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Abstract

In this note, we derive existence and uniqueness results for backward stochastic Volterra integral equations with time
delayed generators under non-Lipschitz condition.
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1. Introduction

In their works (see Delong & Imkeller, 2010), Delong and Imkeller introduced a new class of backward stochastic differ-
ential equations whose generator depends at each t ∈ [0,T ] on (Yt, Zt) = (Y(t+ u),Z(t+ u))−T≤u≤0 representing all the past
up to t of the process solution. These equations are called backward stochastic differential equations with time delayed
generators and took on great importance when Delong in his two works (see Delong, 2012) gives the link between BS-
DEs with delayed generators and the mathematic formulation of many problems in finance and insurance. For example,
he derives that the dynamic of option-based portfolio assurance can be described by the following BSDE with delayed
generator:

Y(t) = Y(0) + (Y(T ) − Y(0))+ −
∫ T

t
Z(s)dW(s).

Since then, the study of BSDEs with delayed generators has been intensified. The work of Dos Reis et al. (Dos Reis &
al., 2012), Zhou and Ren (Zhou & Ren, 2012), Tuo et al. (Tuo & al., 2018) and references therein attest this statement.
More recently, Coulibaly and Aman (Coulibaly & Aman, 2019) have studied new class of BSDEs having the form

Y(t) = ξ +

∫ T

t
f (t, s, Ys, Zt,s)ds −

∫ T

t
Z(t, s)dW(s), (1)

where (Ys,Zt,s) = (Y(s + u),Z(t + u, s + u))−T≤u≤0 denotes all the past of the solution process until (t, s) ∈ [0,T ]2.
These BSDEs combine backward stochastic Volterra integral equations (BSVIEs, in short) introduced in (Yong, 2006)
and the notion of delayed generators. It is called BSVIEs with delayed generators. This study follows under delayed
Lipschitz condition. i.e generator f satisfies the following assumption: there exists a measure of probability α defined on
([−T, 0],B([−T, 0])) and a positive constant K, satisfying

| f (t, s, ys, zt,s) − f (t, s, y′s, z
′
t,s) |2

≤ K
(∫ 0

−T
| y(s + u) − y′(s + u) |2 α(du)

+

∫ 0

−T
| z(t + u, s + u) − z′(t + u, s + u) |2 α(du)

)
, (2)

for P ⊗ λ-a.e. (ω, (t, s)) ∈ Ω × [0,T ]2 and for any (yt, zt,s), (y′t , z
′
t,s) ∈ L∞−T (R) × L2

−T (R). They have established existence
and uniqueness results when the Lipschitz constant K or the terminal T are small enough. However, for a special class
of generators (generators do not depend on y) and the special delayed measure of probability supported by [−δ, 0], for δ
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sufficiently small, the previous results can be extended under an arbitrary Lipschitz constant and any terminal time. On
the other hand, we realize that BSVIEs with delayed generator is a suitable tool to formulate some Volterra problem with
delay. For example, the notion of expected utility with general memory set by

Y(t) = E
(
ξe

∫ T
t r(u)du +

∫ T

t
u
(

1
T

∫ s

0
C(u)du

)
e
∫ s

t r(u)duds|Ft

)
, (3)

where
1
T

∫ s

0
C(u)du represents the average of the consumption from 0 to s and r designs the instantaneous discount rate.

In more general case, we have

Y(t) = E
(
ξe

∫ T
t r(u)du +

β

T

∫ T

t

(∫ s

0
Y(u)du

)
e
∫ s

t r(u)duds|Ft

)
. (4)

With the notation of delay framework, the generator of equation (4), which we denote by f can be written as follows:

f (t, s, ys, zs) = β
∫ 0

−T
y(s + u)e

∫ s
t r(v)dvα(du)

where α designs the uniform measure of probability on ([−T, 0],B([−T, 0])). If a instantaneous discount rate r is bounded,
then f satisfies the delay Lipschitz condition and according to (Coulibaly & Aman, 2019), BSVIEs (4) have a unique
solution provided that the Lipschitz constant or the terminal time are sufficiently small. On the other hand, let consider
the generator f defined by

f (t, s, ys, zt,s) =
∫ 0

−T

β

u + s
y(s + u)e

∫ s
t r(v)dvα(du) (5)

which appears in expected utility with general memory formulated by

Y(t) = E
(
ξe

∫ T
t r(u)du +

β

T

∫ T

t

(
1
s

∫ s

0
Y(u)du

)
e
∫ s

t r(u)duds|Ft

)
.

