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Abstract 

Parts of pipeline need a long piece, a short segment, and various inflate-deflate models. They require as well the thickness 

and curvature of the pipes. The objective of this paper is to obtain some formulas for modeling the long pipe, the short 

tube, and various inflate-deflate pipe patches. Relating to the purposes, we use their cross-section, longitudinal section, 

and center curves of the pipe parts. The methods are, the using of the polar coordinates and of the real functions, to define 

the cross and longitudinal section of the pipe patches, respectively. Then, we calculate three orthonormal vectors that are 

determined by the tangent vectors of the pipe center curves and two unit vectors that are perpendicular to the tangent 

vectors. After that, we evaluate the formulas to model the long pipes and the short pipes, both inflate-deflate and thickness 

shapes. The results show that, using its center curves of the pipe, it is handy to design the long and short pipes, multiple 

thicknesses, various volume fluctuations of the pipes, and useful to model the inflate-deflate pipe parts.  

Keywords: center curve, construction, cubic-quartic Bézier, Hermite curve, inflate-deflate, pipe shapes, thickness 

1. Introduction 

There were presented some methods to define the pipeline models. Lü & Pottmann (1996) introduced an algorithm for 

computing the pipe surfaces of rational spine curve (center curve of pipe) that can admit a rational parameterization. 

Maekawa, et al. (1998) investigated the pipe surface intersection both local and global self-intersection. Then, using the 

unification of two cylinders of revolution defined by different radii, Malaček & Šibrava (2006) constructed the circular 

surfaces. Research by Moon (2009) studied the curvature effect of pipes spin curve. He used the radial distance function 

form to compensate for the distortion of the pipes. Meanwhile, we can present the geometric properties of canal surfaces 

in which their spine curves are in the form of a unit circle and a straight line (Öztürk et al., 2010). Also, we can evaluate 

the substantial form of transitional tube parts whose cross sections have a polygonal shape and made of materials that 

cannot be creased or prolonged (Obradovic et al., 2012). This geometrical theory is based on the classical line geometry, 

and it can be straightforwardly implemented to the conception of a computer algorithm that generates the middle surfaces 

between two polygons. Fok et al. (2012) introduced the method for reconstruction of disjoint surfaces with a single 

equation from sectional data. Using a parametric design system of modular Pipe-Z and its parametrization can be found a 

trefoil, a gure-eight knot, and a pentafoil (Zawidski & Nishinari, 2013). To provide good tamper localization accuracy 

can be designed a topology verification for drawings the piping isometric that is in robust versus local similarity 

displacement and invariant to the elongation process on pipes (Su et al., 2015). The study by Bizzarri et al. (2015) 

presented an algebraic condition to give the guarantees that a canal surface possesses rational generalized contour, then, 

Moritani et al. (2018) proposed a new method to built a piping system through cylinder-based registration and model 

fitting of laser-scanned point clouds. On the other hand, to multiple pipes having arbitrary posses and free form 

cross-section, Zhou & Qian (2013) used the constructive G1 pipes connection. Meanwhile, Bhatt et al. (2015) computed 

with disjoint B-spline surface. Furthermore, Kusno & Cahyo (2018) constructed a pipeline by using the continuous 

connection between adjacent pipe parts through the curve of the pipes center of a line, Bézier, and Hermite forms. 

In general, the introduced methods of pipes construction use a moving trihedron formula that is defined by their spin 

curves. Because of its curve curvatures formula, it is useful to design the short pipes of constant radius, but, they lack in 

constructing and connecting the tubes of long pieces. Departing from these limitations, we will present a new formula 

that offers to design the long pipes with its surfaces of inflate-deflate form. Then, we evaluate the moving trihedron 

formula to obtain the short pipes of various thickness and inflate-deflate shapes.  

This article is structured in the following steps. In the first step, we will discuss the mathematics equations to construct 

the pipe pieces. Based on a tangent vector of pipes center curve that is defined by the cubic, quartic Bézier and the cubic 

Hermite curves, we introduce a formula to designing the pipes of long pieces. In the third step, we present the 
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construction of short pipe parts having the thickness and inflate-deflate shapes. Finally, we summarize and wrap up the 

results. 

2. Mathematics Equations of Pipe Pieces 

The pipe cross section shapes can be defined by the parametric curves P(v) in the plane [v1,v2] with v1 and v2 two 

orthonormal vectors as follows (Kusno, 2019). 

