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Abstract

This paper deals with the study of the numerical approximation for the following semilinear equation with a nonlinear
absorption term ut = uxx − λup, 0 < x < 1, t > 0, and a nonlinear flux boundary condition ux(0, t) = 0, ux(1, t) =
uq(1, t), t > 0. We give conditions under which the positive semidiscrete solution blows up in a finite time. Convergence
of the numerical blow-up time to the theoretical one when the mesh size goes to zero is established. Finally, we use an
efficient algorithm to estimate the blow-up time.

Keywords: semilinear equation, numerical blow-up, nonlinear boundary, finite differences, arc length transformation,
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1. Introduction

Consider the following semilinear parabolic problem
ut = uxx − λup, 0 < x < 1, t > 0
ux(0, t) = 0, ux(1, t) = uq(1, t), t > 0,
u(x, 0) = u0(x) > 0, 0 ≤ x ≤ 1,

(1)

where p, q > 1, λ > 0 are given constants, and u0 is a positive smooth function defined on [0, 1] such that u′0(0) = 0 and
u′0(1) = uq

0(1). It is proved that regularity solutions exist for this problem see (Gómez, Márquez, & Wolanski, 1993). For
differential equations, solutions can become unbounded in finite time, we say that they blow up, or they can be defined
for all time and we call them global solutions. We call a blow-up point, the point of the space where the solution become
unbounded in finite time.

For problem (1), Gómez J. L. et al. (Gómez et al., 1993) prove that under certain conditions on u0, λ, p and q, blow-up
occurs in finite time at the boundary x = 1; in particular,

• when p < q and u0 > uλ where uλ is the unique positive stationary solution,

• when p = q, u0 > 0 and λ < 1.

Rossi J. D. (Rossi, 1998) investigated the blow-up rate for positive solutions of problem (1). He also characterize the
blow-up profile in similarity variables. Problem (1) can be considered as a heat conduction problem. In this case, u
represents the temperature, see (Assalé, Boni, & Diabate, 2008).

we focus in this paper on the numerical approximations of (1). Since the solution u blows up in finite time, it is worth
asking what can be stated about numerical approximations of this type of problems. For previous work on numerical
approximations of blowing up solutions we refer to (Abia, López-Marcos, & Martı́nez, 1996; Adou, Touré, & Coulibaly,
2019; Assalé et al., 2008; Dratman, 2010; Edja, Touré, & Koua, 2018; Ganon, Taha, & Touré, 2019; N’dri, Touré, & Yoro,
2018; Touré, N’Guessan, & Diabate, 2015; Taha, Touré, & Mensah, 2012 and references therein).

This paper is structured as follows : in section 2, we introduce a semidiscrete scheme of the problem (1). In Section 3, we
give some properties of this semidiscrete scheme. In Section 4, under suitable conditions, we show that the semidiscrete
solution blows up in a finite time and this numerical blow-up time converges to the theoretical one when the mesh size
goes to zero. Finally, in section 5, we illustrate our analysis by giving some numerical results.
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2. Semidiscrete Problem

Let I be a positive integer and define the grid xi = ih, i = 0, . . . , I, where h =
1
I

is the mesh parameter. We approximate

the solution u of the problem (1) by the solution Uh(t) = (U0(t), . . . ,UI(t))T of the following semidiscrete scheme

dUi(t)
dt

= δ2Ui(t) − λU p
i (t), i = 0, . . . , I − 1, t ∈ (0,Th), (2)

dUI(t)
dt

= δ2UI(t) +
2
h

Uq
I (t) − λU p

I (t), t ∈ (0,Th), (3)

Ui(0) = φi > 0, i = 0, . . . , I, (4)

where for t ∈ (0,Th),

δ2Ui(t) =
Ui+1(t) − 2Ui(t) + Ui−1(t)

h2 , i = 1, . . . , I − 1,

δ2U0(t) =
2U1(t) − 2U0(t)

h2 ,

δ2UI(t) =
2UI−1(t) − 2UI(t)

h2

and [0,Th), the maximal time interval on which ∥Uh(t)∥∞ = max0≤i≤I |Ui(t)| is finite. We say that Uh(t) blows up in a finite
time if the time Th is finite, and Th is called the blow-up time of Uh(t).
Denote

δ2∗Ui(t) =

δ
2Ui(t) if i = 0, . . . , I − 1,

δ2UI(t) +
2
h

Uq
I (t) if i = I.