It is clear that f defined in (5) does not satisfy delay Lipschitz condition described by (2). More generally, let consider
the function g defined by

g(t, s, ys, zt,s) =
∫ 0

−T
γ(u)(y(s + u) + z(t + u, s + u))α(du), (6)

such that γ is neither bounded nor α-absolutely integrable on ([−T, 0],B([−T, 0]). Then the generator g defined in (6)
does not respect a delayed Lipschitz condition stated in (2). Hence Theorem 3.1 appeared in (Coulibaly & Aman, 2019)
can not be used to study a BSVIEs associated to this generator g. Better, to our best knowledge there is no results on
BSVIEs with non-Lipschitz time delayed generators in litterature.

This paper aims to correct this gap by establishing a result of existence and uniqueness for BSVIEs with non-Lipschitz
delayed generator. The rest of this paper is organized as follows. In Section 2, we introduce some fundamental knowledge
and assumptions concerning the data of BSVIE (1). Section 3 is devoted to derive existence and uniqueness problems.

2. Preliminaries

Let us consider a standard d-dimensional Brownian motion W = (W(t), t ≥ 0) defined on a probability space (Ω,F ,P).
We denote by F = (Ft)t≥0 the filtration generated by W and augmented by all P-null sets such that the filtered probability
space (Ω,Ft,F,P) satisfies the usual conditions. The Euclidean norm of R is denoted by | · |. Next, for β > 0, we consider
the following spaces.

• Let L2(Ω,FT ,P) be the space of FT -measurable random variables ξ : Ω→ R normed by ∥ξ∥2L2 = E(|ξ|2).

• Let Hβ1 := H2
[−T,T ](R) denote the space of all predictable process ηwith values in R such that E

[∫ T

−T
eβs|η(s)|2ds

]
< +∞.

• Let Hβ2 := H2
[0,T ]2 (R) denote the space of all predictable process φwith values in R such that E

[∫ T

0

∫ T

0
eβs|φ(t, s)|2dsdt

]
<

+∞.
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• Let S2(R) denote the space of all predictable process η with values in R such that E
[
sup0≤s≤T eβs|η(s)|2

]
< +∞.

We endowed the spaces Hβ1, Hβ2 and S2(R) respectively with the norm ∥η∥2H1
= E

[∫ T

−T
eβs|η(s)|2ds

]
,

∥φ∥2H2
= E

[∫ T

0

∫ T

0
eβs|φ(t, s)|2dsdt

]
and ∥η∥2S2 = E

[
sup

0≤s≤T
eβs|η(s)|2

]
. We also consider this two additive spaces

• Let L2
−T (R) denote the space of measurable functions z : [−T ; 0]→ R satisfying∫ 0

−T
| z(t) |2 dt < +∞.

• Let L∞−T (R) denote the space of bounded, measurable functions y : [−T, 0]→ R
satisfying

sup
−T≤t≤0

| y(t) |2< +∞.

Before giving our study’s framework, let us clarify some notations appearing in this paper. Since BSVIEs considered in
this work is a time delay type, we set by (Y(t),Z(t, s)), the value of solution process at (t, s) ∈ [0,T ]2 and by (Yt,Zt,s) =
(Y(t + u),Z(t + u, s + u))−T≤u≤0 the past of this solution until (t, s). Therefore, for each (t, s) ∈ [0,T ]2 and almost all
ω ∈ Ω, Yt(ω) and Zt,s(ω) belong respectively to L∞−T (R) and L2

−T (R).

Let us assume now that our existence and uniqueness result to BSVIEs (1) has been provided under the following assump-
tions on data.

(A1) ξ ∈ L2(Ω,FT ,P).

