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Abstract

We first prove a new controllability result for a nonlinear two stroke system. The key to solve this controllability problem
is an adapted Carleman inequality. Next, the obtained result is used to build a boundary sentinel to identify unknown
parameters in a nonlinear population dynamics model with incomplete data.
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1. Introduction

Let Ω ⊂ Rn, n ∈ {1, 2, 3} an open and bounded subset, with ∂Ω = Γ of class C∞. For the time T > 0 and A > 0,we
consider U = (0, T ) × (0, A), Q = U × Ω, QA = (0, A) × Ω, QT = (0, T ) × Ω, Σ = U × Γ, Σ1 = U × Γ1, where Γ1 ⊂ Γ
is open and nonempty. Let O and γ be some nonempty open subsets of Γ\Γ1 with O ∩ γ , ∅. We consider the following
nonlinear two stroke system:

− ∂q
∂t −

∂q
∂a − △q + µq = βq(t, 0, x)G

(∫ A

0
βqda

)
in Q,

q = h0χO + (w0 − v)χγ on Σ,

q(T, a, x) = 0 in QA,

q(t, A, x) = 0 in QT ,

(1)

where G is a given reel function, h0 ∈ L2(U × O), (w0 − v) ∈ L2(U × γ), χO and χγ are respectively the characteristics
functions of O and γ. The functions β(t, a, x) ≥ 0 and µ(t, a, x) ≥ 0 are specific for a given species.
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Assume as in (Giovanna & Langlais,1982) that the following assumptions hold:

(H1) :



β ∈ L∞(Q), β(t, a, x) ≥ 0 a.e. in Q,

sup
(t,x)∈]0,T [×Ω

∫
]0,A[

(|β(t, a, x)|2 + |∇β(t, a, x)|2da),

∃ δ ∈ (0, A) s.t. β(a, ., ) = 0 for a ∈ (δ, A),

(H2) : µ ∈ C([0, T ] × [0, A] × Ω̄), µ(t, a, x) ≥ 0 a.e in Q,

(H3) :



∀t, 0 < t < A, ∀ x ∈ Ω, lim
∫ A

0 µ(ι, a − t + ι, x)dι = +∞
a−→A

,

∀t, A < t < T, ∀ x ∈ Ω, lim
∫ a

0 µ(t − a + α, α, x)dα = +∞
a−→A

,

∇µ ∈ [L∞(Q)]n,

(H4) : G ∈ L∞(R) and G ∈ C1(R).

Since h0χO + (w0 − v)χγ ∈ L2(Σ), using the assumptions (H1) − (H4) we have existence and uniqueness of a solution of
problem (1) in L2(Q) (see Giovanna & Langlais,1982).

Assume that the following assumption hold : if ρ verifies
∂ρ
∂t +

∂ρ
∂a − ∆ρ + µρ = 0 in Q,

ρ = 0 in U × γ,
∂ρ
∂ν

= 0 on U × γ,
(2)

then ρ ≡ 0 in Q.

For the sequel we need the following result:

Lemma 1 Let ei ∈ L2(Σ), i ∈ {1, · · · ,M} such that eiχΣ1 , i ∈ {1, · · · ,M} are linearly independent. Let b ∈ L∞((0,T ) × Ω)
and θ a real positive function (θ will be defined later on by (13)). Let us consider the following system:

∂yi
∂t +

∂yi
∂a − △yi + µyi = 0 in Q,
yi(0, a, x) = 0 in QA,

yi(t, 0, x) =

∫ A

0
βyib(t, x)da in QT ,

yi = eiχΣ1 on Σ.

(3)

Then the families of functions { ∂yi
∂ν
χγ}1≤i≤M and { 1

θ
∂yi
∂ν
χγ}1≤i≤M are linearly independent.

Proof Let αi ∈ R, 1 ≤ i ≤ M be such that
M∑

i=1

αi
∂yi

∂ν
χγ = 0 . Set k =

M∑
i=1

αiyi , using (3), k is solution of



∂k
∂t +

∂k
∂a − ∆k + µk = 0 in Q,
k(0, a, x) = 0 in QA,

k(t, 0, x) =

∫ A

0
βkb(t, x)da in QT ,

k =

M∑
i=1

αiei.χΣ1 on Σ,

∂k
∂ν

= 0 on U × γ.

(4)

Assumption (2) allows us to say that k is identically zero. Therefore, we deduce that

M∑
i=1

αiei.χΣ1 = 0 on Σ. (5)

52



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 11, No. 4; 2019

Since ei.χΣ1 , 1 ≤ i ≤ M are linearly independent, we have αi = 0 for 1 ≤ i ≤ M and this implies that the family of
functions { ∂yi

∂ν
χγ}1≤i≤M is linearly independent, So is the family { 1

θ
∂yi
∂ν
χγ}1≤i≤M .

From now we set
K = Span{∂y1

∂ν
χγ, ...,

∂yM

∂ν
χγ} ⊂ L2(U × γ), (6)

and
Kθ =

1
θ

K ⊂ L2(U × γ).

Now we consider the following problem: let h0 ∈ L2(U × O), w0 ∈ Kθ. Find v ∈ L2(U × γ) such that

v ∈ K⊥, (7)

and if q = q(t, a, x; v) is a solution of


− ∂q
∂t −

∂q
∂a − ∆q + µq = βq(t, 0, x)G

(∫ A

0
βqda

)
in Q,

q = h0χO + (w0 − v)χγ on Σ,

q(T, a, x) = 0 in QA,

q(t, A, x) = 0 in QT ,

(8)

then q satisfies
q(0, a, x; v) = 0 in QA. (9)

