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Abstract

In this article we will study the Riemann Stieltjes Laplace integral of vectorial functions in Fréchet spaces. Particularly
we will prove a isometric theorem and a generation theorem for integrated semigroups on Fréchet spaces.
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1. Introduction

In this paper we study some properties of the Laplace-Steltjeds trasform of vector valued functions. Particularly we prove
some isometric theorems (Theorem (62) and Theorem (80)) Moreover we applay these result in order to prove a existence
theorem for integrate semigroups on Fréchet spaces (Theorem (86) and Theorem (96)).

1.1 Preliminars

In this section we will present some results developed in (Granucci 2006) and (Granucci 2019) which are essential for the
following paragraphs, for more details we refer to (Granucci 2006) and (Granucci 2019).

Definition 1. A real-valued function p (x) defined on a complex linear space S is called a semi-norm, if

px+y)<p@+pQ) Yx,yeS§ (D

and

p(Ax) = p(x) Y1eC,VxeSs. 2)

Definition 2. A complex linear topological spaces S is called a locally convex, linear topological space, or, in short, a
localy convex space, if any if its open sets contains a convex, balanced and absorbing open set.

Definition 3. A complex linear space § is called a Quasi-normed linear space if, for every x € §, there is associated a
real number |x|z, the quasi-norm of the vector x, which satisfies

|l 2 0and |x|lz =0 & x=0; 3)
lx + ylg < |xlz + Iylg VYx,yeg§; 4)
Ixlz = [-xlz Yx € g, (5)
lirn0 la, x|z =0 Vx €3, (6)
lim |axlz =0 Ya € C. @)

[z —0

The topology of a quasi-normed linear space § is thus defined by the distance

d(x,y)=|x—)ylz- ®)

We say that the sequence {x,}, C § converges strongly to x € §, x, = x forn — +oc0in §, or

§ - lim x, = x, 9
if
lim |x, — x|z = lim d (x,,x) = 0. (10)
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Definition 4. A quasi-normed linear space § is called a Fréchet space if it is complete, i.e., if every Cauchy sequence of
§ converges strongly to a point of §.

Definition 5. For Bourbaki, a Fréchet space § is a locally convex space which is quasi-normed and complete.

Theorem 6. If (S, 1) is a linear, topological and separate space,whose topology is produced by a family P of separate
and countable (or finite) seminorms; then we can define on S such a quasi-norm that the induced topology coincides with
7; that is (S, 7) it is a space of Fréchet in the sense given by Bourbaki.

Remark 7. Let § a Bourbaki-Fréchet space; then a family P of separate and numerabile (or finite) seminorms that
produces the topology of § exists.

Remark 8. Let P = {p;};c4 be a family of separate and numerabile (or finite) seminorms. We define

pi (x)
s = Z 271+ pi () (o

the Fréchet’s quasi-norm. Moreover |Ax|; is an increasing function and

[Axlz < |xlz Vxeg; (12)
besides we get
|x|g<Z—<1 Vxeg. (13)
€A

1.2 The Fréchet-Riemann-Stieltjes Integral

Definition 9. Ler F, g be two functions defined on an interval [a, b], one with values in the Fréchet space § and one with
values in C. If 1 denotes a finite partition a = ty < t; < ... < t, = b of [a, b] with partitioning points t; and with some
intermediate points s; € [t;-1, ], fori =1, ...,n, we denote by |I1| = 'rr}ax {(t; — ti—1)} the norm of T1, and by

i=1,..,n

S (g, F.II) = Zg(Si) (F(t;) = F (1i-1)) (14)
i=1

the Fréchet-valued Riemann-Stieltjes sum associated with g, F and 11. We say that g is Fréchet Riemann Stieltjes inte-
grable with rispect to F if
- ‘rllilmOS (g, F, 1) (15)

exists, here Il runs through all partitions of [a, b] with intermediate points, and the limit must be independent of the choice
of intermediate points. If g is Fréchet Riemann Stieltjes integrable with rispect to F we define

b

fg(t) dF () =§ - |111i|TOS (g, F.ID). (16)

a

Now we propose some properties of the functions with vectorial values in a space of Banach X that they are Riemann
Stieltjes summable in comparison with a second function.

Proposition 10. Let F : [a,b] — X and g : [a,b] — C. If one function is continuous and the other is of bounded
semivariation; then F and g are Riemann Stieltjes integrable with respect to each other.

Proposition 11. Let g : [a,b] — C be a piecewise continuous, and F : [a,b] — X be continuous and of bounded
semivariation; then F and g are Fréchet Riemann Stieltjes integrable with respect to each other.

Proposition 12. Let F : [a,b] — X be of bounded semivariation and g € C' ([a,b],C); then F g/ is Riemann integrable

and
b b

f F ) dg (1) = f F()g () dr. (17)

a a
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Proposition 13. Let F : [a,b] — X be of bounded semivariation and g,h € C ([a, b], C), then

1

G = fh(s) dF(s) (18)
is of bounded semivariation on [a, b] and
b b
fg(S) dG(s) = fh(S) g(s)dF (s). (19)

Propositions (10), (11), (12) and (13) follow from the following theorem that characterizes the functions of bounded
semivariation to vectorial values in a space of Banach X:

Theorem 14. A function F : [a,b] — X is of bounded semivariation if and only if it is of weak bounded variation.

Proposition 15. Let F : [a,b] — T be of weak bounded variation and g : [a,b] — C of bounded variation; then Fg is of
weak bounded variation.

Proposition 16. Let F : [a,b] — X of bounded semivariation and g : [a, b] — C continuous, then g is Riemann Stieltjes
integrable with respect to F.

Proposition 17. Let g : [a,b] — C be a piecewise continuous, and F : [a,b] — X be continuous and of bounded
semivariation; then g are Fréchet Riemann Stieltjes integrable with respect to F.