P1(v) = r(v)(cos φ v1 + sinφ v2)                                      (1) 

with φ = 2 πv and 0 ≤ v ≤ 1. In this case we choose r(v) in the form  

  r1(v) = p ± q. cos φ;   r2(v) = p ± q. sin φ;                         (2a) 

  r3(v) = p cos (nφ);   r4(v) = p sin (nφ);                     (2b) 

with the rose leafs number n and p, q positive real constants. On the other hand, we can represent the various exterior and 

interior cross-section boundaries of the pipe by using equation (1) and or the formula 

  𝐏2(𝑣) =  𝑟5(𝑣). [𝑐𝑜𝑠((2𝑖 + 1). 𝜋

𝑛
− 

𝑛
 ) 𝐯1 + 𝑠𝑖𝑛((2𝑖 + 1). 𝜋

𝑛
− 𝜑

𝑛
) 𝐯2]                    (3) 

with 𝑟5(𝑣) =  𝑟𝑜. [𝑐𝑜𝑠((2𝑖 + 1). 𝜋

𝑛
− 𝜑

𝑛
)] ± √[𝑟𝑜

2. 𝑐𝑜𝑠2((2𝑖 + 1). 𝜋

𝑛
− 𝜑

𝑛
) −  (𝑟𝑜

2 − 𝜏2)]  for i = 0,1, ..., n -1  and φ = 2 πv with radius of 

circles r0, τ in the condition (r0
2 - τ2) > 0 and 0 ≤ v ≤ 1.

 
We can formulate the boundary curve shapes of pipe in the longitudinal direction by using the real function (u) with  0 ≤ 

u ≤ 1 of the trigonometric function, cubic Bézier, cubic and quartic Hermite respectively in the form (Kusno, 2018; Kusno, 

2010; Mortenson, 1996; Lischultz, 1969) 

 T(u) = p + q cos (2π u) + r sin (2π u)                   (4a) 

 B(u) = Po(1 -u)3 + 3P1(1- u)2u + 3P2(1-u)u2 + P3u
3                      (4b) 

  H3(u) =H3 (0) H1 (u) +H3 (1) H2 (u) + 𝜌𝐻3
𝑢 (0) H3 (u) + 𝜌𝐻3

𝑢 (1) H4 (u)                (4c) 

   𝜌𝐻4(𝑢) = 𝑞(𝑢) = 𝑞𝑜[𝑎𝑢4 + (2 − 2𝑎)𝑢3 + (𝑎 − 3)𝑢2 + 1] + 𝑞
𝑥
[𝑏𝑢4 − 2𝑏𝑢3 + 𝑏𝑢2] + 

𝑞
1
[𝑐𝑢4 − (2 + 2𝑐)𝑢3 + (𝑐 + 3)𝑢2] + 𝑞

𝑜
𝑢[𝑑𝑢4 + (1 − 2𝑑)𝑢3 + (𝑑 − 2)𝑢2 + 𝑢] +  𝑞

1
𝑢[𝑒𝑢4 + (1 − 2𝑒)𝑢3 + (𝑒 − 1)𝑢𝑢] (4d) 

with   

𝑎 = −(2𝑢𝑥
3−3𝑢𝑥

2+1)

𝑢𝑥
4−2𝑢𝑥

3+𝑢𝑥
2 ;    𝑏 = 1

(𝑢𝑥
4−2𝑢𝑥

3+𝑢𝑥
2)

;    𝑐 = (2𝑢𝑥
3−3𝑢𝑥

2)

(𝑢𝑥
4−2𝑢𝑥

3+𝑢𝑥
2)

;   𝑑 = −(𝑢𝑥
3−2𝑢𝑥

2+𝑢𝑥)

(𝑢𝑥
4−2𝑢𝑥

3+𝑢𝑥
2)

;   𝑒 = (−𝑢𝑥
3+𝑢𝑥

2)

(𝑢𝑥
4−2𝑢𝑥

3+𝑢𝑥
2)

;    (5a) 

H1 (u) = 2u3 - 3u2+1;    H2 (u) =2u3+3u2;   H3 (u) = u3 - 2u2+u;    H4 (u) = u3.           (5b) 

The values p, q, r are real constants, (q + r) < p and 0 ≤ u ≤ 1. The real value H(0), H(1), 𝜌𝐻
𝑢(0), 𝜌𝐻

𝑢(1) and the Bézier 

control points Pi for i = 0,1, ..., 3 must be determined. The values 𝜌𝐻
𝑢(0) and 𝜌𝐻

𝑢(1) are respectively the tangent line 

gradient of graph at the point (0, H(0)) and (1, H(1)). 