(A2) f : Ω × [0,T ] × L∞−T (R) × L2
−T (R) → R is product measurable and F-adapted non-Lipschitz function in the sense

that there exists a measure of probability α defined on ([−T, 0],B([−T, 0])) and a non absolute α-integrable function
γ : [−T, 0]→ R, satisfying ∣∣∣∣∣∣

∫ 0

−T
γ(u)h(u)α(du)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫ 0

−T
γ(u)α(du)

∣∣∣∣∣∣ sup
−T≤u≤0

h(u) (7)

for all function h : [−T, 0]→ R+, such that

| f (t, s, ys, zt,s) − f (t, s, y′s, z
′
t,s)| 6

∫ 0

−T
γ(u)|y(s + u) − y′(s + u)|α(du)

+

∫ 0

−T
γ(u)|z(t + u, s + u) − z′(t + u, s + u)|α(du).

for P ⊗ λ-a.e. (ω, t) ∈ Ω × [0,T ] and for any (yt, zt), (y′t , z
′
t) ∈ L∞−T (R) × L2

−T (R),

(A3)
(i) For t < 0 or s < 0, f (t, s, ., .) = 0,

(ii) E
[∫

[0,T ]2
| f (t, s, 0, 0)|2dsdt

]
< +∞.

To end this section, let deliver these two remarks which explain Assumption (A3).

Remark 2.1

(a) Assumption (A3)-(i) allows us to take Y(t) = Y(0) and Z(t, s) = 0 for t < 0 or s < 0, as a solution of (1).

(b) The quantity f (t, s, 0, 0) in (A3)-(ii) should be understood as a value of the generator f (t, s, ys, zt,s) at ys = zt,s = 0.

3. Main Results

In this section, we give the main result of this paper which is existence and uniqueness result (Theorem 3.2) for BSVIEs
with non Lipschitz time delayed generators. Before, let first derive this needed proposition.
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Proposition 3.1 Assume (A1), (A2) and (A3) hold. Let (Y,Z) belong to H1 ×H2 and satisfy (1). Then Y ∈ S2.

Proof. Let (Y,Z) be a process belongs in H1 ×H2 and satisfies (1). Applying Itô’s formula to e
β
2 tY(t), (β > 0), we have

e
β
2 tY(t) +

β

2

∫ T

t
e
β
2 sY(s)ds

= e
β
2 T ξ +

∫ T

t
e
β
2 s f (t, s,Ys,Zt,s)ds −

∫ T

t
e
β
2 sZ(t, s)dW(s).

Conditional expectation with respect to Ft taken in each term of previous equality provides

e
β
2 t | Y(t) | 6 e

β
2 TE(|ξ| | Ft) + E

(∫ T

0
e
β
2 s| f (t, s,Ys,Zt,s)|ds|Ft

)
.

Moreover, Doob’s inequality with Cauchy-Schwarz’s and Jensen’s inequalities yield

E
 sup

06t6T
eβt | Y(t) |2

 ≤ 8eβTE(|ξ|2) + 8E
∣∣∣∣∣∣
∫ T

0
eβs/2 | f (t, s,Ys,Zt,s)ds

∣∣∣∣∣∣2
 . (8)

In view of (A1) the first term of the right side of (8) is finite. Therefore, to prove that Y belongs to S2, it suffice to derive

E
(∫ T

0
eβs/2| f (t, s,Ys,Zt,s)|ds

)2 < +∞, ∀t ∈ [0,T ]

which is true if

E
∫ T

0

(∫ T

0
eβs/2| f (t, s,Ys,Zt,s)|ds

)2

dt

 < +∞. (9)

To establish (9), let proceed as follows. Applying (A2) together with Fubini’s theorem, change of variable, and since
Y(t) = Y(0) if t < 0 and Z(t, s) = 0 if t < 0 or s < 0, we get

(∫ T

0
eβs/2| f (t, s,Ys,Zt,s)|ds

)2

≤ 2
(∫ T

0
eβs/2

∫ 0

−T

∫ 0

−T
γ(u)(|Y(s + u)| + |Z(t + u, s + u)|)α(du)α(du)ds

)2

+2T
∫ T

0
eβs| f (t, s, 0, 0)|2ds.