3. Properties of the Semidiscrete Problem

The below comparison lemma is another form of the maximum principle for the semidiscrete equations.

Lemma 1 Let f ∈ C0(R,R), if Vh,Wh ∈ C1([0, T ),RI+1) are such that

dVi(t)
dt
− δ2Vi(t) − f (Vi(t)) <

dWi(t)
dt

− δ2Wi(t) − f (Wi(t)), i = 0, . . . , I, t ∈ (0,T ), (5)

Vi(0) < Wi(0), i = 0, . . . , I, (6)

then we have Vi(t) < Wi(t), 0 ≤ i ≤ I, t ∈ (0, T ).

Proof. Let us define the functions Zi(t) = Wi(t)−Vi(t), 0 ≤ i ≤ I, t ∈ [0,T ). Let t0 be the first t ∈ (0,T ) such that Zi(t) > 0
for t ∈ [0, t0), 0 ≤ i ≤ I, but Zi0 (t0) = 0 for a certain i0 ∈ {0, . . . , I}. It is not difficult to see that

d
dt

Zi0 (t0) = lim
k→0

Zi0 (t0) − Zi0 (t0 − k)
k

≤ 0,

δ2Zi0 (t0) =
Zi0+1(t0) − 2Zi0 (t0) + Zi0−1(t0)

h2 ≥ 0 if 1 ≤ i0 ≤ I − 1,

δ2Zi0 (t0) =
2Z1(t0) − 2Z0(t0)

h2 ≥ 0 if i0 = 0,

δ2Zi0 (t0) =
2ZI−1(t0) − 2ZI(t0)

h2 ≥ 0 if i0 = I,

which implies that
d
dt

Zi0 (t0) − δ2Zi0 (t0) − f (Wi0 (t0)) + f (Vi0 (t0)) ≤ 0,

but this inequality contradicts (5) and the proof is complete.

Lemma 2 Let Uh be a solution of (2)-(4). Then,

Ui(t) > 0, i = 0, . . . , I, t ∈ [0, Th).
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Proof. Let t0 be the first t ∈ (0, Th) such that Ui(t) > 0 for t ∈ [0, t0), 0 ≤ i ≤ I, but Ui0 (t0) = 0 for a certain i0 ∈ {0, . . . , I}.
One can easily check that

dUi0 (t0)
dt

= lim
ϵ→0

Ui0 (t0) − Ui0 (t0 − ϵ)
ϵ

≤ 0,

δ2Ui0 (t0) =
Ui0+1(t0) − 2Ui0 (t0) + Ui0−1(t0)

h2 > 0 if 1 ≤ i0 ≤ I − 1,

δ2Ui0 (t0) =
2U1(t0) − 2U0(t0)

h2 > 0 if i0 = 0,

δ2Ui0 (t0) =
2UI−1(t0) − 2UI(t0)

h2 > 0 if i0 = I,

which implies that

dUi0 (t0)
dt

− δ2Ui0 (t0) + λU p
i0

(t0) < 0, if 0 ≤ i0 ≤ I − 1,

dUI(t0)
dt

− δ2UI(t0) − 2
h

Uq
I (t0) + λU p

I (t0) < 0, if i0 = I.

But these inequalities contradict (2)-(4) and we get the expected result.

Lemma 3 Let Uh be a solution of (2)-(4) and the initial condition at (4) verifies

δ2∗φi − λφp
i > 0, 0 ≤ i ≤ I.

