this case the first member of the same is 5 0 for this choice of w. �
Remark 6. Bigi and Castellani (2000) consider a Pareto optimization problem and define the second-order Abadie
constraint qualification without requiring the condition T 2(K, x0, v) , ∅, but this is necessary, as a counterexample, for a
Pareto problem, given by Jiménez and Novo (2003) shows. We note, moreover, that in fact the assumption of the Abadie
second-order constraint qualification of Theorem 15 can be replaced by the weaker second-order Guignard-Gould-Tolle
constraint qualification, i. e., with v ∈ L(x0) and T 2(K, x0, v) , ∅,

(T 2(K, x0, v))∗ = (L2(x0, v))∗

for every v ∈ C(x0), or equivalently,
L2(x0, v) = cl(conv(T 2(K, x0, v))),

for every v ∈ C(x0).

Finally, as in Bigi and Castellani (2000), it is possible to weaken further the second-order Abadie or Guignard-Gould-
Tolle constraint qualification, by requiring that these conditions hold only for some vectors v ∈ C(x0). Obviously, in this
case, the related second-order necessary optimality conditions will hold only for those v ∈ C(x0).
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