As an illustration, if the data r(v) is r(v) = < , , 
>, r(v) = < 0, , >, r(v) = <0, 

, >, r(v) = <0,  , >, then we will find the pipe cross-section 

shapes in Figure 1a. In case r5(v) of the equation (2) determined by r0 = 12, n =8 and τ = 5, we can combine it with the 

function r(v) = <0, (5.05).cos(8π v) + sin(14πv).cos(2πv), (5.05).cos(8πv) + sin(14πv). sin(2πv)>, then the result shapes 

are shown in Figure 1b. When the real function B(u) is B(u) = 2.(1 -u)3 + 3. 7 (1- u)2u + 3.1 (1-u)u2 + 5 u3 and the 

function T(u) is T(u) = 2 + 0.5 cos (πu) - sin (2πu), we will obtain respectively the graph of the pipe's longitudinal shapes 

in Figure 1c and Figure 1d.   

 

 

 

 

 

               (a)                    (b)                       (c)                              (d)        

Figure 1. Some models of the pipe cross-section forms (a), (b), and longitudinal section forms (c), (d) 
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Let a regular curve (u) be differentiated twice, continuous on the interval 0 ≤ u ≤ 1. Furthermore, in the natural parameter 

s, we consider that, t, and n are the tangent, and the normal unit vector of each point and 

  𝐭 =
𝑑

𝑑𝑠
=  ̇ =

′

|′|
                                             (6a) 

  𝐧 = −
𝐤

|𝐤|
                                                (6b) 

with k in the form  

  𝐤 =
𝑑𝐭

𝑑𝑠
= 𝐭̇ =

𝐭′

|′|
.                      (7) 

Thus, the unit binormal vector b can be formulated by b = t  n that form the moving trihedron t, n, and b (Mortenson, 

1996; Kreyzig, 1991; Lischultz, 1969; Carmo, 1976). 

Consider a regular parametric curve segment C(u) of class C2. In the normal plane [b,n], we can define the circles in 

which their radius is C (u,v) = r(v) (u), its centers are on the curve segment C(u), and they are orthogonal to the vector t 

along the direction of parameter 0 ≤ u ≤ 1. Therefore, for φ = 2 πv, we can construct the tube patch relatively to the vectors 

[b,n] as follows 

 T1(u,v) = C(u) + C(u,v)(cos φ b + sin φ n).                                 (8) 

To avoid a singularity, we must have that the normal unit vector n of the curve segment C(u) must be only in the same sign 

(orientation) in the interval domain 0 ≤ u,v ≤ 1.  

According to Equation (6a), we can introduce a new formulation of pipe that depend on the tangent vector value t of the 

regular curve C(u) by using calculations as follows. Consider the triple orthonormal vectors in space [v1,v2,t] with t non 

zero tangent vectors of curve C(u) in the form Equation (6a). If at every value u, the tangent vector t is  tu = <tx,ty,tz>  0, 

then we can determine the vectors v2 = <v2x,v2y,v2z>, and v1 = <v1x,v1y,v1z> with t.v2 = tx.v2x + ty.v2y,+ tz.v2z = 0, and the 

vector v1 = t  v2. To define the vector v2, first, we determine a constant reference vector v0 that is not in line with the 

vector t and in every value u the vector (C(u)-v0)  0. In the plane [(C(u)-v0), t(u)], the projection of the vector (C(u) - v0) 

to the tangent vector t(u) is p = [(C(u) - v0). t(u)] t(u). Thus, we can find the vector w  t in the form w = [(C(u) - v0) - p] 

 0, and the unit vector v2 can be determined by the formula 

𝐯2 =  
𝐰

‖𝐰‖
=  

[(𝐂(𝑢)−𝐯0)−𝐩]

‖(𝐂(𝑢)−𝐯0)−𝐩‖
.                                        (9) 

If v2  t and v1 = t  v2 are defined, then, for φ = 2 π v, the tube patches in Equation (8) can be replaced by another formula 

T2(u,v) = C(u) + C(u,v) [cos φ v1 + sin φ v2].                               (10) 

Pipeline construction, in general, requires long pieces of pipe than short pieces. Modeling the long pipe pieces are, usually, 

used to design a variety of pipe shapes and piping systems, while the short pieces are to handle the connections between 

the pipes. For these reasons, this paper, first, more discusses Equation (10) to construct various models of tubes rather than 

Equation (8). Second, relating to Equation (8) and their application to pipes' geometric connection G2 between the short 

pipe pieces (Kusno and Anton 2018), graphically, we will test the effect of choosing the Equations (2,3,4) and their 

parameters that determine the shapes of pipe both cross-section and/or longitudinal profiles. Due to Kusno (2019) has 

evaluated the pipes' center curve C(u) in Equation (8) of a line form, we will develop the curves C(u) in the cubic Bézier, 

the quartic Bézier, and Hermite curve types. 