Proposition 18. Let F : [a,b] — X be of bounded semivariation and g € C' ([a,b],C); then F g’ is Riemann integrable

and
b b

f F (1) dg(r) = f F()g (1) dr. (20

a a
Proposition 19. Let F : [a,b] — X be of bounded semivariation and g,h € C ([a, b], C); then

t

G = fh(s) dF(s) 21
is of bounded variation on [a, b] and
b b
[ e a6 = [nsware,

Proposition 20. Let f : [a,b] > X and g € C ([a,b],C); if F : [a,b] — X is an antiderivative of the function f; then
b
[ g(s) dF (s) exists and

b b

fg(S) dF(S)=fg(S)f(S) ds. (22)

a a

Definition 21. Let F : [0,+00) — § a Frechet values function and suppose that F € BV, ([0, +0),§), then we define
the Fréchet Laplace Stieltjes integral

+00

dF () = f eMdF() =F - lim f e M dF (7). (23)
0

0

t
Proposition 22. Let f € SBV ([0, +0),X) and F (t) = f f(s)ds. Then F is locally Lipschitz continuous and
0

df (1) = = f(0) + AdF () = —f(0) + A*F (1) (24)

whenever R {1} > w (f).

69



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 11, No. 3; 2019

t
Proposition 23. Let F € S BV ([0, +) , X) and define G (t) = fe"” dF (s) for u € C. For A € C, dG () exists if and only
0
lf(j]? (A + W) exists, and then dG = dF A+ p).
Definition 24. For F € S BV ([0, +0), X) we define

abs (dF) = inf {9& {A): dF (1) exists} . (25)

Proposition 25. Let F € SBV ([0, +c0), X), then dF () converge if R {A} > abs (dF), not converge if R {A} < abs (dF).

Lemma 26. Let F € SBV ([0,+0),X) and Foo = F — lim F(t), if the limit exists, Fo = 0 otherwise; then
t—+00

abs(dF)=w((F - F.). (26)

Theorem 27. Let F € SBV (|0, +00), X) and assume that abs (dF) < oco; then A + dF () is holomorphic for R {1} >
abs (dF), and

+00

dF ()™ = f eV (=s)" dF (s) 27

0

Jor R{A} > abs (dF), n € N\ {0}, as an improper Fréchet Riemann Stieltjes integral.

Refer to (Granucci 2006) for the Fréchet space case.
1.3 The §sLipg ([0, +0) ,§) Space and the Ly (X, §) Space
Let § a Fréchet space and f : [0, +o0) — §, we define

lf @) - f(5)|g}
=supy——— 28
Ulors mi’o{ = .
then
Lipo ([0, +00) . §) = {£ : [0,+00) = § : £(0) = 0, [[], 5 < +oo] (29)
Proposition 28. [-]y; ;5 is a quasi-norm.
Proposition 29. (Lipo ([0, +0), ), [-]0,1,3) is a quasi-normed metric space.
We define
f @ - f(s)”k}
=sup{——— 30
(flo1x MEO{ T (30)
and
§sLipo ([0,+00),F) = {f : [0,+00) = F : £(0) =0, [flo, 5 < +oo Vk € N}. (31)
Proposition 30. [-], are semi-norms.
Proposition 31. The function defined by
o Uloix .
I 1gsLipo(10.+00).5) = Z Vf € §sLipo ([0, +0),F) (32)

im0 2¢ (1 + [f]o,l,k)

is a qusi-norm.

Proposition 32. (S sLipg ([0, +00),5), I-Ig_vu,,o([o,mm)) is a quasi-normed metric space.
Let § a Fréchet space, X a Banach space and f : X — § a linear continuous operator; then for all k € N there exists

Cy > 0 such that
If Oz, < Cellxlly  Yx € X. (33)
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Definition 33. Let § a Fréchet space, X a Banach space and f € L(X,T) we define

Al sz = sup {ILf @llgef (34)
Ielly<1
and .
- 11 2ox 50k
|f|£(x,g) = Z (35)

im0 2 (1 + ||f||L(x,s),k)
Proposition 34. ||-|| ;x.z)x are semi-norms and || px 5 is a quasi-norm.
Proposition 35. (L(X, ), 1l L(qu)) is a quasi-normed complete metric space.

Definition 36. Ler § a Fréchet space, X a Banach space and f : X — § a linear operator; f is bounded if exists a real
costant K such that
lf Ol < Kllxlly YxeX. (36)

Lemma 37. Let § a Fréchet space, X a Banach space and f : X — § a linear operator; if it is bounded then it is
continuous.

Proposition 38. Let § a Fréchet space and X a Banach space; then
1. Lp(X,§) ={f: X — §: fis linear and bounded} c L(X, §);

2. flpxs = sup {|f (x)|g} is a quasi norm;
xeX

<t
3. (LB X, 3, I LB(X,@) is a quasi-normed, complete metric space

Theorem 39. There exists a unique isomorphism ®g : F +— T from Lipg ([0, +00) , ) onto Lp (L1 ([0, +00),C), 3) such

that
Tex00 = F () (37)
forallt > 0 and F € Lipy ([0, +00),§). Moreover,
t +00
Trg = tl_i)inmfg(s) dF (s) = fg(s) dF (s) (33)
0 0

for all continuous functions g € L' ([0, +0), C).
Proof. See (Granucci 2006). O

Proposition 40. (Li o ([0, +00), ), |'|Lip0([0,+oo),g)) is a quasi-normed, complete metric space.

Proof. See (Granucci 2006). m]

Theorem 41. There exists a unique isometric isomorphism ®g : F — T from §sLipo ([0, +00),F) onto L (L1 ([0, +00),C), &)
such that

Trxwon = F () (39)
forallt > 0 and F € §sLipg ([0, +0) ,§). Moreover,
t +00
Trg=tim [ g ar)= [gare (40)
0 0
for all continuous functions g € L' ([0, +0), C).
Proof. See (Granucci 2006). m]

Proposition 42. (SsLi po ([0, +0),5), |'|3sLi,,0([o,+oo),g)) is a quasi-normed, complete metric space and Lipy ([0, +c0) ,§) C
§sLipo ([0, +00) , §).

Proof. See (Granucci 2006). m]
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2. §sBSV ([a,b], §)-space

In this section we introduce some new vector spaces to study the properties of the Laplace-Steltjeds transform of value
functions in Fréchet spaces.

Definition 43. We say that f € §sBSV ([a, b], §) if exist My > O such that

<M

HZ (f ) = f ()

k
for every choice of a finite number of non-overlapping intrvals (s;, t;) in [a, b] and for all k € N.

Remark 44. FsBSV ([a,b],§) € wBV ([a, b], T).