The problem (7)-(9) is a null boundary controllability problem with constraint on the control.Controllability problems
for two stroke system have been studied by several authors. For instance, Ainseba, B. and Langlais, M. proved that the
set of profiles is approximatively reachable (Ainseba & Langlais,1996). It has been shown that in (Ainseba & Anita,
2001) if the initial distribution is small enough, we can find a control which leads to extinction of the population. The
result was achieved by means of Carleman inequality for parabolic equation. Exact and approximate controllability
results are obtained for a linear population dynamics problem structured in age and space by Ainseba, B. (Ainseba,
2002). Concerning the nonlinear population dynamics model, a null controllability result was established by Ainseba, B.
and Iannelli, M. by means of Kakutani fixed point theorem (Ainseba & Innanelli, 2003). Using a derivation of Leray-
Schauder fixed point theorem and Carleman inequality for the adjoint system,Traoré, O. showed that for all given initial
density, there exists an internal control acting on a small open set of the domain and leading the population to extension
in (Traoré, 2006). Sawadogo, S. and Mophou, G. (Sawadogo & Mophou, 2012) gave a null controllability result for
population dynamics model with constraints on the state when the age of the population belongs to (γ, A) for any γ > 0.
Following this work, Mercan, M. and Mophou, G. (Mercan & Mophou, 2014) proved a null controllability problem
with constraints on the state for an adjoint system of population dynamics model. The result was achieved by means of
Carleman inequality adapted to the constraints. Simporé, Y. and Traoré, O. solve the internal null controllability without
constraint on the control for a nonlinear dissipative system (Simporé & Traoré, 2016). They use their result to detect
incomplete parameter in a nonlinear population dynamics model. Soma, M. and Sawadogo, S. build a boundary sentinel
with given sensitivity in order to identify unknown parameters in the linear population dynamics model with incomplete
data (Soma & Sawadogo, 2019).

In this paper we solve the nonlinear null boundary controllability problem with constraint on the control (7)-(9) which
seems new to us and which we will apply in the construction of a boundary sentinel in the nonlinear case. More precisely,
we have the following result:

Theorem 1 Let Ω ⊂ Rn an open subset with ∂Ω = Γ of class C∞. Let Γ1 ⊂ Γ a nonempty open subset. Let also O and γ be
two nonempty open subsets of Γ \Γ1 such that O∩γ , ∅ and G a real function verifying (H4). Assume that the assumption
(2) hold. For any function h0 ∈ L2(U × O) with θh0 ∈ L2(U × O) (θ will be given later on by (13)), there exists a unique
control v̂ ∈ K⊥ such that the pair (v̂, q̂) with q̂ = q(v̂) is a solution of the problem (7)-(9).
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2. Resolution of the Problem (7)-(9)

2.1 An Adapted Carleman Inequality

There exists a function ψ ∈ C2(Ω) such that:

ψ(x) > 0,∀x ∈ Ω,
∇ψ > α,∀x ∈ Ω,
ψ(x) = 0,∀x ∈ Γ \ γ,
∂ψ

∂ν
< 0,∀x ∈ Γ \ γ,

(10)

(see Fursikov & Imanuvilov, 1996). Consider the functions :

φ (t, a, x) =
eλ(m|ψ|∞+ψ(x))

at (A − a) (T − t)
, (11)

η(t, a, x) =
e2λm|ψ|∞ − eλ(m|ψ|∞+ψ(x))

at (A − a) (T − t)
, (12)

with m ≥ 1 and λ > 0 . Since φ , 0 in Q, we set

1
θ2 = min

[
e−2sη

(
φ−1, φ, φ3, φ

∣∣∣∣∣∂ψ∂ν
∣∣∣∣∣)] , (13)

with s > 0 and we consider the notations below :
L =

∂

∂t
+
∂

∂a
− ∆ + µI,

L∗ = − ∂
∂t
− ∂

∂a
− ∆ + µI,

V =
{
ρ ∈ C∞

(
Q
)
, ρ = 0 on Σ

}
.

(14)

Using the notations given by (14) and the definition given by (11)-(12), we have the following boundary Carleman in-
equality:

Proposition 1 Let ψ, φ and η be respectively defined by (10)-(12). Then, there exists numbers λ0 = λ0 (γ, µ) > 1, s0 =

s0 (γ, µ, T ) > 1,C0 = C0 (γ, µ) > 0 and C1 = C1 (γ, µ) > 0 such that for any λ ≥ λ0, for any s ≥ s0, for any ρ ∈ V, the
following inequality holds :∫

Q

e−2sη

sφ

(
|ρt + ρa|2 + |∆ρ|2

)
dadtdx +

∫
Q

e−2sη
(
sλ2φ|∇ρ|2 + s3λ4φ3|ρ|2

)
dtdadx

+C0

∫ T

0

∫ A

0

∫
Γ\γ

se−2sηφ

(
−∂ψ
∂ν

)
|∂ρ
∂ν
|2dtdadΓ

≤ C1

[∫
Q

e−2η|Lρ|2dtdadx +
∫ T

0

∫ A

0

∫
γ

se−2ηφ|∂ρ
∂ν
|2dtdadΓ

]
. (15)

Proof. See (Nakoulima & Sawadogo, 2007)

As ψ belong to C2(Ω) and φe−2sη is bounded, then 1
θ

is also bounded in Q. Hence, from Proposition 1, we have this other
inequality :

Proposition 2 Let θ be defined by (13). Then, there exists numbers λ0 = λ0(Ω, γ, µ) > 1, s0 = s0(Ω, γ, µ, T ) > 1,
C0 = C0(Ω, γ, µ) > 0, and C1 = C1(Ω, γ, µ) > 0 such that, for any λ ≥ λ0, for any s ≥ s0, and for any ρ ∈ ν,∫

U

∫
Ω

1
θ2

(
|∂ρ
∂ν
|2 + |∆ρ|2 + |∇ρ|2 + |ρ|2

)
dtdadΓ+C0

∫
U

∫
Γ

1
θ2 |
∂ρ

∂ν
|2dtdadΓ

≤ C1

[∫
Q
|Lρ|2dtdadx +

∫
U

∫
γ

|∂ρ
∂ν
|2dtdadΓ

]
. (16)
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To prove the adapted Carleman inequality, we need the following Lemma

Lemma 2 Assume that the assumptions of Lemma 1 hold. Let K be the real vector subspace of L2(U × γ) of finite
dimensional defined in (6). Then any function ρ such that

∂ρ
∂t +

∂ρ
∂a − △ρ + µρ = 0 in Q
ρ(0, ., .) = 0 in QA

ρ = 0 on Σ \ Σ1
∂ρ
∂ν
|γ ∈ K

(17)

is identically zero.

Proof. For any ρ verifying (17), there exists αi ∈ R, 1≤ i ≤ M, such that ∂ρ
∂ν
=

M∑
i=1

αi
∂yi

∂ν
. We set z = ρ −

M∑
i=1

αiyi. Using

(3), we have 
∂z
∂t +

∂z
∂a − ∆z + µz = 0 in Q,
z(0, ., .) = 0 in QA,

z = 0 on Σ \ Σ1,
∂z
∂ν

= 0 on U × γ.