≤ 2
(∫ 0

−T

∫ 0

−T
e−βu/2γ(u)

∫ T+u

u
eβs/2(|Y(s)| + |Z(t + u, s)|)dsα(du)α(du)

)2

+2T
∫ T

0
eβs| f (t, s, 0, 0)|2ds

≤ 2eβT
(∫ 0

−T
γ(u)α(du)

)2 [∫ T

−T
eβs/2|Y(s)|ds +

∫ 0

−T

∫ T

0
eβs/2|Z(t + u, s)|dsα(du)

]2

+2T
∫ T

0
eβs| f (t, s, 0, 0)|2ds

≤ C
[∫ T

−T
eβs|Y(s)|2ds +

∫ 0

−T

∫ T

0
eβs|Z(t + u, s)|2dsα(du)

]
+2T

∫ T

0
eβs| f (t, s, 0, 0)|2ds. (10)
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So, using again Fubini’s theorem, change of variable and recall that Z(t, s) = 0 if t < 0 or s < 0, we obtain

E
∫ T

0

(∫ T

0
eβs/2| f (t, s,Ys,Zt,s)|ds

)2

dt


≤ CE

[∫ T

−T
eβs|Y(s)|2ds +

∫ 0

−T

∫ T

0

∫ T

0
eβs|Z(t + u, s)|2dsdtα(du) +

∫
[0,T ]2

eβs| f (t, s, 0, 0)|2dsdt
]

≤ CE
[∫ T

−T
eβs|Y(s)|2ds +

∫ 0

−T

∫ T+u

u

∫ T

0
eβs|Z(t, s)|2dsdtα(du) +

∫
[0,T ]2

eβs| f (t, s, 0, 0)|2dsdt
]

≤ CE
[∫ T

−T
eβs|Y(s)|2ds +

∫
[0,T ]2

eβs|Z(t, s)|2dsdt +
∫

[0,T ]2
eβs| f (t, s, 0, 0)|2dsdt

]
,

which is finite in view of (A3-(ii)) and since (Y, Z) belongs in H1 ×H2.

Theorem 3.2 Assume (A1), (A2) and (A3) hold such that

26T max(1,T )

∣∣∣∣∣∣
∫ 0

−T
γ(u)α(du)

∣∣∣∣∣∣2 < 1. (11)

Then BSVIEs (1) has a unique solution.

Let give these remarks which allow us to compare our result to existing results in order to show its importance.

Remark 3.3

(i) If in assumption (A2), the function γ is bounded or square integrable on
([−T, 0],B([−T, 0]), α), then function f satisfies non-Lipschitz assumed in (Coulibaly & Aman). In this case, our
result coincides with one appears in (Coulibaly & Aman) (see Theorem 3.1). However, as we stated in introduction,
if γ is neither bounded nor square integrable on ([−T, 0],B([−T, 0]), α) then the generator f associated does not
respect a delayed Lipschitz condition state in (A2). Therefore we can not use Theorem 3.1 appeared in (Coulibaly
& Aman) to study BSVIEs with delayed generator f while our result (Theorem 3.1) remains applicable provided
that (11) holds.

(ii) According to (11), if the function γ is non negative, then we can find a probability measure α1 defined by

α1(du) =
γ(u)∫ 0

−T γ(u)α(du)
α(du)

such that f satisfies Lipschitz condition state in (Coulibaly & Aman) with α1 as a measure of probability.

(iii) If γ takes both positive and negative values and is not α-absolutely integrable on ([−T, 0],B([−T, 0])) (which holds
in our context) it is impossible to find a measure of probability such as f satisfies the delayed Lipschitz condition
with such a measure. This is very essential and reassures that our result is a non trivial generalization of Coulibaly
and Aman’s work.