Proof. By |27 @)= £ ()

< M for all k € N, we have
k

Sera-ren)| = KZ(f ) - f <s,->)|x*>

< e | @) =~ £ ()
i k
< Ck,x*Mk
then f € wBV ([a, b], T). |
Remark 45. FsLip ([a,b],§) € §sBSV ([a,b],3).
Remark 46. If f € §sBSV ([a,b],§) then for all k € N
b
f g dfo| < s[uzz] {lg DI} My
a k ’

where My = sup {”Z (f@)— f G| : (i, 1) disjoint subintervals of [a, b]}.
i k

Remark 47. Let n be a partition of [a,b] with partitioning points a = ty < t; < .-+ < t, = b and intermediate
points s; € [tio1,t;] for i = 1,...n. If we choose sy = a and s,,, = b we get a partition © with partitioning points
a=s5y<s <---<8, < Suy1 = band intermediate points t; € [s;, siv1] fori=1,...,nand |7T| < 2|n|. Moreover we obtain

S (F,g,m)=g()F(b)—g(@F (@)~ S (g F).

Proposition 48. Let F € FsBSV ([a,b],§) and g : [a,b] — C continuous; then g is Riemann Stieltjes integrable with
respect to F.

Proof. Assume that F € FsBSV ([a,b],T) and g is continuous. Let € > 0, g € C ([a, b], C), then there exists ¢ > 0 such
that |g (s))—g (sj)‘ < & whenever |s,~ - s‘,~| < 9.

Let rrj, for j = 1,2, be two partitions of [a, b], with |7rj| < %; leta =1ty <t <---<t, =bbe the partitioning points of m;

and m, together and
n

S (g Fmj) = > g (s0)) (F (1) = F (1)

i=1

where s; j, t; and 7;_; are in the same subinterval of 7 ;, moreover |s,~ - s_,-| < ¢; then for x* € §* if

Ap=li=1,.,n:g(si1)—g(si2) 20}
Ay ={i=1,...n:g(si1)—g(s:2) <0}
Bl = {l = 1,. ,n: <F(ti)—F(ti_1)|X*> > 0}
By={i=1,.,n:(F@t)-F{-1)x*) <0}
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we have
IS (g, F,m1) = S (g, F,mp) |x*)|

’21 (g (sin) = & (si2)) (F (1) = F (1i-1) Ix*)‘

<. AZmB (8 (si1) = g (si2)) (F (1) = F (ti-1) |x*) +

+ .EA%B (8 (sin) — g (si2) (F (1) = F (ti-) [x*) —

- AZ;]B (g (si1) =g (si)) (F (1) = F (ti-1) [x*) =

- .EAZQB (8 (si1) =g (i) (F (1) = F (i) |x7) <

<e ) (F@)-FU-)lx)+e 3 (F@)-F@i)|x)+
i€A1NB; i€A,NB;

te Y (Ft)-F@-)|-xY+e X (F@t)—F@-)]—x")
icAinB, icAynB,

<e |§1 (F () — F(ti_) 1x%)

and by Theorem (2) of [Granucci 2006]

D UF @) - F (i)

i=1

(S (g, F.mr1) = S (8, F,m) )] < eC (x7)

N

From Theorem (11) of [Granucci 2006] there exists x; € §* such that
Ci(x)=1

and
KS (g, F,my) = S (g, F,mp) |x")| = IS (g, F,my) = S (g, F,m)l|

then
”S (g3 F’ﬂl) - S (g9 F’ﬂ-z)”_y < EMS

b
and Il}m0 S (g, F, m) exists by Cauchy’s convergence criterion, moreover II}m0 S (g, F,n) = f g (s) dF (s) and by Remark
77— 77| — a

(47)
b b

fg(S) dF(S)=g(b)F(b)—g(a)F(a)—fF(S) dg (s).

a a

]

Proposition 49. Let g : [a,b] — C be a piecewise continuous, and F € FsBSV ([a, b], T); then g are Fréchet Riemann
Stieltjes integrable with respect to F.

Proof. The result follows from Proprosition (48) and Remark (47). m]

Proposition 50. Let F € FsBSV ([a,b],F) and g € C' ([a,b], C); then F, g/ is Riemann integrable and

b

b
me@m=jfmgmm. @1)

a

Proof. Since by Proposition (48)
b

3—‘11‘%3 (8. F.m) = fg(t) dF () e§

and

b b
fg(t) dF(t)=g(b)F(b)—g(a)F(a)—fF(S) dg (s)
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we get
b

}}umos (Flx"),8,m) = ‘l;umo (S (F.g.mx") = <fF(S) dg (s) Ix*>

a

and

b
lim S (FIx) .7 = f (F(5) ") dg (s)

for all x* € §*. By Proposition (1.9.9) of [Arendt et al. 2001] we have

b b
f (F O dg (1) = f F@O)Iyg () di

for all x* € §*; then
b b

<fF(t) dg(t)—fF(t)g’(z) dt x*>=o

a a

for all x* € §*. By Theorem (11) of [Granucci 2006] for all k € N exists x;; € §* such that

b b b b

<fF<t) dg(r)—fF(t)g’(r) di x*>= fF(r) dg(t)—fF(r)g’(r) dt

a a a a k

b b
then [F (1) dg(t)= [F(t)g (1) dt.

Proposition 51. Let F € §sBSV ([a,b],§) and g,h € C ([a, b],C), then

1

G (1) = f h(s) dF(s)

a

is of bounded variation on [a, b] and
b b

fg(S) dG(S)=fh(S)g(S)dF(S)-

a a

Proof. By Proposition (48) G is a vector §-valued fuction defined on [a, b] and

t

3’—‘1i|1l1(1)S (h,F,m) = fh(s) dF (s)e§

a

then
t

|li|rlr(1)S (h,(F|x"),m) = ‘ll‘rll’(l) (S (h, F,m)|x") = <fh(s) dF (s) |x*>

and
t

|lilri%S (h,(F|x"),m) = fh(s) d(F (s)|x")

a

for all x* € §*; therefore, since
t

<G(t)lx*>=fh(S) d(F(s)Ix"),

a

74

(42)



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 11, No. 3; 2019

we get

3 KG 1)) = (G 6 ) =§|<G(r,) G (1) 1x")

=X f h(s) d(F(s)lx)

i- l

5 [ (s diF(se

l—ltl |

< lhlleo Viaw) KF()Ix™))
< [lAllw M.

and (G|x*) € BV ([a, b]) for all x* € §*. By proposition (1.9.10) of [Arendt et al. 2001] we have

b

b
fg(S) d{(G(s)lx") = fh(S)g(S)d<F(S)|x*)

a

for all x* € §*; since

b b
f h(s)g(s) d (F()x") = < f h(s)g(s)dF(s)|x*>
then
b b
f ¢ (s) dG(s) = f 7 (s) g(s) dF (s).