(18)

Since γ ⊂ Γ \ Γ1, we have z = 0 and ∂z
∂ν
= 0 in U × γ. Then it follows from assumption (2) that z = 0 in Q. Consequently,

ρ =

M∑
αiyi

i = 1
and

M∑
i=1

αiei = 0 on Σ1. Hence, it follows from the assumptions of Lemma 1 that αi = 0 for 1 ≤ i ≤ M.

Thus, ρ = 0 in Q.

Proposition 3 [Adapted Carleman inequality] Under the Assumption of Lemma 1 . Let K defined in (6) and P be
the orthogonal projection operator from L2(U × γ) into K. Then, there exists some numbers λ0 = λ0(Ω, γ, µ) > 1,
s0 = s0(Ω, γ, µ, T ) > 1, C0 = C0(Ω, γ, µ) > 0 and C1 = C1(Ω, γ, µ) > 0 such that, for any λ ≥ λ0, for any s ≥ s0, and
for any ρ ∈ V, ∫

U

∫
Γ

1
θ2

∣∣∣∣∂ρ
∂ν

∣∣∣∣2dtdadΓ ≤ C1

[∫
Q

∣∣∣∣Lρ∣∣∣∣2dtdadx +
∫

U

∫
γ

∣∣∣∣P∂ρ
∂ν
− ∂ρ
∂ν

∣∣∣∣2dtdadΓ
]
. (19)

Proof. As in (Nakoulima & Sawadogo, 2007) and (Mophou & Nakoulima,2008), we use a well known compactness-
uniqueness argument and the inequality (15). Indeed, suppose that (19) does not hold. Then for any j ∈ N, there exists
ρ j ∈ ν such that ∫

U

∫
Ω

∣∣∣Lρ j

∣∣∣2 dtdadx ≤ 1
j
, (20)

∫
U

∫
γ

∣∣∣∣∣∣P∂ρ j

∂ν
−
∂ρ j

∂ν
χγ

∣∣∣∣∣∣2 dtdadΓ ≤ 1
j
, (21)

∫
U

∫
Γ

1
θ2

∣∣∣∣∣∣∂ρ j

∂ν

∣∣∣∣∣∣2 dtdadΓ = 1. (22)

In what follows, we prove in three steps that (20)-(22) yields contradiction.

Step 1. We have

∫
U

∫
γ

1
θ2

∣∣∣∣∣∣P∂ρ j

∂ν

∣∣∣∣∣∣2 dtdadΓ ≤ 2
∫

U

∫
γ

1
θ2

∣∣∣∣∣∣P∂ρ j

∂ν

∣∣∣∣∣∣2 dtdadΓ

+ 2
∫

U

∫
γ

1
θ2

∣∣∣∣∣∣P∂ρ j

∂ν
−
∂ρ j

∂ν
χγ

∣∣∣∣∣∣2 dtdadΓ.

(23)
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Since 1
θ2 is bounded, using (20) and (21), it follows that there exists a positive constant C such that

∀ j ∈ N,
∫

U

∫
γ

∣∣∣∣∣∣P∂ρ j

∂ν

∣∣∣∣∣∣2 dtdadΓ ≤ C. (24)

As ∂ρ j

∂ν
χγ = P ∂ρ j

∂ν
χγ + ( ∂ρ j

∂ν
χγ − P ∂ρ j

∂ν
χγ), using (22) and (24),we obtain∥∥∥∥∥∥∂ρ j

∂ν

∥∥∥∥∥∥2

L2(U×γ)
≤ C. (25)

Step 2. Let L2
(

1
θ
,U × γ

)
=

{
ρ ∈ L2(U ×Ω);

∫
U

∫
Γ

1
θ2

∣∣∣∣∣∂ρ∂ν
∣∣∣∣∣2 dtdadΓ < ∞

}
.

Then in view of (22) and (25), we deduce from (16) that ,
(
∂ρ j

∂t +
∂ρ j

∂a

)
, ( ∂ρ j

∂ν
), (∇ρ j), (ρ j) and (∆ρ j) are bounded in

L2
(

1
θ
,U × γ

)
. Let us take a subsequence still denoted by (ρ j) such that

ρ j ⇀ ρ weakly in L2
(

1
θ
,U × γ

)
, (26)

∂ρ j

∂ν
⇀

∂ρ

∂ν
weakly in L2

(
1
θ
,U × γ

)
. (27)

Then it follows from (10)-(12) and the definition of 1
θ

given by (13) that (ρ j) and (∆ρ j) are bounded in L2(]β, T−β[×]α, A−
α[×Ω) for any β > 0 and any α > 0. In particular, for all β > 0 and any α > 0, we have

ρ j ⇀ ρ weakly in L2 (]β, T − β[×]α, A − α[×Ω)

∂ρ j

∂ν
⇀

∂ρ

∂ν
weakly in L2 (]β, T − β[×]α, A − α[×Σ) ,

which implies that
ρ j ⇀ ρ weakly in D′(Q)

∂ρ j

∂ν
⇀

∂ρ

∂ν
weakly in D′(Σ).

Therefore, we get from (26)-(27) that

Lρ j −→ Lρ = 0 strongly in L2(U ×Ω), (28)

∂ρ j

∂ν
⇀

∂ρ

∂ν
strongly in L2(U × γ). (29)

And, since P is a compact operator, we deduce from (29)that

P
∂ρ j

∂ν
−→ P

∂ρ

∂ν
strongly in L2(U × γ). (30)

In view of (21), we also have
∂ρ j

∂ν
− P

∂ρ j

∂ν
−→ 0 strongly in L2(U × γ). (31)

Thus combining (30) and (31), we get

P
∂ρ j

∂ν
−→

∂ρ j

∂ν
strongly in L2(U × γ). (32)

The uniqueness of the limit in L2(U × γ) , the relations (30)-(31) and (32) imply that P ∂ρ
∂ν
=

∂ρ
∂ν
χγ. This means that

∂ρ
∂ν
χγ ∈ Y . We thus have proved that ρ verifies (17). Hence thanks to Lemma 2, ρ is identically zero. Therefore, (30)

becomes
∂ρ j

∂ν
−→ 0 strongly in L2(U × γ). (33)
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Step 3. Since ρ j ∈ V, it follows from the observability inequality (16) that

∫
U

∫
Γ

1
θ2

∣∣∣∣∣∣∂ρ j

∂ν

∣∣∣∣∣∣2 dtdadΓ ≤ C1

∫
Q

∣∣∣Lρ j

∣∣∣2 dtdadx +
∫

U

∫
γ

∣∣∣∣∣∣∂ρ j

∂ν

∣∣∣∣∣∣2 dtdadΓ

 .
Therefore passing this latter inequality to the limit while using (28) and (33), we obtain

lim
j−→∞

∫
U

∫
Γ

∣∣∣∣∣∣∂ρ j

∂ν

∣∣∣∣∣∣2 dtdadx = 0.