Then,
dUi(t)

dt
> 0 for 0 ≤ i ≤ I, t ∈ [0,Th).

Proof. Consider the functions Wi(t) =
dUi(t)

dt
, 0 ≤ i ≤ I, t ∈ [0,Th). Let t0 be the first t ∈ (0,Th) such that Wi(t) > 0 for

t ∈ [0, t0), but Wi0 (t0) = 0 for a certain i0 ∈ {0, . . . , I}. We may assume without lost of generality that i0 is the smallest
integer which satisfies the above equality. Then we have

dWi0 (t0)
dt

= lim
k→0

Wi0 (t0) −Wi0 (t0 − k)
k

≤ 0, 0 ≤ i0 ≤ I,

δ2Wi0 (t0) =
Wi0+1(t0) − 2Wi0 (t0) +Wi0−1(t0)

h2 > 0, 1 ≤ i0 ≤ I − 1,

δ2Wi0 (t0) =
2W1(t0) − 2W0(t0)

h2 > 0, i0 = 0,

δ2Wi0 (t0) =
2WI−1(t0) − 2WI(t0)

h2 > 0, i0 = I,

which implies by a simple computation that

dWi0 (t0)
dt

− δ2Wi0 (t0) + λpU p−1
i0

(t0)Wi0 (t0) < 0 if 0 ≤ i0 ≤ I − 1, (7)

dWI(t0)
dt

− δ2WI(t0) +
(
λpU p−1

I (t0) − 2q
h

U p−1
I (t0)

)
WI(t0) < 0 if i0 = I. (8)

But inequalities (7)-(8) contradict (2)-(3), and the lemma is proved.

Lemma 4 Let Uh be a solution of (2)-(4) and the initial condition at (4) verifies

φi < φi+1, 0 ≤ i ≤ I.

Then, Ui(t) < Ui+1(t), 0 ≤ i ≤ I − 1, t ∈ [0,Th).

Proof. Let t0 be the first t > 0 such that Ui+1(t) − Ui(t) > 0 for t ∈ [0, t0), 0 ≤ i ≤ I − 1, but Ui0+1(t) − Ui0 (t) = 0 for
a certain i0 ∈ {0, . . . , I − 1}. We may suppose without lost of generality that i0 is the smallest integer which verifies the
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above equality. Let us now consider the functions Zi(t) = Ui+1(t) − Ui(t) for 0 ≤ i ≤ I − 1, t ∈ [0,Th).We have

dZi0 (t0)
dt

= lim
ϵ→0

Zi0 (t0) − Zi0 (t0 − ϵ)
ϵ

≤ 0, 0 ≤ i0 ≤ I − 1,

δ2Zi0 (t0) =
Zi0+1(t0) − 2Zi0 (t0) + Zi0−1(t0)

h2 > 0, 1 ≤ i0 ≤ I − 2,

δ2Zi0 (t0) =
Z1(t0) − 3Z0(t0)

h2 > 0, i0 = 0,

δ2Zi0 (t0) =
ZI−2(t0) − 3ZI−1(t0)

h2 > 0, i0 = I − 1,

which implies that

dZi0 (t0)
dt

− δ2Zi0 (t0) + λ
(
U p

i0+1(t0) − U p
i0

(t0)
)
< 0 if 0 ≤ i0 ≤ I − 2, (9)

dZI−1(t0)
dt

− δ2ZI−1(t0) − 2
h

Uq
I (t0) + λ

(
U p

I (t0) − U p
I−1(t0)

)
< 0 if i0 = I − 1. (10)

The inequalities (9)-(10) contradict (2)-(3) and the desired result follows.

The following theorem gives conditions under which the solution Uh of (2)-(4) converges to the corresponding one of (1).