O
Proposition 52. Let f : [a,b] — § weakly integrable and g € C ([a,b],C). If F : [a,b] — § is an antiderivative of the
b
function f; then f g (8) dF (s) exists and

b

b
fg(S) dF(S)=fg(S)f(S) ds. (43)

a

t
Proof. Let F(t) = F(a) + [ f(s) dsforall 1 € [a, b]; then

2 F () - F(s)

len

= | X (F @) = F(s)x")

k ien

= <ff(s) ds|x>

S

= <ff (S) dslx*>‘

b
< M H [ £ () ds

= M, ||F (b) = F (@)l
< Cs,F,x*

b
then F € §sBSV ([a, b], §) and by Proposition (48) the Riemann Stieljes integral f g (s) dF (s) exists. Since g is bounded

and measurable then g (s) f (s) is weakly integrable; moreover

b b
<fg(S)f(S) dSIx*> =fg(S)<f(S) [x*) ds
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for all x* € §*. Since
(S (g F,m)|x") =S (g.(FIx"),m)

we get
b N
(S (g, F.m) Ix*>—fg(S)<f(S) Ix*) ds| = Zf(g<5i,j)_g(s))<f(s) Ix*) ds|.
pt i=1 e

For &£ > 0 there exists 6 > 0 such that
|g (Si,j) -8 (S)' <e

whenever |s,-, i— sl < ¢ and for any partition 7 with || < § we have

b b
(S (g, F,m)|x™) - fg(S) (f@Ix) ds| < 8f<f(S) Ix*) ds

and
b
lim (8 (g, F.0) ') = f () ()XY ds
therefore
b b
<fg(8) dF (s) Ix*> = <fg(5)f(S) dS|x*>

for all x* € §*; then

b b
fg(s) dF (s) = fg(s)f(s) ds.

Remark 53. Let be F € §sBSV ([0,1],F); then by Proposition (48) and Remark (47)

t t

fe%v dF (s) = e " F (1) — F(0) + Afe*“F(s) ds.

0 0
The exponential growth bound of F € §sBSV ([0, ], §) is defined by
@ (F) =inf {w e R : {e™F(r) : t 2 0} is bounded in 3.

Remark 54. Let be F € §sBSV ([0,1],F); then abs(dF) < w (F) and

dF (1) = f e B dF (s) = —=F(0) + 1 f e BF(s)ds
0 0

ifR{A) > @ (F).

Lemma 55. Let f € §sBS V. ([0, +00),§) and F(¢) = ff(s) ds; then F € §sLip,. ([0, +o0),F) and
0

df (A) = —(0) + AdF (1) = - f(0) + P’F (1)

whenever R {1} > @ (f).
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Proof. Let’s take f € §FsBS Viye ([0, +00), §) then || f (s)ll, < My for all s € [a, b] C [0, +00) and

ff(s) ds

ie. F e §sLipj ([0, +00),5F). By Remark (45), Remark (47) and Proposition (50) we have F € §sBS Vj,. ([0, +0),F)
and @ (F) < @ (f). By Proposition (51)

IF@®) = F(s)lly = < (1= 5) My

k

T T

f ePdf(s)=e " f (@) - f0)+2 f et dF (5);

0 0
letting T — +o00, since e V" f (1) — 0, we get
df (D) = ~f(0) + AdF (V)

whenever R {1} > @ (f). Since - .
dF (1) = AF (1)

then it follows . _
df (1) = —f(0) + A>F (1).

]

t
Proposition 56. Let F € FsBSV ([a,b], §) and define G (t) = fe"” dF(s) for u € C. For A € C, dG () exists if and only
0

lf(j]? (A + W) exists, and then dG = dF A+ p).

Proof. By Proposition (51) we get

f eMdG (1) = f eI GF (1)
0 0
then letting 7 — +co,
400 +0o
f e dG (1) = f eI GF (7).
0 0
[}
Definition 57. For F € §sBSV ([a, b], §) we define
abs (dF) = inf {‘R (A} :dF ) exists} . (45)

Proposition 58. Let F € §sBSV ([a,b],T); then dF (A) converges if R{A} > abs(dF), does not converge if ‘R {1} <
abs (dF).
Proof. Clearly dF (A) does not exist if R (1) < abs (dF). For Ag € C define

t

Go(t) = f e dF (s)

0

then by Proposition (51)

t t

f e B dF (s) = f e 4Gy (s)

0 0
and by Proposition (50)

¢ t
f eV dF (5) = e NGy (1) + (A - o) f "Gy (5) ds
0 0
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If dF (Ap) exists, then Gy is bounded. Therefore, dF (A) exists if R (1) > R (1p) and

+00
dF () = (1 - Ap) f e~ G () ds.
0

Lemma 59. Let F € §sBSV (la,b],8) and Fo, = § — lli{fn F (), if the limit exists, Fo, = 0 otherwise; then
abs(dF) =w((F — Fy).

Proof. For Ay > abs (dF) define

t

Go(t) = f e dF (s)
0
then Gy is bounded.

If abs (dF) > 0 and Ay > abs (dF) by Proposition (51)
t
F() =F()+ [e"dGy(s)
0
1
= F(0)+ "Gy (1) + [ "Gy (s) ds
0

forall £ > 0, so
t

eV (F (1) = Foo) = e (F (0) = Foo) + Go (£) + ™! f eYGy (s) ds
0
then
sup{“e‘ﬂ"’ (F () - Foo)nk} < Cy
>0
fork=1,2,.., thus w (F — F) < abs (dF).
If abs (dF) < Ag < 0 for r > t > 0 we have

F(r)-F@ = [e"“dGy(s)
= V"G (r) — eM'Gy (1) — Ay [5Gy (s) ds

thus

+00

Fo=F = lim F(r)=F () - Gy (1) = Ao f Gy () ds
t

exists and
su(;)){“e_’l"' (F(t) - Fm)“k} < Cy
1>

fork = 1,2, ..., therefore @ (F — Fo) < abs (dF).
If w> @ (F — Fw) then there exist M), > 0 such that
IF (1) = Foolly < Mye™ Vi >0.

LetA>w> w(F — F,) then
t

f eV dF (s) = e (F(t) = Foo) + Foo — F(0) + A f e (F(s) - Foo) ds
0 0

hence dF () exists for A > w (F — F) and abs (dF) < w (F — Fy,).