Proof. Our method is based on the traditional Picard’s iteration. Thereby, for Y0(s) = Z0(t, s) = 0, let define recursively
this sequence of BSVIEs as follows: for n ∈ N,

Yn+1(t) = ξ +
∫ T

t
f (t, s,Yn

s ,Z
n
t,s)ds −

∫ T

t
Zn+1(t, s)dW(s), 0 6 t 6 T. (12)

(i) Existence
Step 1: Given (Yn,Zn) ∈ H1 ×H2, BSVIEs (12) has a unique solution (Yn+1,Zn+1) ∈ H1 ×H2.
Indeed, for a fixed t ∈ [0,T ], let define the process Xn+1

t by

Xn+1
t (u) = E

(
ξ +

∫ T

t
f (t, s,Yn

s ,Z
n
t,s)ds | Fu

)
, u ∈ [0,T ].

Since according to Proposition 3.1,

E
∫ T

t
| f (t, s,Yn

s ,Z
n
t,s)|2ds < +∞,
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for t ∈ [0,T ], the process Xn+1
t is a square integrable (Fu)-martingale. Therefore the martingale representation

theorem provides a unique process Zn+1(t, .) belonging in H2 and satisfying

Xn+1
t (u) = Xn+1

t (0) +
∫ u

0
Zn+1(t, s)dW(s), u ∈ [0, T ].

In particular, since

Xn+1
t (T ) = Xn+1

t (0) +
∫ T

0
Zn+1(t, s)dW(s)

we have

Xn+1
t (u) = Xn+1

t (T ) −
∫ T

t
Zn+1(t, s)dW(s).

But in view of its definition, we have also

Xn+1
t (T ) = ξ +

∫ T

t
f (t, s,Yn

s ,Z
n
t,s)ds,

which setting Yn+1(t) = Xn+1
t (t) leads to

Yn+1(t) = ξ +
∫ T

t
f (t, s,Yn

s ,Z
n
t,s)ds −

∫ T

t
Zn+1(t, s)dW(s). (13)

Moreover,

E
(∫ T

−T
| Yn+1(t) |2 dt

)
= E

∫ T

−T

∣∣∣∣∣∣E
(
ξ +

∫ T

t
f (t, s,Yn

s ,Z
n
t,s)ds | Ft

)∣∣∣∣∣∣2 dt


≤

∫ T

−T
E

∣∣∣∣∣∣ξ +
∫ T

t
f (t, s,Yn

s ,Z
n
t,s)ds

∣∣∣∣∣∣2
 dt

≤ 4TE
(
| ξ |2

)
+ 2E

∫
[0,T ]2

∣∣∣ f (t, s, Yn
s ,Z

n
t,s)

∣∣∣2 dsdt.

< +∞,

which together with Proposition 3.1 lead that Yn+1 belongs to S2 and finally provides that (Yn+1,Zn+1) solves (12).

Step 2: The sequence (Yn,Zn) converges in H1 ×H2.

For (t, s) ∈ [0,T ]2, and in virtue of (12) the process (Ȳn(t), Z̄n(t, s)) defined by Ȳn(t) = Yn+1(t)− Yn(t) and Z̄n(t, s) =
Zn+1(t, s) − Zn(t, s) satisfies equation

Ȳn(t) =

∫ T

t
f (t, s,Yn

s ,Z
n
t,s) − f (t, s,Yn−1

s ,Z
n−1
t,s )ds −

∫ T

t
Z̄n(t, s)dW(s), 0 ≤ t ≤ T. (14)

The conditional expectation which respect Ft taken in both side of (14) together with Jensen inequality yield

|Ȳn+1(t)|2 ≤ E
(∫ T

0
| f (t, s,Yn

s ,Z
n
t,s) − f (t, s,Yn−1

s ,Z
n−1
t,s )|ds

)2

| Ft

 .
Next, taking respectively integral and expectation in both side, we have by using Fubini’s theorem∫ T

−T
|Ȳn+1(t)|2dt ≤ E

∫ T

−T

(∫ T

0
| f (t, s,Yn

s ,Z
n
t,s) − f (t, s,Yn−1

s ,Z
n−1
t,s )ds

)2

dt

 . (15)