Theorem 1 Assume that the problem (1) has a solution u ∈ C4,1([0, 1] × [0,Td]) and the initial condition at (4) verifies

∥φh − uh(0)∥∞ = o(1) as h→ 0, (11)

where uh(t) =
(
u(x0, t), . . . , u(xI , t)

)T
. Then, for h small enough, the semidiscrete problem (2)-(4) has a unique solution

Uh ∈ C1([0,Td],RI+1) such that

max
0≤t≤Td

∥Uh(t) − uh(t)∥∞ = O
(∥φh − uh(0)∥∞ + h2) as h→ 0. (12)

Proof. Let γ > 0 be such that
∥u(·, t)∥∞ ≤ γ for t ∈ [0,Td]. (13)

Then the problem (2)-(4) has for each h, a unique solution Uh ∈ C1([0,Th),RI+1).
Let t(h) ≤ min{Td,Th} be the greatest value of t > 0 such that

∥Uh(t) − uh(t)∥∞ < 1. (14)

The relation (11) implies t(h) > 0 for h small enough. Using the triangle inequality, we obtain

∥Uh(t)∥∞ ≤ ∥u(·, t)∥∞ + ∥Uh(t) − uh(t)∥∞ for t ∈ (0, t(h)),

which leads to
∥Uh(t)∥∞ < 1 + γ for t ∈ (0, t(h)). (15)

Let eh(t) = Uh(t) − uh(t), t ∈ (0, t(h)) be the discretization error and consider the function

Z(x, t) =
(∥φh − uh(0)∥∞ + Mh2)e(L+1)t+Cx2

where M, L, C are non-negative constants. We denote by Z(xi, t) the discretisation in space of Z(x, t).
For suitable non-negative constants M, L, C, we prove, using Lemma 1 that

|ei(t)| < Z(xi, t), 0 ≤ i ≤ I, t ∈ (0, t(h)), see (Taha et al., 2012) for more details.

We deduce that
∥Uh(t) − uh(t)∥∞ ≤

(∥φh − uh(0)∥∞ + Mh2)e(L+1)t+C , t ∈ (0, t(h)). (16)

Now, we prove that t(h) = Td. Suppose that t(h) < Td. From (14) and (16), we obtain

1 = ∥Uh(t(h)) − uh(t(h))∥∞ ≤
(∥φh − uh(0)∥∞ + Mh2)e(L+1)Td+C .
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Since the term on the right hand side of the above inequality goes to zero as h tends to zero, we deduce that 1 ≤ 0, which
is impossible.

4. Numerical Blow-up

From now on, we suppose u0(1) ≥ 1. Under suitable assumptions, we prove that the solution Uh of the semidiscrete
problem (2)-(4) blows up in finite time and that its semidiscrete blow-up time converges to the real one when the mesh
size goes to zero.

We set

(H1) : u0 > 0, u′0 ≥ 0 and u′′0 − λu
p
0 > 0 in [0, 1],

(H2) : p ≤ q and 0 < λ <
(q − 1)(p + 1)
(q + 1)(p − 1)

.

Theorem 2 Let q > 2. Assume that the problem (1) has a solution u which blows up in finite time T such that u ∈
C4,1([0, 1] × [0,T )) and the initial condition at (4) verifies ∥φh − uh(0)∥∞ = o(1) as h → 0. Under the assumptions (H1)
and (H2), the unique solution Uh of (2)-(4) blows up in finite time Th for sufficiently small h, and we have :

lim
h→0

Th = T.

Proof. For the proof, we use the Theorem 1.4 given in (Ushijima, 2000). We have to check conditions A0, A1”’ and A2’
of this theorem before applying it.

Step 1 (Condition A0) The solution u of (1) blows up in finite time T see (Gómez et al., 1993).

Step 2 (Condition A1”’) We define the energy I of problem (1) by

I[u](t) =
1
2

∫ 1

0
u2

x(x, t)dx − 1
q + 1

uq+1(1, t) +
λ

p + 1

∫ 1

0
up+1(x, t)dx, t ∈ [0,T ). (17)

For any solution u, this energy I is monotone non-increasing function of t. In fact,

d
dt

I[u](t) = −
∫ 1

0
u2

t (x, t)dx ≤ 0.