The contradiction occurs with (22).

2.2 Resolution of an Intermediary Problem

In this subsection, we consider the following problem : given h0 ∈ L2(U × O), w0 ∈ Kθ, find v ∈ L2(U × γ) such that

v ∈ K⊥, (34)

and if q = q(t, a, x; v) is a solution of


− ∂q
∂t −

∂q
∂a − △q + µq = βq(t, 0, x)b(t, x) in Q,

q = h0χO + (w0 − v)χγ on Σ,

q(T, a, x) = 0 in QA,

q(t, A, x) = 0 in QT ,

(35)

then q satisfies
q(0, a, x; v) = 0 in QA. (36)

The following result hold:

Theorem 4 Let Ω be a bounded open subset of Rn with boundary Γ of class C∞. Let Γ1 be a nonempty open subset of
Γ. Let also O and γ be two nonempty open subsets of Γ \ Γ1 such that O ∩ γ , ∅. Let b ∈ L∞((0, T ) × Ω). Then there
exists a positive real weight function θ a precise definition of θ given by (13) such that, for any function h0 ∈ L2(U × O)
with θh0 ∈ L2(U × O), there exists a unique control v̂ ∈ K⊥ such that the pair (v̂, q̂) with q̂ = q(v̂) is solution of the null
boundary controllability problem with constraint on the control (34)-(36). Moreover, the control v̂ is given by

v̂ = (I − P)(w0χγ −
∂ρ̂

∂ν
χγ),

where P is the orthogonal projection operator from L2(U × γ) into K and ρ̂ satisfies
∂ρ̂
∂t +

∂ρ̂
∂a − ∆ρ̂ + µρ̂ = 0 in Q,

ρ̂(t, 0, x) = b(t, x)
∫ A

0
βρ̂da in QT ,

ρ̂ = 0 on Σ.

Proof. We use a penalization argument which will be divided in three steps.

Step 1. Let w0 ∈ Kθ. If v ∈ K⊥ and if q is a solution of (35) then q(0, ., .) ∈ L2(QA) and we define the functional

Jϵ(v) =
1
2
∥w0 − v∥2L2(U×γ) +

1
2ϵ
∥q(0, ., .)∥2L2(QA). (37)

We consider the optimal control problem: Find vϵ ∈ K⊥ such that

Jϵ(vϵ) = min
v∈K⊥

Jϵ(v) . (38)

Since K⊥ is a closed and convex subset of L2(U × γ) , it is classical to prove existence and uniqueness of the solution of
(38). If we write qϵ the solution of (35) corresponding to vϵ using an adjoint state ρϵ , we have that the triplet (qϵ , ρϵ , vϵ)
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is solution of the first order optimality system:
L∗qϵ = βqϵ(t, 0, x)b(t, x) in Q,

qϵ(T, a, x) = 0 in QA,

qϵ(t, A, x) = 0 in QT ,

qϵ = h0χO + (w0 − vϵ)χγ on Σ,

(39)



Lρϵ = 0 in Q,
ρϵ(0, a, x) = 1

ϵ
qϵ(0, a, x) in QA,

ρϵ(t, 0, x) = b(x, t)
∫ A

0
βρ

ϵ
da in QT ,

ρϵ = 0 on Σ,

(40)

vϵ =
(
w0χγ −

∂ρ
ϵ

∂ν
χγ

)
− P

(
w0χγ −

∂ρ
ϵ

∂ν
χγ

)
∈ K⊥. (41)

Step 2. Multiplying the state equation (39) by ρϵ and integrating by parts over Q, we get

1
ϵ
∥qϵ(0, ., .)∥2L2(QA) =

∫
U

∫
O

h0
∂ρ

ϵ

∂ν
dtdΓ +

∫
U

∫
γ

(w0 − vϵ)
∂ρ

ϵ

∂ν
dtdΓ,

which in view of (41) and the fact that vϵ ∈ K⊥ give

1
ϵ
∥qϵ(0, ., .)∥2L2(QA) =

∫
U

∫
O

h0
∂ρ

ϵ

∂ν
dtdΓ

+

∫
U

∫
γ

(w0 − vϵ)
(
w0 − vϵ − P

(
w0χγ −

∂ρ
ϵ

∂ν
χγ

))
dtdΓ.

=

∫
U

∫
O

h0
∂ρ

ϵ

∂ν
dtdΓ

− ∥w0 − vϵ∥L2(U×γ) + ∥Pw0χγ∥L2(U×γ) +

∫
U

∫
γ

w0
∂ρ

ϵ

∂ν
dtdΓ.

Since on U × γ

w0 − vϵ = Pw0χγ + (I − P)
∂ρ

ϵ

∂ν
χγ,

we have that

∥w0 − vϵ∥L2(U×γ) = ∥(I − P)
∂ρ

ϵ

∂ν
χγ∥2L2(U×γ) + ∥Pw0χγ∥2L2(U×γ),

so that
1
ϵ
∥qϵ(0, ., .)∥2L2(QA) + ∥(I − P)

∂ρ
ϵ

∂ν
χγ∥2L2(U×γ) =

∫
U

∫
O

h0
∂ρ

ϵ

∂ν
dtdΓ

+

∫
U

∫
γ

w0
∂ρ

ϵ

∂ν
dtdΓ.