78

(46)



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 11, No. 3; 2019

Theorem 60. Let F € §sBSV ([a, b],§) and assume that abs (dF) < oo; then A +— dF () is holomorphic for R {1} >
abs (dF), and

+00

dF ()™ = f e (—s)" dF (s) (47)
0
for R {4} > abs (dF), n € N\ {0}, as an improper Fréchet Riemann Stieltjes integral.

Proof. Define g, : C — F for every h € N by

h

%w=ffwnn

and g j : C — F forevery h, j € Nby
; h
J n
a0 =Y 5 [ orarw,
0

We see that for every k e Nand j > i

Fix & > 0 then there exists ji . € N such that “qh, iD= qn; (/l)” , < eforalli, j> ji. then we have

gn () =F§ - jg{rnw qn,j ().

The limit exists uniformly for 4 in a bounded subset of C. By the Weiesrtass convergence theorem, the functions g, are

entire and ¢\ (1) = [~V (—1)/ dF(r) forall j = 1,2, ...
0
Let Ay € C, abs (f) < Ry and

Go(1) = f e dF (s);
0

dF () exists then -
dF (1p) = § — lim Gy(7)
T—+00
and
IGo(Dlz < C1 Y7 € [0, +00);
moreover we have

IGo@)l < [|Go(r) = @F (ao)||, + |[4F (10)], <

for every k € N and 7 — +o0; then
IGo(Dllk < C3 VY1 €[0,+00), Yk € N.

Let (1 = d) [ e @5Gy (s) ds; then

s

T2
<[4 = Aol [ e (RUU=RDs G, ds
k 7
T2
<A = Ayl C3 fe‘(m“‘m’l"})s ds >0 fort — 400, Yk € N,

T

Iy
(A= Ao) [ e 3Gy (s) ds

1
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if R {1} > R {1o} and we have

T +00
§ - lim f (A= Ag) e Gy (5) ds = f (A= A9) e Gy (s) ds.
T—+00
0 0

if R > R{A);

Let [ e dF(s); integration by parts gives
0

+00
dF () =gp () = [ e e dF ()
h
+00
= —e WGy (h) + (A = Ag) [ e WIGy (1) dt.
h

It follows that g;, converges to dF uniformly on compact subset of {1 : R {1} > abs (F)}. By the Weiestrass convergence

theorem, dF is holomorphic and ‘12") 1) - dF o () as h — +oo, for R {1} > abs (f). O

3. FsCyy ((0, +00) , §)-space and a Isometric Theorem

In this paragraph we state and prove our first isomorphism theorem (Theorem (62))
+00
Letr(1) =dF (1) = f e Y dF (¢) for A > 0 and where F € FsLip, ([0, +c0) , ); by Theorem (60) r (1) € C* ((0, +0), F)
0
+00
and ¥ (1) = [ eV (=t)" dF ().
0

Let k(1) = e~ (=1)"; then ||ky||, = 2.

Let Tr (k1) = 7™ (1); then by Theorem (9) of [Granucci 2019] for all n € Nand A > 0

|
I Ol < ol 1P i, = s s

We define »
A}’l
Pl = sup {7 [ M)!Ik} < IFllpstipos (48)
neN -
S
IMzscprerd = 2, o (49)
o kz; 2 (1 + Iy
and
FCy ((0,+09),8) = {r € C¥((0,+00),F) : [Irllyy < +o0 Yk € NJ. (50)

Proposition 61. (SSC$ (0, +00), %), |'|33‘C$((O,+oo),3:)) is a metric space.

Theorem 62. The transform Ls is an isometric isomorphism between §sLipg ([0, +00),§) and FsCy, ((0, +00) , F).

Proof. (Step 1).
We have shown that L : F — dF maps FsLipg ([0, +00), F) into FsC7) ((0, +o0) , §) and

1Ls (F)lzsc30.4000.3) < Fl3sLipo(10.400).3) -

+00
If Ls(F) = dF = 0 for some F € §sLipg ([0, +0),§) then f e M dF(f) = dF = 0 for all 2 > 0. Since the exponential
0

functions are total in L! (RN ) then Ty = 0; then Trxo,q = F (t) = 0 for all t > 0. Thus the map Lg is one-to-one.
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(Step2).
Let r € FsCjp (0, +00), F).
Define T, € .E(Ll [0, +00), 3) by

t

T, (f) = Tf(t) (1) % (;)l o (?) di
0

and n € N. We have
W70 O < 111 e

for all f € L' [0, +00).
(Step 3).
We assume that 7, (e‘”) — r(A) forn — +oo forall 2 > 0.

Since the exponential functions are total in L' (RN ) then by Theorem (9) of [Granucci 2019] we have that exists T €
L(L'[0,+00),3) such that |Tllgx < Ilrllwy where B = {f € L'[0,+00) : |Ifll, < 1}, and T,, (f) — T (f) for all f €
L' [0, +00).
In particular

r() = lim T,(e™") =T (™).

n—+oo

Theorem (9) of (Granucci 2019) yields the existence of some F € FsLipg ([0, +o0), §) with

N3 sLipot0,400),5)k = 1T Ik < I1Fllwi

such that

+00

Tg= fg(f)dF(t)

0
for all continuous functions g € L' [0, +00). Thus, for all 1 > 0,

+00

r()=T(e") = f e dF(t) = dF (1)

0

and Lg is onto; moreover

1Ls (Flzscs0.400.5) = ‘dF

FsC((0,400),F) | |SsLlpo([0,+ ), 3)

for all F € §sLipg ([0, +00), §).

(Step 4).
We prove that T, (e””) — r(A) for n — +oo for all A > 0.
‘We have
+ee n+l
T, (e‘/”) = fe‘/” (=1)" %(?) r””(%) dt
0
+00
= (=" o2 [ e () (s) ds
On—l ) ) §=+00
= D" o [};1 (=1 4 (e (s !) ri D (s)
- 5=0
+00
1" [ & (e () r(s) ds].
0
We define

X

G(x,s)=es (;)n_l
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then

for all £ > 0; moreover

and

then for & = 1 we have

By definition fo G we have

and

We consider

and

and

then

By induction on j, it follows that

for 1 < j < n; moreover we have

Hence,

Since

[|s" ' F=mD ()|, = (== DY

we obtain, for all k € N

-1
W ()l < Z
j=1

G (€x,€E5) =G (x,5)

d—gG(fx &) =
—fG(fx ,&8) = X6, (Ex,&5) + G (Ex,E5)
xGy (x,8) + sGy(x,5) =0
n—-2 n—1
xG, (x,5) = —x(snl e+ (n-1) al - ef)
X X

Sn—3 . Sn—2 v
sGy(x, s) = s(x”2 es+m-1) o ex).