3. Pipes Construction 

3.1 Pipes Construction Using Center Curves of Cubic, Quartic Bézier and Cubic Hermite Curves 

Consider that the regular curves C(u) are respectively in cubic and quartic Bézier curves 

  C3(u) = B3(u) = Po(1- u)3 + 3 P1(1-u)2 u + 3 P2(1-u) u2 + P3 u
3                  (11a) 

  C4(u) = B4(u) = Po(1- u)4 + 4 P1(1-u)3 u + 6 P2(1-u)2 u2 + 4 P3(1-u) u3 + P4 u
4             (11b) 

with 0 ≤ u ≤ 1, and Po, P1, P2, P3, and P4 are the control points of the Bézier curves. Then the first derivative of the cubic 

and quartic Bézier curves are respectively 

B3′(u) = 3[(P1-Po)(1-u).(1-u) + 2(P2-P1)(1-u).u+(P3-P2).u
2] = < Rx3(u), Ry3(u), Rz3(u) >        (12a) 

B4′(u) = 4[(P1-Po)(1-u)3 + 3(P2-P1)(1-u)2.u + 3(P3-P2) (1-u).u2 + (P4-P3) u
3] = < Rx4(u), Ry4(u), Rz4(u) > (12b) 

with Rx3(u) = 3[(P1x -Pox). (1-u).(1-u) + 2(P2x - P1x)(1-u).u + (P3x - P2x).u
2],  Ry3(u) = 3[(P1y -Poy). (1-u).(1-u) +   2(P2y - 
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P1y)(1-u).u +(P3y - P2y).u
2], and Rz3(u) = 3[(P1z -Poz). (1-u).(1-u) + 2(P2z - P1z)(1-u).u + (P3z - P2z).u

2]. 

Using Equation (6a) can determine the tangent unit vector tB3 and tB4 as follows 

 tB3 = (1/s3) < Rx3(u), Ry3(u), Rz3(u) >                                (13a) 

 tB4 = (1/s4) < Rx4(u), Ry4(u), Rz4(u) >                                (13b) 

with s3  = [Rx3
2(u) + Ry3

2(u) + Rz3
2(u)]1/2 and s4 = [Rx4

2(u) + Ry4
2(u) + Rz4

2(u)]1/2. 

On the other hand, given the reguler curves C(u) of cubic Hermite curve 

 𝐇(𝑢) =  𝐇𝑜𝐻1(𝑢) + 𝐇1𝐻2(𝑢) + 𝐇𝑜
𝑢𝐻3(𝑢) + 𝐇1

𝑢𝐻4(𝑢)                         (14) 

with H1 (u), H2 (u), H3 (u) and H4 (u) the base functions in Equation (5b). The vectors 𝐇𝑜 = 𝐇(0); 𝐇1 = 𝐇(1); 

𝐇𝑜
𝑢 = 𝐇′(0); 𝐇1

𝑢 = 𝐇′(1) and 0 ≤ u ≤ 1. Then the first derivative of the curve is 

𝐇′(𝑢) =  𝐇𝑜(6𝑢2 − 6𝑢) + 𝐇1(−6𝑢2 + 6𝑢) + 𝐇𝑜
𝑢(3𝑢2 − 4𝑢 + 1) + 𝐇1

𝑢(3𝑢2 − 2𝑢) = < Hx(u); Hy(u); Hz(u) >.  (15) 

Thus, we obtain the tangent unit vector of the curve 

 tH = 1/h < Hx(u); Hy(u); Hz(u) >                                    (16) 

with h = [Hx
2(u) + Hy

2(u) + Hz
2(u)]1/2. 