This implies that

1
ϵ
∥qϵ(0, ., .)∥2L2(QA) + ∥(I − P)

∂ρ
ϵ

∂ν
χγ∥2L2(U×γ) ≤

(∫
U

∫
O

(θh0)2dtdΓ
) 1

2
∫

U

∫
γ

1
θ2

∂ρ
ϵ

∂ν

2

dtdΓ
 1

2

+

(∫
U

∫
O

(θw0)2dtdΓ
) 1

2
∫

U

∫
γ

1
θ2

∂ρ
ϵ

∂ν

2

dtdΓ
 1

2

.

(42)

Applying the adapted Carleman inequality (19) to ρϵ we obtain∫
U

∫
Γ

1
θ2 |

∂ρ
ϵ

∂ν
|2dtdΓ ≤ C

∫
U

∫
γ

|(I − P)
∂ρ

ϵ

∂ν
χγ|2dtdaΓ, (43)
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where C > 0 is independent of ϵ. From (42), the choice of w0 ∈ Yθ and the hypothesis on h0, we deduce that

1
ϵ
∥qϵ(0, ., .)∥2L2(QA) +

1
2∥(I − P) ∂ρϵ

∂ν
χγ∥2L2(U×γ)

≤ C
(∫

U

∫
γ

θ2|w0|2dtdadΓ +
∫

U

∫
O
θ2|h0|2dtdadΓ

) 1
2

,
(44)

and then

∥vϵ∥2L2(U×γ) ≤ C
(∫

U

∫
γ

θ2|w0|2dtdadΓ +
∫

U

∫
O
θ2|h0|2dtdadΓ

) 1
2

; (45)

∥qϵχω∥2L2(U×γ) ≤ C
√
ϵ

(∫
U

∫
γ

θ2|w0|2dtdadΓ +
∫

U

∫
O
θ2|h0|2dtdadΓ

) 1
2

. (46)

Then, the properties of the equation (39) allow us to conclude that

∥qϵ∥2L2(Q) ≤ C
(∫

U

∫
γ

θ2|w0|2dtdadΓ +
∫

U

∫
O
θ2|h0|2dtdadΓ

) 1
2

. (47)

In view of (43) and (44), we get

∥1
θ

∂ρ
ϵ

∂ν
∥L2(Σ) ≤ C

(∫
U

∫
γ

θ2|w0|2dtdadΓ +
∫

U

∫
O
θ2|h0|2dtdadΓ

) 1
2

, (48)

and using (44) and the fact that 1
θ

is bounded, we have

∥1
θ

P
∂ρ

ϵ

∂ν
∥L2(U×γ) ≤ C

(∫
U

∫
γ

θ2|w0|2dtdadΓ +
∫

U

∫
O
θ2|h0|2dtdadΓ

) 1
2

Therefore, K being a finite dimensional vector subspace of L2(U × γ), we deduce that

∥P∂ρϵ
∂ν
∥L2(U×γ) ≤ C

(∫
U

∫
γ

θ2|w0|2dtdadΓ +
∫

U

∫
O
θ2|h0|2dtdadΓ

) 1
2

. (49)

from which we deduce, using (44) that

∥∂ρϵ
∂ν
∥L2(U×γ) ≤ C

(∫
U

∫
γ

θ2|w0|2dtdadΓ +
∫

U

∫
O
θ2|h0|2dtdadΓ

) 1
2

. (50)

Using Proposition 2 , we have that∫
U

∫
Ω

1
θ2

(
|∂ρϵ
∂ν
|2 + |∆ρ

ϵ
|2 + |∇ρ

ϵ
|2 + |ρ

ϵ
|2
)

dtdadΓ

≤ C
(∫

U

∫
γ

θ2|w0|2dtdadΓ +
∫

U

∫
O
θ2|h0|2dtdadΓ

) 1
2

.

(51)

Step 3. We prove the convergence of (vϵ , qϵ)ϵ and ρ
ϵ

towards v̂, q̂ and ρ̂ as ϵ −→ 0. According to (48), (50) and (54) we
can extract subsequences of (vϵ , qϵ)ϵ ( still called (vϵ , qϵ)ϵ ) such that

vϵ ⇀ ṽ weakly in L2(U × γ), (52)

qϵ ⇀ q̃ weakly in L2(U; H1(Ω)), (53)

1
θ
ρϵ ⇀ ρ̃ weakly in L2(

1
θ
,Q). (54)

As vϵ belong to K⊥ which is closed vector subspace of L2(U × γ), we have

ṽ ∈ K⊥. (55)
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So, using (52) and (53) while passing (39) to the limit as ϵ −→ 0, we can prove that q̃ is solution of
L∗q̃ = βq̃(t, 0, x)b(t, x) in Q,

q̃(T, a, x) = 0 in QA,

q̃(t, A, x) = 0 in QT ,

q̃ = h0χO + (w0 − v0)χγ on Σ,

(56)

and it follows from (44) that
qϵ(0, ., .) ⇀ q̃(0, ., .) = 0 weakly in L2(QA). (57)

In view of (55), (56) and (57), (̃v, q̃) verifies the null controllability (34)-(36) and there exists a solution to the
boundary null controllability problem. Moreover, it is clear from (40) that ρ̃ satisfies

Lρ̃ = 0 in Q

ρ̃(t, 0, x) =

∫ A

0
βρ̃b(t, x)da in QT ,

ρ̃ = 0 on Σ.

From (48)
∂ρϵ
∂ν

⇀
∂ρ̃

∂ν
weakly in L2(U × γ). (58)

We have on the one hand that (̃v, q̃) is solution to null controllability (34)-(36) , and on the other other hand that,
there exists a unique v̂ ∈ ε such that (w0 − v̂) is of minimal norm in L2(U × γ). If we denote by q̂ the corresponding
solution to (35), we have q̂(0, ., .) = 0 and, as ṽ ∈ ε,

1
2
∥w0 − υϵ∥2L2(U×γ) ≤ Jϵ(vϵ) ≤ Jϵ(v̂) =

1
2
∥w0 − v̂∥2L2(U×γ)

and
1
2
∥w0 − v̂∥2L2(U×γ) ≤

1
2
∥w0 − vϵ∥2L2(U×γ).

Using (52)

lim inf
ϵ−→0

1
2
∥w0 − vϵ∥2L2(U×γ) ≥

1
2
∥w0 − v̂∥2L2(U×γ)

Hence,
ṽ = v̂

and
vϵ ⇀ ṽ strongly in L2(U × γ).

Writing ρ̃ = ρ̂ , we obtain

v̂ = (I − P)
(
w0χγ −

∂ρ̂

∂v
χγ

)
.