P sn—l . Sn—3 . Sn—2 .
— e s = es+m—-1) e s
xn—l xn

9 n—2 . n-3 . n—2 .
—(ses) —e -~ - =

(';9_;/' (s"_le_f) =(=1) x"s

n—j-1 0

J 1 .
ax (x”fe x)'

) n=j=1) (g)

n

h(s)

= n=j=1 0 (1 =3\ n=j=1)
= > x's s \me s )r (s).

Il

n=j-1 o n-j—-D!
(n—j-1)
( 1)| ” ! (S)”k s s

1 X
||r||ka"| ( ,e) :

>
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then
{iii(l)llh(S)llk = Sgglmllh @l =0

for all k € N; thus
%’—linéh(s) =gF - lim A(s) = 0.
RNd §—+00

Therefore, letting x = An,

+00

)=y [

0

by (5.10) we have

ﬂ (s"_le_f) = (—1)”x”s_1 o (e‘?’:) = X" e s,

Os" Ox" Sn+1
it follows that
+00
T, (e‘/“) = _(n—ll)! f o (e‘)% (s)”_l)r(s) ds
Qoo :
= —(1’11_';)! f Sn%e_Tr(s) ds
0
n+1 +ee
= A" f e"”vv”‘lr(%) dv.
0
_ 1.1 _ 1.
Define f (v) = v r(;) and u = 7; then
1 too
Tn <e—/1z) =" nn! fe—n/lvvn—lr(%) dv
0

u nel T _ny,
:H(') feﬂv”f(v)dv
0

m
=n () ()

From Theorem (30) of (Granucci 2006), olso refer to Theorem (7) of (Granucci 2019), we have

lim T, (™) = puf () = r(l) =r(d)
n—+oo #

forall 1 > 0.
Theorem 63. Let F € §sLipg ([0, +0),5), r = Lg (F) and t > 0; then

“d(r@
diak\ A

1 [k
F() =3~ lim H)kﬁ(;)

=5

t

Proof. Since w (F) < 0 and F (0) = 0, it follows that

+00

% = f e VF(1) dt

0

(58)

for all A > 0; then from Theorem (30) of [Granucci 2006], olso refer to Theorem (7) of [Granucci 2019], we have the

statement.

4. FsLipy,, ([0, +0), F)-space

]

In this paragraph we state and prove our second result [Theorem (80)]. Let G : [0, +o0) — § and G(0) = 0 define

IG(@®) — G(9)lx
Gl sLipn,u10.+0)304 = SUP 4 —F

>5>0

feW’ dr
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and

+00

1G5 sLipo,. (10.4+00).5) = Z
2 (141G 35ip, 10400 50)

NGz 5Lip, (10,400),5)k

then
FsLipo, ([0, +00), §) = {G : [0, +00) = § : Glgyip, (0re05) < +00)

Lemma 64. ||'||31ip,, (0,+00)5).k are semi-norms for all k € N and ||z 1y, , (10.+00),3) IS @ quasi-norm.

Proposition 65. (FsLipo, (10, +00), ). [z, 0.+00,5)) is @ metric space.

Remark 66. It is easy to see that

sup {HG(f)*G(S)Hk} lfW > 0,

(t_ ) wt
IG1I3s2ipo 040030k = § 0= uc(t)—s;(s)n ~
e sup {—k} ifw<0.

(t—s)e"s
0<s<t

Definition 67. Let G : [0, +00) — §, we define

IG5 52(10.+00).5)% = €55 sup{IG(D)|l}
20

and

+00

Glssosers) = . |
S 24 (141Gl gu110.000.504)

IGl s2(10,400),3)

Lemma 68. |||z 1(0.+00).5)4 @re semi-norms for all k € N and || 35110, +0).5) IS @ quasi-norm.
Proposition 69. (SsL‘X’ ([0, +00) , F) , Ilz 510, +m),3)) is a metric space.

Definition 70. Let G : [0, +00) — §, we define

1Gllgs2210,+00),3) % = €58 SILI(I)){||67W’G(t)||k}

and

+00

Ikamm+ms>=ZS ’
ok (l + ||G”3sL‘f§([0,+00),3)»k)

IG5 s2(10,400),3) .k

Lemma 71. ||'{|z,5(10.+00).5)4 @re semi-norms for all k € N and |-|z,15(10.+w0),5) iS @ quasi-norm.

Proposition 72. (Sstj ([0, +0), %), |'|33L§?([0,+w)’3)) is a metric space.

Let M,, : G (t) — ™G (1); then it is a isomorphism of FsL™ ([0, +c0), F) onto FsL? ([0, +c0), F).

Let G € §sLipo,, ([0, +00),%) and f € C ([0, +0)); then

Lf (ol G (5) = G @)l

zl £ ()Gt - G (1-1))

G(t)-G(ti-1)) ;
L (i)l MEElle (1, — 1, y)

n
<
k iil
=
i=1
b
< NGl sLip, 10,4005k [ 1f D] " dt
a

and

b b
ff(l) dG (1| < ||G||S.vLip0M.([(),+oo),8’),kf'f(t)|eWtdt-

k

84

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)



http://jmr.ccsenet.org Journal of Mathematics Research

Vol. 11, No. 3; 2019

Remark 73. Let G € §sLipg,, ([0, +00), ) and 1,, defined by

t

(1, ) (1) = f e dG ()

0

then I, : FsLipo,, ([0, +00),§) — FsLipo ([0, +o0),F) and
12 (Gl sLipo(0,+00).30k < NGllFsLipg, (10,400),3)k -
Proof. Let G € §sLipg,, ([0, +00), §); then by (68) we have

(1 (G)) (1) = (1 (G)) (DNl < NGllgsLip, (10,400,341 = S

and 7, (G) € §sLipy ([0, +00), §), moreover we have

1 (G 35Lipo(10,+00,5)k < NG llgsLip,(10,4+00),3)k -

Remark 74. Let F € §sLip ([0, +00), §) and

t

JwF) (@) = few" dF (s)

0

then J,,F : §sLipg ([0, +o0),§) — FsLip, ([0, +o0),§) and
Iy (FMlzsLipy10,400,5)k < 1 llgsLipo((0,+00),3).k -
Proof. Let F € §sLipg ([0, +00), §); then by (68) if > s we have

(T (F)) (#) = (T (F)) (Dl < " IF g sLipg10.+00). 50k [ = 51

and J,,F € §sLip, ([0, +o0), ) with

1y (F3sLipy 10,400,350k < 1 NlZsLipo(0,4+00),3),k -

Remark 75. Let G € §sLip,, ([0, +0),F) and I,, defined by
t
(1, (G) (1) = f G (s).
0

Let F € §sLipo ([0, +0) , §) and

(JWF)(I)=f€‘”dF(S);
0
then
w1y (G) =G

and
I,(J,F)=F.