Based on Equations (11) up to (16), and  Equation (10), the construction procedure of pipe patches can be undertaken as 

follows. 

a. Determine a regular parametric curve C(u) of class C2, after that, select Equations (2a, 2b, 3) to define the pipe 

cross-section shapes, and Equations (4a, 4b, 4c, 4d) to model the pipe longitudinal such that C(u,v) is defined. In this 

step, the formulated pipe radius C(u,v) may be constant or various measure along the curve C(u).  

b. Choose a constant vector v0 that meets (C(u) - v0)  0 and v0  kt with k a real scalar. 

c. Calculate the unit vector v2 in Equation (9) with p = [C(u).t(u)] t(u) in which the vectors C(u) and t(u) are respectively 

one of the curves and its tangent vectors of Equations (11a,13a), (11b,13b ) or (14,16). 

d. Compute the unit vector v1 = t  v2 and the criteria of Equation (10) is met. 

In this procedure, to ensure that the surfaces of modeled pipes in Equation (10) are not twisted, we must evaluate the 

needed criteria of the determined center curve C(u) and the length of the tubes radius C(u,v). For these reasons, we will 

discuss the case C(u) of a plane curve, after that, we study the case C(u) of a space curve. 

3.1.1 Case: C(u) Plane Curves 

First, we place a regular curve C(u) respectively of cubic, quartic Bézier or cubic Hermite curves in a plane α. Then, we 

determine C(u,v) of constant radius (Figure 2h) or inflate-depfate radius (Figure 2d,e,f,g) and the elected vector v0 is met 

(C(u) - v0)  0 and v0  kt with k a real scalar for all values u in the domain 0 ≤ u ≤ 1. After that, the vectors v2 of Equation 

(9) can be computed for every u in interval 0 ≤ u ≤ 1 and the unit vector v1 = t  v2 can be calculated uniquely. To obtain 

the cross-section simmetricity shape of pipes, when C(u,v) define the inflate-deflate pipe, we must lay the constant vector 

v0 and the curve C(u) in the same plane α.     

Second, if we choose the shapes of the curves C(u) that are fluctuative in direction u in the plane α (Figure 2a), then we 

necessary to detect, locally, wether, for i = 0,1,2,3, …, n-1 and 0 = u0 < u1 < ….< un-1 < un =1, the consecutive radius 

vectors r(ui,v) and r(ui+1,v) of the pipes in Equation (10) intersect each other relative to their support curve C(u). The 

tested vectors r(ui,v) and r(ui+1,v) can be computed by Equation (10) through v = 0 and v = 0.5, namely 

 r(ui,0) = T2(ui,0) - C(ui) = C(ui,0) [cos 0. v1 + sin 0. v2]                       (17a) 

r(ui+1,0) = T2(ui+1,0) - C(ui+1) = C(ui+1,0) [cos 0. v1 + sin 0. v2]                   (17b) 

r(ui,0.5) = T2(ui,0.5) - C(ui) = C(ui,0.5) [cos π.v1+ sin π.v2]                       (17c) 

r(ui+1,0.5) = T2(ui+1,0.5) - C(ui) = C(ui+1,0.5) [cos π.v1+ sin π.v2].                    (17d) 

To control the needed length of the radius vectors r(ui,0) and r(ui,0.5) can use the formulas 

      r(ui,0) = ±  [T2(ui,0) - C(ui)] = ±  C(ui,0) [cos 0. v1 + sin 0. v2]                   (18a) 

r(ui,0.5) = ±  T2(ui,0.5) - C(ui) = ±  C(ui,0.5) [cos π.v1+ sin π.v2]                    (18b) 

with  a real scalar.  

Using the position differences test between the end points of the radius vectors that are defined by the position vectors 

C(ui), T2(ui,0), T2(ui,0.5), C(ui+1), T2(ui+1,0), and T2(ui+1,0.5), for i = 0,1,2,3, …, n-1, we can determine  to repair the 

tube surface shapes, i.e., the pipe surfaces of Equation (10) will not be self intersect. The consecutive radius vectors r(ui,0) 
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and r(ui+1,0) will intersect (Figure 2b), if the angle φ2  φ1 in which both angles φ1 and φ2 are defined by φ1 = ([C(ui+1) - 

C(ui)], r(ui,0)), φ2 = ([C(ui+1) - C(ui)], [(C(ui+1) - C(ui)) + r(ui+1,0)]), and 

𝜑1 = 𝑎𝑟𝑐 cos (
[𝐂(𝑢𝑖+1)− 𝐂(𝑢𝑖)] .  𝐫(𝑢𝑖,0)

‖[𝐂(𝑢𝑖+1)− 𝐂(𝑢𝑖)]‖ ‖𝐫(𝑢𝑖,0)‖
)                           

(19a)
 