2.3 Controllability Result in the Nonlinear Case

Let Λ : L2((0,T ) ×Ω)→ L2((0,T ) ×Ω) defined by

Λ(η) =
∫ A

0
β(t, a, x)qϵ(η)da, (59)

where qϵ(η) verifies: 
L∗qϵ = βqϵ(t, 0, x)G (η) in Q,

qϵ(T, a, x) = 0 in QA,

qϵ(t, A, x) = 0 in QT ,

qϵ = h0χO + (w0 − vϵ)χγ on Σ.

(60)

We set
b(t, x) = G(η).

The following proposition hold.

Proposition 5 The operator Λ is continuous, bounded and compact. Then Λ admits a fixed point.

Proof. The proof will be done in two steps.
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Step 1.(boundedness and compactness of Λ)

Let

Y(t, a, x) =
∫ A

0
β(t, a, x)qϵda, (61)

we have Y is the solution of the following system:
∂Y(η)
∂t − ∆Y(η) +

∫ A

0
µβ(t, a, x)qϵda = Z1(η) in QT ;

Y(η)(t, x) = Z2(η) on (0,T ) × ∂Ω;

Y(η)(0, x) = 0 on Ω;

(62)

with

Z1(η) =
∫ A

0

(
∂β

∂t
qϵ +

∂β

∂a
qϵ + β2qϵ(t, 0, x)G′(η) + qϵ∆β + 2∇β∇qϵ

)
da

and

Z2(η) =
∫ A

0
β
(
h0χO + (w0 − υϵ)χγ

)
da.

Under assumption (H1) − (H4) and the result and owing to the estimation on qϵ the functions Z1(η) and Z2(η) satisfies

||Z1(η)||L2((0,T )×Ω) ≤ C (||βt ||∞, ||βa||∞, ||β||∞, ||∆β||∞, ||∇β||∞) , (63)

||Z2(η)||L2((0,T )×Ω) ≤ C′(||h0||L2((0,T )×O) + ||w0 − υϵ ||L2((0,T )×γ)). (64)

From system (62) and using the Lions-Aubin lemma we conclude that Λ is bounded and compact in L2(QT ).

Step 2.(Continuity of Λ)

Let ηk → η strongly in L2(Q).
In view of (45)-(46) we get for all ηk ∈ R, qϵ(ηk) and vϵ are bounded independently to ηk. Therefore Z1(ηk) and Z2(ηk) are
bounded respectively in L2(QT ) and L2((0, T ) × O). Then we can extract a subsequence X(ηk j ) such that

Yηk j
−→ Y(η)

Z1ηk j
−→ Z1(η)∫ A

0
µβqϵ(ηk j )da −→

∫ A

0
µβqϵ(η)da

weakly in L2(Q).
Then Y(η) is a solution of (62). We deduce that the sequence (Y(ηk)) converge to Y(η) so that Λ is continuous.
Since the operator Λ is continuous, bounded, and compact on L2(QT ) onto L2(QT ), Schauder’s fixed-point theorem im-
plies that Λ admits a fixed point.

There exists η ∈ L2(QT ) such that

Λ(η) = η =
∫ A

0
βqϵda

Then qϵ is solution of


− ∂qϵ

∂t −
∂qϵ
∂a − △qϵ + µqϵ = βqϵ(t, 0, x)G

(∫ A

0
βqϵda

)
in Q,

qϵ = h0χO + (w0 − vϵ)χγ on Σ

qϵ(T, a, x) = 0 in QA,

qϵ(t, A, x) = 0 in QT .

(65)
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From (47) we have that qϵ is bounded in L2(Q).Then we can extract a subsequence of (qϵ) still denoted by (qϵ) such that

qϵ ⇀ q in Ł2(Q);∫ A

0
βqϵda ⇀

∫ A

0
βqda in Ł2(QT ).

(66)

Then there exists a subsequence still denoted by
∫ A

0
βqϵda such that

∫ A

0
βqϵda −→

∫ A

0
βqda in Ł2(QT ). (67)

Now since G is continuous, then

G
(∫ A

0
βqϵda

)
−→ G

(∫ A

0
βqda

)
in Ł2(QT ). (68)

From (45) by the same idea
vϵχγ ⇀ vχγ in L2(U × γ). (69)

Therefore, one derives that q solves the following system:
− ∂q
∂t −

∂q
∂a − △q + µq = βq(t, 0, x)G

(∫ A

0
βqda

)
in Q,

q = h0χO + (w0 − v)χγ on Σ

q(T, a, x) = 0 in QA,

q(t, A, x) = 0 in QT ,

(70)

and we have also, for ϵ 7−→ 0, v ∈ K⊥ and q(0, a, x; v) = 0 in QA.

3. Application to Build the Boundary Sentinel and Detection of Unknown Parameters in a Nonlinear Population
Dynamics Model With Incomplete Data

3.1 Nonlinear Population Dynamics Model With Incomplete Data

For a given positive real function F, we consider the following nonlinear population dynamics model:

∂y
∂t +

∂y
∂a − ∆y + µy = 0 in Q,
y(0, a, x) = y0 + τŷ0 in QA,

y(t, 0, x) = F
(∫ A

0
β(t, a, x)y(t, a, x)da

)
in QT ,

y =


ξ +

M∑
i=1

λiξ̂i, on Σ1,

0 on Σ \ Σ1,

(71)

where :

- y(t, a, x) is the distribution of a-year old individuals at time t at the point x ∈ Ω.

- β(t, a, x) ≥ 0 and µ(t, a, x) ≥ 0 are respectively the natural fertility and the natural death rate of age a at time t and
position x ∈ Ω.

- Thus, the formula
∫ A

0
β(t, a, x)y(t, a, x)da denotes the distribution of newborn individuals at time t and location x. In an

oviparous species it denotes the total eggs at time t and position x. Therefore, the quantity

F
(∫ A

0
β(t, a, x)y(t, a, x)da

)
is the distribution of eggs that hatch at time t and position x.
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- The boundary condition is unknown on a part Σ1 of the boundary and represents a pollution with a structure of the form

ξ +

M∑
i=1

λiξ̂i. In this structure, the functions ξ and ξ̂i, i = 1, . . .M are known where as the real λi, i = 1, . . .M are

unknown.