Because assumption (H1) holds, we know from (Gómez et al., 1993) that u > 0, ut ≥ 0 and from (Chipot, Fila, & Quittner,
1991) that ux ≥ 0.

Introduce the functional J as follows :

J[u](t) =
∫ 1

0
u2(x, t)dx, t ∈ [0, T ). (18)

We have

d
dt

J(t) = 2
∫ 1

0
u(x, t)ut(x, t)dx

= 2
(
−2I[u](t) +

q − 1
q + 1

uq+1(1, t) − λ p − 1
p + 1

∫ 1

0
up+1(x, t)dx

)
≥ −4I[u](t) + 2

(q − 1)(p + 1) − λ(q + 1)(p − 1)
(q + 1)(p + 1)

uq+1(1, t) because u0(1) ≥ 1

≥ −4I[u0] + 2
(q − 1)(p + 1) − λ(q + 1)(p − 1)

(q + 1)(p + 1)
uq+1(1, t) because I is non-increasing. (19)

Set α = 2
(q − 1)(p + 1) − λ(q + 1)(p − 1)

(q + 1)(p + 1)
> 0 because of H2.

Then we have
d
dt

J(t) ≥ −4I[u0] + αuq+1(1, t) (20)

= −4I[u0] + α
(
uq+1(0, t) + (q + 1)

∫ 1

0
ux(x, t)uq(x, t)dx

)
.
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Since ut is nonnegative, we have uxx ≥ 0. Which implies that ux is a continuous and non-decreasing fonction with respect

to x. Then, there exists ξ(t) ∈ (0, 1) such that
∫ 1

0
ux(x, t)uq(x, t)dx = ux(ξ(t), t)

∫ 1

0
uq(x, t)dx.

Denote Γ1 = −4I[u0] + αuq+1
0 (0) and Γ2 = inf

{
α(q + 1)ux(ξ(t), t), t ∈ [0,T ]

}
.

Thus, we have

d
dt

J(t) ≥ Γ1 + Γ2

∫ 1

0
uq(x, t)dx

≥ Γ1 + Γ2
(
J
)q/2
. (21)

We obtain relation (21) by using Jensen’s inequality.

Define H(t) = −4I[u0] + αuq+1(1, t), t ∈ [0, T ).

From (19), we have
d
dt

J(t) ≥ H(t), t ∈ [0, T ) and lim
t→T

H(t) = ∞ since the blow-up point of u is x = 1.

Now, for t ∈ [0, Th), we denote by

Ih[Uh](t) =
1
2h

I−1∑
i=0

(
Ui+1(t) − Ui(t)

)2
− 1

q + 1
Uq+1

I (t) +
λh

p + 1

I∑
i=0

U p+1
i (t), (22)

Jh(t) = h
I∑

i=0

U2
i (t), (23)

Hh(t) = −4I[φh] + αUq+1
I (t), (24)

the numerical approximations of I, J and H, respectively.

By a simple computation, we obtain for t ∈ [0,Th),

dJh(t)
dt

≥ Hh(t) and
dHh(t)

dt
= α(q + 1)Uq

I (t)
dUI(t)

dt
≥ 0.

A straightforward calculation yields the following inequality

dJh(t)
dt

≥ Γ′1 + Γ′2
(
Jh

)q/2
,

where Γ′1 = −4I[φh] + αφq+1
0 and

Γ′2 = inf
{
α(q + 1)

Uk0+1(t)−Uk0 (t)
h , t ∈ [0,Th]

}
> 0, with k0 ∈ {1, . . . , I − 2} fixed.