𝜑2 = 𝑎𝑟𝑐 cos (
[𝐂(𝑢𝑖+1)− 𝐂(𝑢𝑖)] .[(𝐂(𝑢𝑖+1)− 𝐂(𝑢𝑖))+𝐫(𝑢𝑖+1,0)]

‖[𝐂(𝑢𝑖+1)− 𝐂(𝑢𝑖)]‖ ‖[(𝐂(𝑢𝑖+1)− 𝐂(𝑢𝑖))+𝐫(𝑢𝑖+1,0)]‖
)
.                 (19b)

 

Third, when the curves C(u) are spiral (Figure 2c), We detect the intersection between [r(ui,0),r(ui+1,0)], 

[r(ui,0.5),r(ui+1,0.5)], and for i = 0,1,2,3, …, n-1 we evaluate the intersection between each r(ui,0) toward all 

[T2(ui+1,0)-T2(ui,0)], and for each r(ui,0.5) toward all [T2(ui+1,0.5) - T2(ui,0.5)]. 

To implement this pipe construction procedure for Equation (10), we give the illustrations by using the data as follows. In 

the plane YOZ, if we determine the cubic Bézier curves with [Po=<0,-9,15>, P1 =<0,5,0>, P2 = <0,12,19>, P3 = 

<0,16,7>], C(u,v) = -2 + sin (2πv) + cos (4πv), and the vector v0 = <0,-10,-10>, then we obtain Figure 2d. In the plane x 

- z = 0, if we give the control points [Po=<15,-25,15>, P1 =<-10,5,-10>, P2 = <20,8,20>, P3 = <12,25,12>], C(u,v) = 2 

q(u) in which q(u) is of Equation (4d) with q0 = 0.75; qx = 0.5; q1 = 1.25; q0
u = 1; q1

u = -1; and  v0 = <-25,0,0>, then 

Equation (10) will present Figure 2e. Using the quartic Bézier curve C(u), Figure 2f, and Figure 2g are constructed by 

C(u,v) inflate-deflate types, and both the constant vector v0 = <0,-34,-10> and the curve C(u) in the plane YOZ. 

Meanwhile, Figure 2h is presented by C(u,v) of constant value, and v0 = <0,-34,-10> outer of that plane. Therefore, we 

can conclude that Equation (10) is applicable for modeling the constant and the inflate-deflate plane pipes of long 

measure. 

 

 

 

 

 

 

        (a) Fluctuative          (b) Intersection test             (c) Spiral        (d) Curve C(u) in plane YOZ 

  

 

 

 

 

            (e)                           (f)                         (g)                          (h)  

Figure 2. Pipe profils with their center curves C(u) in plane 

3.1.2 Case: C(u) Space Curves 

Consider a regular space curves C(u) respectively of cubic, quartic Bézier or cubic Hermite curves. We choose a limit that 

the torsion of curve C(u) can be tolerated, and C(u,v) is defined by circles radius in the planes [v1,v2]. The vector v0 

fulfills the condition (C(u) - v0)  0 and v0  kt with k a real scalar for all 0 ≤ u ≤ 1. Therefore, the vectors v2 of Equation 

(9) can be defined for every u in interval 0 ≤ u ≤ 1 and the unit vector v1 = t  v2 can be computed uniquely. 

For many applications, the curves C(u), generally, must be of arbitrary shapes. To detect the intersection or the crossing 

over between the consecutive vectors r(ui,v) and r(ui+1,v) in space, we can use the procedure as follows. For i = 0,1,2,3, …, 

n-1, the vectors [C(ui+1) - C(ui)] and r(ui,v) determine a plane τi (Figure 3a). We project the vector r(ui+1,v) to the plane τi 

and we will find the vector rp(ui+1,v) in the form 

rp(ui+1,v) = r(ui+1,v) - [r(ui+1,v) . u(ui+1,v)] u(ui+1,v).                           (20) 

with u(ui+1,v) the normal vector of the plane τi and u(ui+1,v) = ([C(ui+1)-C(ui)]r(ui,v))/ǁ([C(ui+1)-C(ui)]r(ui,v))ǁ. Then, 

we can detect the intersection between r(ui,v) and rp(ui+1,v) by using Equation (19). In this case, we have to numerically 

examine the intersection between the vectors r(ui,v) and rp(ui+1,v) in the plane τi in every value vi for i = 0,1,2,3, …, n-1 

and 0 = v0 < v1 < ….< vn-1 < vn =1. 