- The initial distribution of individuals is unknown and its structure is of the form is y0 + τŷ0 is where the function y0 is
known and the term τŷ0 is unknown.

System (71) is a system with incomplete data because the information on the boundary condition as well as on the initial
condition are partially or completely unknown. Here, the pollution is isolated on the boundary Γ \ Γ1 and we do not know
with certainly the number of individuals living on the other part of the boundary Γ1 . The missing term in the initial
condition expresses the fact that we do not know exactly the initial density.
In what follows, We also assume that:

- y0 and ŷ0 belong to L2(QA), ξ and ξ̂i belong to L2(Σ).

- the reels τ, λi 1 ≤ i ≤ M are sufficiently small and ∥ŷ0∥L2(QA) ≤ 1, and we set λ = (λ1, . . . , λM) .

- F ∈ L∞(R) and F ∈ C1(R)

Under the above assumptions on the data, one can prove as in (Ouédraogo & O. Traoré, 2003) that the system (71)
has a unique solution y = y (λ, τ) in L2(Q). Moreover, if we denote by I ⊂ R a neighbourhood of 0, the applications
τ 7−→ y (λ, τ) and λi 7−→ y (λ, τ) , (1 ≤ i ≤ M) are in C1

(
I; L2(Q)

)
.

For more literature on the model describing the dynamics of population with age dependence and spatial structure as well
as for some existence results on such problem, we refer for instance to (Langlais, 1985), (Ainseba & Langlais, 2000),
(Giovanna & Langlais, 1982); (Ouédraogo & Traoré, 2003) and the reference there in.

For the model (71), we are interested in identifying the unknown parameters λi without any attempt at computing τŷ0. To
identify these parameters, we use the theory of sentinel in a general framework. More precisely, let O be a nonempty open
subset of Γ\Γ1 and let y = y(t, a, x; λ, τ) = y(λ, τ) be the solution of (71).

3.2 Sentinel

For any nonempty open subset γ of Γ\Γ1 such that O ∩ γ , ∅, we look for a function S (λ, τ) solution to the following
problem : Given h0 ∈ L2(U × O), find w ∈ L2(U × γ) such that

i) the function S defined by

S (λ, τ) =
∫

U

∫
O

h0
∂y
∂ν

(λ, τ)dtdadΓ +
∫

U

∫
γ

w
∂y
∂ν

(λ, τ)dtdadΓ, (72)

satisfies :

- S is stationary to the first order with respect to missing term τŷ0

∂S
∂τ

(0, 0) = 0 ∀ ŷ0. (73)

- S is sensitive to the first order with respect to pollution terms λiξ̂i:

∂S
∂λi

(0, 0) = ci 1 ≤ i ≤ M, (74)

where ci, 1 ≤ i ≤ M, are given constants not all identically zero.

ii) The control w is of minimal norm in L2(U × γ) among ” the admissible controls”, i.e.

∥w∥2L2(U×γ) = min
w̄∈E
∥w̃∥2L2(U×γ). (75)
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Where

E =
{
w̃ ∈ L2(U × γ), such that (w̃, S (w̃)) satisfies (72) − (75)

}
. (76)

Remark 1 J.L.Lions (Lions, 1992) refers to the function S as a sentinel with given sensitivity ci. The ci are chosen
according to the importance which is conferred to the component ξi of the pollution.

Remark 2 Notice that for the J.L.Lions’s sentinels defined by (72)-(75), the observatory O ⊂ (Γ \ Γ1) is also the support
of the control function w.

For more information on the theory of sentinel, we refer to (Mophou &Nakoulima, 2008), (Nakoulima &Sawadogo, 2007)
and the reference therein. We set y0 = y(0, 0) ∈ L2(Q), the solution of (1) when λ = 0 and τ = 0 we denote respectively
by yτ and yλi , the derivatives of y at (0, 0) with respect to τ and λi, i.e. :

yτ = lim
τ→0

y(0, τ) − y(0, 0)
τ

.

and
yλi = lim

λi→0

y(λi, 0) − y(0, 0)
λ

.

Then yτ and yλi are respectively solutions of

∂yτ
∂t +

∂yτ
∂a − △yτ + µyτ = 0 in Q,
yτ(0, a, x) = ŷ0 in QA,

yτ(t, 0, x) =

∫ A

0

(
βF′

(∫ A

0
βy(0, 0)da

)
yτ

)
da in QT ,

yτ = 0 on Σ,

(77)

and



∂yλi
∂t +

∂yλi
∂a − △yλi + µyλi = 0 in Q,
yλi (0, a, x) = 0 in QA,

yλi (t, 0, x) =

∫ A

0

(
βF′

(∫ A

0
βy(0, 0)da

)
yλi

)
da in QT ,

yλi = ξ̂iχΣ1 on Σ,

(78)

where χX denote now and in the sequel, the characteristic function of the set X. Under the above assumptions on the
data, we have that (77)and (78) has respectively a unique solution yτ and yλi in L2(Q)) (see Giovanna & Langlais, 1982,
Ouédraogo & Traoré, 2003 ).

From now on, we assume that the functions

ξ̂i.χΣ1
, 1 ≤ i ≤ M are linearly independent, (79)

and we set

Y = Span{∂yλ1

∂ν
χγ, ...,

∂yλM

∂ν
χγ}, (80)

the vector subspace of L2(U × γ) generated by M functions {yλiχγ}Mi=1, and

Yθ =
1
θ

Y,

the vector subspace of L2(U × γ) generated by M functions { 1
θ

∂yλi
∂ν
χγ}Mi=1, where θ is the positive function defined by (13)

Remark 3 Lemma 2 allows us to say that the functions { ∂yλi
∂ν
χγ}Mi=1 and { 1

θ

∂yλi
∂ν
χγ}Mi=1 are linearly independent.
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3.3 Equivalence Between Sentinel Problem and Controllability

In view of (72), the stationary condition (73) and respectively the sensitivity condition (74) hold if and only if∫
U

∫
O

h0
∂yτ
∂ν

dtdadΓ +
∫

U

∫
γ

w
∂yτ
∂ν

dtdadΓ = 0. ∀ ŷ0, ∥ŷ0∥L2(QA) ≤ 1; (81)

and ∫
U

∫
O

h0
∂yλi

∂ν
dtdadΓ +

∫
U

∫
γ

w
∂yλi

∂ν
dtdadΓ = ci. 1 ≤ i ≤ M. (82)

Therefore, in order to transform equation (81) we introduce the classical adjoint state. More precisely, we consider the
following problem :


− ∂q
∂t −

∂q
∂a − △q + µq = βq(t, 0, x)F′

(∫ A

0
βy(0, 0)da

)
in Q,

q = h0χO + wχγ on Σ

q(T, a, x) = 0 in QA,

q(t, A, x) = 0 in QT .