Putting G(s) = Γ′1 + Γ
′
2(s)q/2, it is clear that

dJh(t)
dt

≥ G(Jh),

and there exists s0 > 0 such that 
G(s) > 0 for s > s0,∫ ∞

s0

1
G(s)

ds < ∞ since q > 2.

Condition (A”’) of theorem 1.4 in (Ushijima, 2000) is satisfied.

Step 3 (Condition A2’) By virtue of theorem 1, we show that for any ϵ > 0,

lim
h→0

sup
t∈[0,T−ϵ]

|J[u](t) − Jh[Uh](t)| = 0 and lim
h→0

sup
t∈[0,T−ϵ]

|H(t) − Hh(t)| = 0.

Finally, conditions A0, A1”’ and A2’ are satisfied. According to theorem 1.4 of (Ushijima, 2000), we obtain the desired
results.
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5. Numerical Experiments

In this section, we estimate the blow-up time of (2)-(4) by using the algorithm proposed by C. Hirota and K. Ozawa
(Hirota & Ozawa, 2006). This algorithm deals with the numerical blow-up time of ODEs (here, the semidiscrete scheme
(2)-(4)). We first use the arc length transformation technique to transform the semidiscrete scheme (2)-(4) like this :

d
dℓ


t

U0
...

UI


=

1√
1 +

∑I
i=1 f 2

i


1
f0
...

fI


, 0 < ℓ < ∞,

t(0) = 0, Ui(0) = φi, 0 ≤ i ≤ I,

(25)

where

f0 =
2
h2

(
U1 − U0

)
− λU p

0 (t),

fi =
1
h2

(
Ui+1 − 2Ui + Ui−1

)
− λU p

i (t), 1 ≤ i ≤ I − 1,

fI =
2
h2

(
UI−1 − UI

)
+

2
h

Uq
I (t) − λU p

I (t),

”ℓ” is such that ℓ2 = dt2 +
∑I

i=1 U2
i and is called the arc length.

The variables t and Ui are fonctions of ℓ, and it is proved in (Hirota & Ozawa, 2006) that

lim
ℓ→∞

t(ℓ) = Th and lim
ℓ→∞
∥Uh(ℓ)∥∞ = ∞.

Then we introduce {ℓ j}, a sequence of the arc length and we apply an ODE solver to (25) for each value of {ℓ j} in order
to generate a sequence that converges linearly to the blow-up time. This sequence is finally accelerated by the Aitken ∆2

method see (Hirota & Ozawa, 2006). As ODE solver, we have chosen DOP54. This code is MATLAB version of the
well-known FORTRAN code DOPRI5 which has been written by Hairer and Wanner (Hairer, Nørsett, & Wanner, 1993).
We find in DOP54, three tolerances parameters, RelTol, AbsTol and InitialStep. RelTol and AbsTol parameters indicate
the tolerances of relative and absolute errors respectively, and we use InitialStep to choose how errors are controlled,
see (Hirota & Ozawa, 2006) for more details. For our experiments we set RelTol= AbsTol = 1.d–15, InitialStep = 0,
ℓ j = 210 · 2 j ( j = 0, . . . , 12) and the initial data

φi = ei∗h−ln(e1−1) − i ∗ h
e1 − 1

, 0 ≤ i ≤ I.

This initial data guarantees that if q increases, the flow on the boundary also increases since UI(t) ≥ φI = 1, t > 0. But it
can not ensure the growth of the absorption term in the equation by that of p because 0 < φi ≤ 1, i = 0, . . . , I. Obviously,
if λ increases, the absorption term in the equation also becomes large.