When we determine C(u) quartic Bézier with [Po=<-10,-30,15>, P1 =<0,-32,32>, P2 = <0,30,15>, P3 = <0,-10,5>, P4 = 

<20,26,-30>], C(u,v) = 4, v0 = <30,10,10>, and [Po= <-10,-30,0>, P1 = <0,-32,32>, P2 = <20,30,15>,   P3 = <0,-10,5>, 
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P4 = <10,26,-30>], C(u,v) = q(u) in which q(u) is of Equation (4d) with q0 = 2; qx = 4; q1 = 3; q0
u = 2; q1

u = -2, v0 = 

<8,-16,22>; we will, respectively, obtain Figure 3b and Figure 3c that present the constant and the inflate-deflate pipes in 

space. Thus, in general, Equation (10) is also useful for modeling the constant and the inflate-deflate space pipes of long 

measure with the circle radius in the planes [v1,v2].  

 

 

 

 

 

 

 

                (a)                                      (b)                                      (c) 

Figure 3. Pipe profils with their center curves C(u) in space 

3.2 Construction Test of Short Pipes 

This section discusses the application of Equation (8) with the pipes' center curve C(u) of the cubic Bézier, the quartic 

Bézier, and Hermite curve types. To model the short pipes in inflate-deflate and thickness shapes, we restrict the normal 

unit vectors n of the curve segment C(u) such that it has the same sign. For this objectives, we compute the trihedron 

vectors [t, n, b] of the curves (Figure 4a), then, we present some pipes' design results using Equation (8) as follows.  

The second derivative of the cubic and quartic Bézier curves of Equation (11) are respectively 

 B3′′(u) = 6[(P2 - 2.P1 + Po).(1-u) +(P3- 2.P2+P1).u] = < Wx(u), Wy(u), Wz(u) >         (21a) 

 B4′′(u) = 12[(P2  - 2P1+ Po) (1-u).(1-u) + 2(P3 - 2 P2+ P1)(1-u).u+(P4 - 2P3+ P2).u
2]       (21b) 

with Wx(u) = 6[(P2x-2P1x + Pox).(1-u) + (P3x-2P2x + P1x).u]; Wy(u) = 6[(P2y-2P1y + Poy).(1-u) + (P3y-2P2y + P1y).u]; and Wz(u) 

= 6[(P2z-2P1z + Poz).(1-u) + (P3z-2P2z + P1z).u].  

Using Equation (6a) and Equation (6b) can be determined the normal unit vector nB3 and the unit binormal vector bB3 of 

the cubic Bézier curve B3(u) in the form  

nB3 = <(Mx(u)/so), (My(u)/so), (Mz(u)/so)>                                (22) 

bB3 = <[Ry(u).Mz(u) - My(u).Rz(u)]/(s-so), [Mx(u).Rz(u) - Rx(u).Mz(u)]/(s-so), [Rx(u):My(u) -Mx(u):Ry(u)]/(s-so)>  (23) 

with so = [Mx
2(u) + My

2(u) + Mz
2(u)]1/2; Mx(u)= [s2.Wx(u)-[Rx

2(u).Wx(u)+Rx(u).Ry(u).Wy(u) +Rx(u).Rz(u).Wz(u)]]/(s4); 

My(u) = [s2.Wy(u)-[Ry(u). Rx. Wx(u) +Ry
2(u).Wy(u) + Ry(u).Rz(u).Wz(u)]]/(s4); Mz(u) = [s2.Wz(u).[Rz(u).Rx(u).Wx(u) +  

Rz(u).Ry(u).Wy(u) + Rz
2(u).Wz(u)]]/(s4). 

The calculation method of the normal unit vector nB4 and the unit binormal vector bB4 of the quartic Bézier curve B4(u) are 

the same as the cubic Bézier curve B3(u). Base on equation (8), the inflate-deflate and the thickness cubic and quartic 

Bézier tubular patches respectively can be written by 

  TB3(u,v) = B3(u) +B3(u,v).[cos (φ) bB3 + sin (φ) nB3]                         (24) 

  TB4(u,v) = B4(u) +B4(u,v).[cos (φ) bB4 + sin (φ) nB4].                        (25) 

The radii of the pipes B3(u,v) orB4(u,v) are defined by (u,v)  =  (u).r(v) with φ = 2π v and 0 ≤ u,v ≤ 1. 