Recall again (14), we have∣∣∣∣∣∣
∫ T

0
Z̄n+1(t, s)dW(s)

∣∣∣∣∣∣ ≤
∫ T

0
| f (t, s,Yn

s ,Z
n
t,s) − f (t, s,Yn−1

s ,Z
n−1
t,s )|ds + |Ȳn+1(0)|

+

∣∣∣∣∣∣
∫ t

0
Z̄n+1(t, s)dW(s)

∣∣∣∣∣∣ .
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First taking the expectation of both sides and then integrating with respect t, it follows respectively from Fubini’s
theorem, Theorem 2.2 of (Yong, 2006) and (15) that

E
(∫

[0,T ]2
|Z̄n+1(t, s)|2dsdt

)
≤ E

4 ∫ T

0

(∫ T

0
| f (t, s,Yn

s , Z
n
t,s) − f (t, s,Yn−1

s ,Z
n−1
t,s )|ds

)2

dt

+4
∫ T

−T
|Ȳn+1(t)|2 + 2

∫ T

0

∫ t

0
|Z̄n+1(t, s)|2ds

]
≤ E

4 ∫ T

0

(∫ T

0
| f (t, s,Yn

s , Z
n
t,s) − f (t, s,Yn−1

s ,Z
n−1
t,s )|ds

)2

dt

+4
∫ T

−T
|Ȳn+1(t)|2 + 4

∫ T

0
|Ȳn+1(t)|2dt

]
≤ 12E

∫ T

0

(∫ T

0
| f (t, s,Yn

s ,Z
n
t,s) − f (t, s, Yn−1

s ,Z
n−1
t,s )|ds

)2

dt

 . (16)

Hence, it follows from (15) and (16) that

E
[∫ T

−T
|Ȳn+1(t)|2dt

]
+ E

(∫
[0,T ]2
|Z̄n+1(t, s)|2dsdt

)
≤ 13E

∫ T

0

(∫ T

0
| f (t, s,Yn

s ,Z
n
t,s) − f (t, s, Yn−1

s ,Z
n−1
t,s )|ds

)2

dt

 . (17)

Actually it remains to estimate the second side of inequality (17). For this instance, since f is non-Lipschitz with
respect (A2), we have

E
∫ T

0

(∫ T

0
| f (t, s,Yn

s ,Z
n
t,s) − f (t, s,Yn−1

s ,Z
n−1
t,s )|ds

)2

dt


≤ E

∫ T

0

(∫ T

0

(∫ 0

−T

∫ 0

−T
γ(u)(|Ȳn(s + u)| + |Z̄n(t + u, s + u)|)α(du)α(du)

)
ds

)2

dt

 .
Applied respectively Fubini’s theorem, the change of variable and (7) and since Yn(s) = Yn(0) and Zn(t, s) = 0 for
all s < 0 or t < 0, we obtain

E
∫ T

0

(∫ T

0

(∫ 0

−T

∫ 0

−T
γ(u)(|Ȳn(s + u)| + |Z̄n(t + u, s + u)|)α(du)α(du)

)
ds

)2

dt


= E

∫ T

0

(∫ 0

−T

∫ 0

−T
γ(u)

(∫ T

0
(|Ȳn(s + u)| + |Z̄n(t + u, s + u)|)ds

)
α(du)α(du)

)2

dt


= E

∫ T

0

(∫ 0

−T

∫ 0

−T
γ(u)

(∫ T+u

u
(|Ȳn(s)| + |Z̄n(t + u, s)|)ds

)
α(du)α(du)

)2

dt


≤ 2T max(1,T )

∣∣∣∣∣∣
∫ 0

−T
γ(u)α(du)

∣∣∣∣∣∣2 E
[∫ T

−T
|Ȳn(t)|2dt +

∫ 0

−T

∫ T+u

u

∫ T

0
|Z̄n(t, s)|2dsdtα(du)

]
≤ 2T max(1,T )

∣∣∣∣∣∣
∫ 0

−T
γ(u)α(du)

∣∣∣∣∣∣2 E
[∫ T

−T
|Ȳn(t)|2dt +

∫
[0,T ]2
|Z̄n(t, s)|2dsdt

]
,

which provides

E
∫ T

0

(∫ T

0
| f (s, Yn

s ,Z
n
s ) − f (s,Yn−1

s ,Z
n−1
s )|ds

)2

dt


≤ 2T max(1,T )