(83)

Since h0χO+wχγ ∈ L2(Σ) and under the assumptions (H1)−(H3) , we can prove that (83) has a unique solution q ∈ L2(Q).
Now multiplying both sides of the differential equation in (83) by yτ solution of (77) and integrating by parts in Q, we get

∫
U

∫
O

h0
∂yτ
∂ν

dtdadΓ +
∫

U

∫
γ

w
∂yτ
∂ν

dtdadΓ =
∫ A

0

∫
γ

q(0, a, x)ŷ0dadx ∀ ŷ0 ∈ L2(QA). (84)

Thus, the condition (73) or (81) holds if and only if

q(0, a, x; v) = 0 in QA, (85)

then, multiplying both sides of the differential equation in (83) by yλi solution of (78) and integrating by parts in Q, we
have ∫

U

∫
O

h0
∂yλi

∂ν
dtdadΓ +

∫
U

∫
γ

w
∂yλi

∂ν
dtdadΓ =

∫
Σ1

∂q
∂ν
ξ̂i.χΓ1 dtda, 1 ≤ i ≤ M.

Thus, the condition the condition (74) or (82) is equivalent to∫
Σ1

∂q
∂ν
ξ̂i.χΓ1 dtda = ci, 1 ≤ i ≤ M. (86)

Now, consider the matrix

(∫ T

0

∫ A

0

∫
γ

1
θ

∂yλ j

∂ν

∂yλi

∂ν
dtdadΓ

)
1≤i, j≤M

.

This matrix is symmetric positive definite therefore, there exists a unique w0 ∈ Yθ such that

ci −
∫

U

∫
O

h0
∂yλi

∂ν
dtdadΓ =

∫
U

∫
γ

w0
∂yλi

∂ν
dtdadΓ. 1 ≤ i ≤ M. (87)

Consequently, combining(82) with (87), we observe that condition (74) holds if and only if

w − w0 = −v ∈ Y⊥,

where Y is given by (80). Replacing w by w0 − v in the second expression of (83), we have just proved that the sentinel
problem (72)-(75) hold if and only if the following null boundary controllability problem with constraint on the control
has a solution: Given h0 ∈ L2(U × O), w0 ∈ Yθ. find v ∈ L2(U × γ) such that

v ∈ Y⊥, (88)
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and if q = q(t, a, x; v) is solution of
− ∂q
∂t −

∂q
∂a − △q + µq = βq(t, 0, x)F′

(∫ A

0
βy(0, 0)da

)
in Q,

q = h0χO + (w0 − v)χγ on Σ

q(T, a, x) = 0 in QA,

q(t, A, x) = 0 in QT ,

(89)

q(0, a, x; v) = 0 in QA. (90)

Remark 4 Let us notice that if v exists, the set

E = {v ∈ Y⊥such that (v, q = q(t, a, x; v)) satisfies (88) − (90)} (91)

is a nonempty closed, and convex set in L2(U × γ). Therefore there exists v ∈ E of minimal norm.

Proposition 6 Assume that the hypotheses of Theorem 1 are satisfied. Then there exists a positive real weight function θ
given by (13) such that, for any function h0 ∈ L2(U ×O) with θh0 ∈ L2(U ×O) there exists a unique control v̂ ∈ L2(U × γ)
such that (v̂, q̂) with q̂ = q(v̂) is solution of null boundary controllability problem with constraint on the control (88)-(90)
and provides a control ŵ = w0χγ − v̂ of the sentinel problem satisfying (75). Moreover, the control ŵ is given by:

ŵ = P(w0) + (I − P)(
∂ρ̂

∂ν
χγ), (92)

Proof. Replacing b(t, x) in (35) by F′
(∫ A

0
βy(0, 0)da

)
3.4 Identification of Unknown Parameters λi

Using proposition 6, if we replace in (72) w with

ŵ = P(w0) + (I − P)
(
∂ρ̂

∂ν
χγ

)
,

then the function S is defined by

S (λ, τ) =
∫

U

∫
O

h0
∂y
∂ν

(λ, τ)dtdadΓ +
∫

U

∫
γ

(
P(w0) + (I − P)

(
∂ρ̂

∂ν
χγ

))
∂y
∂ν

(λ, τ)dtdadΓ,

and the pair (ŵ, S (ŵ)) verify (72)-(75). To estimate the parameters λi , one proceeds as follows: assume that the solution
of (71) when λ = 0 and τ = 0 is known. Then, one has the following information

S (λ, τ) − S (0, 0) ≈
M∑

i=1

λi
∂S
∂ν

(0, 0).

Therefore, fixing i ∈ {1, . . . M} and choosing

∂S
∂λ j

(0, 0) = 0 f or j , i and
∂S
∂λi

(0, 0) = ci,

one obtains the following estimate of the parameter λi:

λi ≈
1
ci

(S (λ, τ) − S (0, 0)) .

We deduce that

λi ≈
1
ci

{∫
U

∫
O

h0

(
m0 −

∂y0

∂ν
dtdadΓ

)}
+

1
ci

{∫
U

∫
γ

(
P(w0) + (I − P)

(
∂ρ̂

∂ν
χγ

)) (
m0 −

∂y0

∂ν

)
dtdadΓ

}
,
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where m0 is a measure of the flux of the concentration of the pollutant taken on the observatory O ∪ γ and y0 is solution
of (71) when λ = 0 and τ = 0.

4. Conclusion

In this paper, using an adapted Carleman inequality and Schauder’s fixed-point theorem, we solve a boundary null con-
trollability problem with constraints on the control for a nonlinear two stroke system. The obtained results are used to
build a new mathematical tool of analysis which is the boundary sentinel with given sensitivity. The obtained sentinel is
also used to identify unknown parameters in a nonlinear population dynamics model with incomplete data. The sentinel
method is the best one to use in the inverses problems.
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