In the following tables, Th is the approximate blow-up time corresponding to meshes of I = 16, 32, 64, 128, 256, 512, 1024,
n is the number of iterations and the order (s) of the method is computed from

s =
log((T4h − T2h)/(T2h − Th))

log(2)

Table 1. For p = 2.5, q = 2.5, λ = 0.5
I Th n s

16 0.216 071 202 4154 –
32 0.210 906 554 6952 –
64 0.209 320 480 12404 1.70
128 0.208 851 002 23101 1.76
256 0.208 715 516 44733 1.79
512 0.208 677 132 97408 1.82
1024 0.208 666 410 293764 1.84

Table 2. For p = 2.5, q = 3, λ = 0.5
I Th n s

16 0.146 361 159 3086 –
32 0.142 014 795 5194 –
64 0.140 656 932 9289 1.68
128 0.140 250 111 17290 1.74
256 0.140 131 638 33341 1.78
512 0.140 097 837 70399 1.81
1024 0.140 088 342 202200 1.83
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Table 3. For p = 2.5, q = 4, λ = 0.5
I Th n s

16 0.084 607 888 2020 –
32 0.081 038 633 3425 –
64 0.079 895 889 6155 1.64
128 0.079 548 019 11473 1.72
256 0.079 445 569 22048 1.76
512 0.079 416 093 45078 1.80
1024 0.079 407 758 120059 1.82

Table 4. For p = 2.5, q = 3, λ = 1
I Th n s

16 0.184 326 256 3342 –
32 0.178 963 408 5666 –
64 0.177 345 272 10193 1.73
128 0.176 872 688 19073 1.78
256 0.176 737 698 37068 1.81
512 0.176 699 759 81769 1.83
1024 0.176 689 229 248435 1.85

Table 5. For p = 2.5, q = 3, λ = 1.2
I Th n s

16 0.207 781 947 3481 –
32 0.201 749 362 5923 –
64 0.199 961 413 10684 1.75
128 0.199 446 098 20047 1.79
256 0.199 300 396 39162 1.82
512 0.199 259 776 88792 1.84
1024 0.199 248 575 276972 1.86

Remark 1

• From the tables above, we can ensure the convergence of Th to the blow-up time of the solution of (1), since the order
(s) of the method goes to 2, which is just the accuracy of the difference approximation in space.

• It comes from these tables that there is a relationship between the blow-up time, the flow on the boundary and the
absorption term in the equation. In fact, when the absorption term in the equation is constant (p = 2.5, λ = 0.5) and
that the flow on the boundary increases (by q = 2.5 to q = 4), then the blow-up is accelerated (from 0.208 to 0.079) see
Tables 1-3. Whereas when the flow on the boundary is a constant (q = 3) and that the absorption term in the equation
becomes large (by λ = 0.5 to 1.2 with p = 2.5), then the blow-up is delayed (from 0.140 to 0.199) see Tables 2, 4, 5.

• The numerical method used in this paper has some advantages. Firstly, to obtain the numerical blow-up, we are
not obliged to put an additional condition on the initial data, which is not the case of some numerical methods (see
Theorem 4.3, Theorem 8.6 in (Assalé et al., 2008) and Theorem 6 in (Adou et al., 2019)). Secondly, when the mesh
size goes to zero, that is I becomes large, with the method of this paper, the number of iterations n increases slowly.
This fact allow us to obtain easily results for high values of I (I = 512, 1024).

Others illustrations are given by some plots in the below figures.

Figure 1. Evolution of the numerical solution for I = 128, p = 2.5, q = 3 and λ = 1.2
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Figure 2. Evolution of Uh according to the node
for I = 128, p = 2.5, q = 3andλ = 1.2

Figure 3. Evolution of Uh according to the time
for I = 128, p = 2.5, q = 3 and λ = 1.2

Remark 2

From the Figures 1, 2 and 3, we can observe that the numerical solution blows up in finite time at the last node, which is
in agreement with the result established theoretically (Gómez et al., 1993 and Chipot et al., 1991).
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Edja, K. B., Touré, K. A., & Koua, B. J-C. (2018). Numerical Blow-up for A Heat Equation with Nonlinear Boundary
Conditions. Journal of Mathematics Research, 10(5), 119-128. https://doi.org/10.5539/jmr.v10n5p119
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