On the other hand, the second derivative of the Hermite curves of Equation (14) is 

𝐇′′(𝑢) =  𝐇𝑜(12𝑢 − 6) + 𝐇1(−12𝑢 + 6) + 𝐇𝑜
𝑢(6𝑢 − 4) + 𝐇1

𝑢(6𝑢 − 2) = < Zx(u), Zy(u), Zz(u) >.  (26) 

Therefore we obtain 

nH = < Sx(u)/no, Sy(u)/no, Sz(u)/no >                                   (27a) 

bH =  <[Ny(u).Sz(u) - Sy(u).Nz(u)]/(h.no),[Sx(u).Nz(u) - Nx(u).Sz(u)]/(h.no),[Nx(u).Sy(u) - Sx(u).Ny(u)]/(h.no)>  (27b) 

with no = [Sx
2(u) + Sy

2(u) + Sz
2(u)]1/2; Sx(u) = [h2.Zx(u) - [Nx

2(u).Zx(u) + Nx(u).Ny(u).Zy(u) + Nx(u).Nz(u).Zz(u)]]/h4; Sy(u) = 

[h2.Zy(u) - [Ny(u).Nx.Zx(u) + Ny
2(u).Zy(u) + Ny(u).Nz(u).Zz(u)]]/h4;  Sz(u) = [h2.Zz(u) - [Nz(u).Nx(u).Zx(u) + Nz(u).Ny(u).Zy(u) 

+ Nz
2(u).Zz(u)]]/h4. 

Thus the cubic Hermite tubular patches can be expressed by 

  TH(u,v) = H(u) +H(u,v)(cos φ bH  + sin φ nH)                             (28) 

with H (u,v) = (u).r(v), the value φ = 2π v and 0 ≤ u,v ≤ 1. 

For the application test, we evaluate these equations using the Bézier curve of Equation (11a) with control points [Po= 

<22,18,15>, P1 = <8,2,15>, P2 = <18,3,16>, P3 = <25,14,10>]. The functions B3(u,v) are defined by (u) of the quartic 
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Hermite curve of Equation (4d) with [qo = 2, qx(0.3) = 2, q1 =2, qo
u = 1, q1

u = -1],   [qo = 3, qx(0.3) = 2, q1 = 1, qo
u = 1, q1

u 

= -1] and the cubic Bézier of Equation (4b) with [Po =2, P1 =1, P2 =1, P3 =2], meanwhile, the functions r(v) are in the form 

r(v) = 4, r(v) = 2 + cos (6.πv), r(v) = r5(v) with n = 4 and r(v) = 0.55[5+1/20.cos(8 πv) + sin(14 πv)]. Using equation (24) 

will find the pipe patch shapes respectively in Figure 4b, 4c, 4d, 4e, 4f, 4g, 4h and 4i.  

On the other hand, when we determine the cubic Hermite curve H(u) of the equation (14) with the values [Ho = <45,0,0>, 

H1= <45,0,15>, 𝐇𝑜
𝑢 =3.<15,4,15>, 𝐇1

𝑢=3.<15,4, 15>] and the functions H(u,v) are defined by (u) = 4 and equation 

(4b) of the values [Po= 2, P1= 0.3, P2= 1, P3= 2], the function r(v) in the form r(v) = 15[-2 + sin(2πv) - cos(4πv)], r(v) = 

4[-2 cos(4πv) - cos(8πv)], r(v) = 9.cos(4πv) and r(v) = 5+1/20.cos(8πv) + sin(14πv), then equation (28) will present the 

pipe patches shapes as shown in Figure 4j, 4k and 4l.  

Based on these results, Equation (24), (25) and Equation (28) can address to construct the pipes in different curvature, 

thickness (Figure 4e,f,h,i,l) and in different form of volume (Figure 4d,f,k,l). So, they are handy to design various volume 

fluctuations of the pipes, multiple thickness, and useful to model the inflate-deflate pipe parts.  
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(j)                                   (k)                                 (l) 

Figure 4. Inflate-deflate and thickness of short pipe patches modeling 

4. Conclusions 

We have formulated the equations that can be used to model the long pieces and short pices of pipe, and the inflate-deflate 

pipe patches with its center curves in the form of cubic, quartic Bézier and cubic Hermite curves. These formulas offer 

design parameters to manipulate the desired shapes of the pipes, i.e., they are handy to design multiple thicknesses, 

various volume fluctuations of the pipes, and useful to model the inflate-deflate pipe parts. Therefore, by using the 

presented formulae, it is expected that the construction of any pipe parts will be more effective and satisfied. 

The pipeline construction methods have been presented. In the future works, we need to develop how to combine and how 

to connect small parts of pipes to obtain the length and the branches topology of the pipes. 
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