Remark 76. 1, is an isometric isomorphism of §sLip,, ([0, +0),§) onto §sLipg ([0, +00), F).

Remark 77. Let G € §sL;; ([0, +00),35); then w (G) < w and abs (dG) < w.
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The transform

+00
(L52G) (D) = dG () = f M dG (1) (72)
0
exists for 4 > w and we have
(LswG) ) = (Ls[,G)(A—w). (73)
Let "
A-w) "
Iy, 4 = sup {T (o (A)I!k} : (74)
nel '
- 1711w, &
Irgscs 0+e0r) = ), 77— (75)
; 2k (1 + Irllw, 4)
and
FsCyy, (w,+09), ) = fr € C* (w, +00), %)  Ilrlly, x < +o0  Vk € NJ. (76)

Proposition 78. (&VC; ((w, +00),3%), |'|gsc; '((w,+oo),§)) is a metric space.

Remark 79. Let S, : r — r(- —w); then is an isometric isomorphism of §sCy; ((0, +00) ,§) onto SSC%, ((w, +00),3).
Moreover we have

Lsw=8Sy0Lsol, (77)
Theorem 80. Let w € R. The Fréchet-Laplace-Stieltjes trasform is an isometric isomorphism of §sLip,, ([0, +0),§)
onto §sC,; (w, 00),§). In particular, for My > 0 for all k € N and r € §sC;; (w, o) ,5), the following are equivalent:
L[| = wy™! L ()||, < My for A > w and for allk € N.
2. There exists G : [0, +o0) — § such that

@ G0 =0;

t+h

(i) IG(t+h) -G, <M [ e*ds VkeNandt,h>0;
t

+00
(iii) r(V) = [ e dG(s)foral 11 > w.
0

Proof. By Remark (66) and Theorem (62). m]

5. The Main Theorem: A Generation Theorem for Integrated Semigroups on Fréchet Space

In this section we enunciate and prove the main Theorem (86).

Definition 81. Let A be an operator on a Fréchet space § and n € N. We call A a generator of a n-times integrated
semigroup if there exist w > 0 and a strongly continuous function S : [0, +00) — L (§) such that (w, +00) C p (A), the set
{e™™'S (1) x € § : t > 0} is bounded for each x € § and

R(A,A) x =" f e VS (s)xds R} > w. (78)
0

In this case, S is called the n-times integrated semigroup generated by A.

Lemma 82. Letn € N and S be a n-times integrated semigroup on § with generator A. Then the following hold:

1. R@,A)S =S ORWA) t>0,ucpA).
2. If x € D(A), then S (£) x € D(A) and AS () x = S (f) Axfor all £ > 0.
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3. Let x € D(A) and ¢ > 0; then

fS ($)Axds =S () x — ;—n'x. 79)
0

n—1
Moreover, 45 (1) x = S (1) Ax + g x.

t
4. Let x € § and ¢t > 0; then fS (s)xds € D(A) and
0

t

AfS(s)xds:S(t)x—Z—n'x; (80)
0

moreover, S (0) = 0.
t
5. Let x,y € § such that fS S)yds=S @) x— ;—"!x for all r > 0; then x € D (A) and Ax = y.
0

Lemma 83. Ler S : [0, +00) — L(F) be a strongly continuous function satisfying

{e f S(s)xds : tZO} 81)

0

is bounded for each x € § and for same w > 0. Let n € N; for A > w let

+00

R()x =" f e S (s)xds
0

then the following statements are equivalent:

1. There exists an operator A such that(w, +o0) C p(A) and R(1) = (1 — A)~! for > w.

2. Fors,t >0 .
1+s s
S()S(s) = ﬁ {f(t +s—-1"'Sr) dr- f(t +s5—-r)"1S) dr (82)
i 0 1
and S (s)x = 0 for all s > 0 implies x = 0.

< My forallk € N,

t
Remark 84. {¢™' fS(s)x ds : t > 0is bounded for some w > 0 is equivalent to
0

t
e‘W’fS(s)xds
0

k
t>0, My >0 forall k € N and some w > 0.

Proposition 85. Let A be a linear operator on § and U be a connected open subset of C. Suppose that U N p (A) is
nonempty and that there is a holomorphic function F : U — L (§) such that {1 € UNp(A) : F (1) = R(A,A)} has a limit
pointin U. Then U C p(A) and F (1) = R(A,A) forall 1 € U.

Theorem 86. Let A be a linear operator on §. Let My > 0 for all k € N, w € R and m € N. Then the following assertions
are equivalent:

(@) (w,+) C p(A)and
([ =wy™ R @A) ] n1] x} (83)

is bouded in § foralln e N, A > wand x € 3.
(b) A generates a (m + 1)-times integrated semigroup S ,,,+; on § satisfying
t
1S et (1) = St (5) 3l < My f erdr 0<s<i (84)

forall k € N.