∣∣∣∣∣∣
∫ 0

−T
γ(u)α(du)

∣∣∣∣∣∣2 E
[∫ T

−T
|Ȳn(t)|2dt +

∫
[0,T ]2
|Z̄n(t, s)|2dsdt

]
. (18)
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Therefore, in view of (18), (17) becomes

E
[∫ T

−T
Ȳn+1(t) |2 dt

]
+ E

(∫
[0,T ]2
|Z̄n+1(t, s)|2dsdt

)
≤ 26T max(1,T )

∣∣∣∣∣∣
∫ 0

−T
γ(u)α(du)

∣∣∣∣∣∣2 E
[∫ T

−T
|Ȳn(t)|2dt +

∫
[0,T ]2
|Z̄n(t, s)|2dsdt

]
and leads by iterative argument

E
[∫ T

−T
| Ȳn+1(t) |2 dt

]
+ E

(∫
[0,T ]2
|Z̄n+1(t, s)|2dsdt

)
≤

26T max(1,T )

∣∣∣∣∣∣
∫ 0

−T
γ(u)α(du)

∣∣∣∣∣∣2
n

E
[∫ T

−T
|Y1(t)|2dt +

∫
[0,T ]2
|Z1(t, s)|2dsdt

]
.

Since 26T max(1,T )
∣∣∣∣∫ 0
−T γ(u)α(du)

∣∣∣∣2 < 1, the second side of the last inequality converges to zero, which leads
that (Yn,Zn)n≥1 is a Cauchy sequence in the Banach space H1 × H2 and hence converges to a unique process
(Y,Z) ∈ S2(R) ×H2(R).

Step 3: The process (Y,Z) solves BSVIEs (1).
Since (Y,Z) belongs in H1 × H2 it follows from Proposition that Y ∈ S2. By taking the limits for (12), we derive
easily that (Y,Z) solves (1).

(ii) Uniqueness
Let (Y, Z) and (Y ′,Z′) be two solutions of BSVIEs (1). The process (∆Y(t),∆Z(t, s)) defined by ∆Y(t) = Y(t)− Y ′(t)
∆Z(t, s) = Z(t, s) − Z′(t, s)) satisfies BSVIEs

∆Y(t) =
∫ T

t
f (t, s,Ys,Zt,s) − f (t, s,Y ′s,Z

′
t,s)ds −

∫ T

t
∆Z(t, s)dW(s), 0 ≤ t ≤ T.

Using the existence proof argument we get

E
[∫ T

−T
| ∆Y(t) |2 dt +

∫
[0,T ]2

| ∆Z(t, s) |2 dsdt
]

≤ 26T max(1,T )

∣∣∣∣∣∣
∫ 0

−T
γ(u)α(du)

∣∣∣∣∣∣2 E
[∫ T

−T
| ∆Y(t) |2 dt +

∫
[0,T ]2

| ∆Z(t, s) |2 dsdt
]
,

which since 26T max(1,T )
∣∣∣∣∫ 0
−T γ(u)α(du)

∣∣∣∣2 < 1, that is satisfied if the horizon time T or the integral of γ with
respect the measure of probability α on [−T, 0] are small enough, provides

E
[∫ T

−T
| ∆Y(t) |2 dt +

∫
[0,T ]2

| ∆Z(t, s) |2 dsdt
]
= 0.

Finally, this implies that ∆Y(t) = 0 and ∆Z(t, s) = 0. The proof is now complete.

4. Conclusion

This paper establishes a main result (Theorem 3.2) that gives an alternative to the works of Coulibaly and Aman (see
Coulibaly & Aman, 2019). It will permit us to study a large class of assurance and finance problems whose have been
like to the works of Delong (see Delong, 2012), has been modeled by BSVIEs with time delayed generators. On the other
hand, we hope to extend, in a future paper, the stochastic control problem studied by Chen and Wu in (Chen & Wu, 2012),
replacing classical BSDEs by BSVIEs with non-Lipschitz delayed generators.
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