87



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 11, No. 3; 2019

Proof. (Step 1). We prove that (@) = (b). If we put
1
I"(/l) = /l_mR (A,A))C

it follows by Theorem (80) that there exists G such that

+00

r() = fe”“ dG(s) VYA>w
0
and G (0) = 0; moreover we have
+00
r() =21 f e G (s) ds.
0
Let S,,+1 (1) x = G (s), then
+00
1
/l_’"R (A,A)x = /lfe_/”SmH (s)xds
0

and by Definition (81) A generates a (m + 1)-times integrated semigroup S ,+1 on §. Moreover from Theorem (80)

t
1S et (1) % = S et () sl < M f Tdr 0<s<i

N

(Step 2). We prove that (b) = (a). By Definition (81) there exists @ > w such that

+00

R(1,A)x _

(T =/1fe S 1 () xdt
0

forall A > @ . By Proposition (14) of [Granucci 2006], (@, +c0) C p (A) and since

+00 +oo
[erasimw=a [ et
0 0
then by Theorem (80) we have (a). O

Remark 87. Condition (a ) of Theore (86) is equivalent to (w, +o0) C p (A) and exist My > O such that
sup sup {[|(2 = w)"™* ! (R (1, 4) x/2™)™ [nl||,} < My (85)

neN A>w
forallk e Nand x € §.
6. Applications: An Example of Integrated Semigroup on a Fréchet Space, the Schrédinger’s Operator on MY, (RN , (C)
6.1 The Fréchet Space MY, (RN s (C)

Definition 88. Let MY, (RN , (C) be the space of complex-valued C*™-functions defined on RN such that its partial deriva-
tives of all orders belong to the space L? <RN , (C), for1l < p < oo,

Letu € MY, <RN, (C), we define

gy, v cy 0 = Il
O (36)
lleellysy, (rv ) = ”D(k)”“p
N
where k = (ky, ..., ky), ki e N, fori=1,..,N, [k| = X k; and
i=1

® 6k1+k2+-~-+kN

DY = ——M—.

... o
X1 XN
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,,,,,

+00

vy, (v, c).i
|'|MY,) RN C = - P L),
®0 =27 (1 + ey, v.c)2)

is a quasi-norm on MY, (]RN, (C).
Corollary 90. (MY » (RN , (C) , |'|MY1,(]RN,(C)) is a metric space.

Lemma 91. If f, — fin MY, (RN, (C)for a — 0; then

1.
lim fo (¥) = f (%)

holds uniformly with respect to x in any compact set of RV,

lim DY, (x) = DY f (x)

holds uniformly with respect to x in any compact set of R,

Proof. We now prove the lemma for N = 2. We may assume f = 0. If p > 1 by Holder inequality we have

1

q
85?;;1)(2( -« +x2))| dx1dx2} ”foz”,,"‘
A\

e_(x%+x%)fa (x1, xz))

!

ad?;o[;x ( -(x +xz)f¥ (xl,XQ))| dxidx, < Lf

+ ||g*(xf+X§) oé‘?];l;xz (fo (xl,xz))' dX]dXQ]

then

61 +01
lim Py —
a—0 0% xX10x; (
Rz

dxldx2 = O;

fix € > 0 then there exists ag (¢) > 0 such that

!

forall 0 < a@ < ag (g), where 6 =0 and § = 1.

Then
[|#
R

s
146 (2.2
< [ dn [ 20 (D f, (o) de
&

R

al+61 (2442

< f P1x00 (e (x1+xz)fa/ (xl,xz))| dxldx2
R2

<é&

(’)1+(§1

o9 X10x,

(D, 1, x0)

dxidx, < &

(')‘51x1 ( (i g, (Xl,Sz)) aa,x ( G f, (Xl,gz))’ dx; <

for all || < ag (€), s, and &;.

Let’s take f, € MY, (RN , C), then by Holder inequality we have

1

‘ q
5?:;1 (6_(X%+x§)f(y (M,xz))’ dxidx; < Lf a?f;] (e_(x%+x%))|q dxldxz} Il fall, +

|’ -(2 +x2)

R2
o
(’)51 X1

89

87)

(88)

(89)

(90)

oD

92)
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then by Fubini’s theorem we have

661 2 2
y(x) = f(95 (e*(xwxz)fa ()C],xz)) dx, € L' (R) ©93)
lxl
R
and )
. o (2422
leLrEoofaélxl (e ( ]+ Z)fa (xl’x2)) dxl = 0 (94)
R

Therefore for each « there exists a sequence {e’ﬁ (a)}kEN such that

lim fa(‘?:c] (e_()6%+(81§(w))z)fQ (x1’8§ (a))) dx; = 0 95)
R

SS(Q)H—OO
R

then by (91) and (94) we have
o
0% X1

(eI, () < & (96)

for all |a| < ag (&) and s,.
Let’s take 6; = 1, then
|67(S%+X§)fa (s1,%0) — e (T R) £, (fl,xz)'

B
0 (2242
< f|_6?1;c1 (e (X1+X2)f;1 (xl,x2)>| dxl
t

1 97
< f|ﬁ%;1 (e_(x%”%)fa (X17X2)>| dx
<s
for all 51, t1, xp and |a| < ag (&).
If we put 6; = 0 in (93) we have
f [ CH R £, (11, :0)| vy < & (98)
R
for all x, and || < g (g). Hence we see that for each fixed x; and |a| < aq (¢) there exists a sequence s’f (a, x») such that
tim e (D), () = 0. (99)
oo
By (97) and (99) we have
|G £, (1, 2| < & (100)

for all x;, x, € R and |e| < g (). Thus f, (x1,x2) — 0 uniformly with respect to (x;, x) in any compact set.

Finally if f, — 0 in MY, (R, C) for @ — 0; then Df, — 0 in MY, (R, C) for @ — 0; thus D, (x1,x2) — 0 uniformly
with respect to (x;, x;) in any compact set.

Using the same method we can also prove the lemma for N > 3. O

Lemma 92. Let u, € MY, (RN , (C).

1. If LP - liII(l) U, = v then

a—>!

lin(i) Uy (x) =v(x)
holds uniformly with respect to x in any compact set of RV,

2. £L? — lim D®yu, = v® then

a—0

lim D®u, (x) = v¥ (x)

a—0

holds uniformly with respect to x in any compact set of RV,
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Proof. 1t follows as in Lemma (91) m]
Corollary 93. (MYP (RN , (C) , |'|MY,,(]RN,(C)) is a Fréchet space.

Proof. Let’s take {u,},cy C MY, (RN , (C) a Cauchy sequence; then there exist v € L? (RN , (C) and v® € P (RN , (C) suct
that L? — ling) U, =vand LP — lin}) D®y, = v®: then we have ling) Ug (x) = v (x) holds uniformly with respect to x in any

compact set in RN and ling) D®y, (x) = v® (x) holds uniformly with respect to x in any compact set in RY. Moreover we
a—

obatin v € C*® (RN, (C) and D®y = v¥; thenv € MY, (RN, (C) and u, — vin MY, (RN, (C). O

6.1.1 The Schrédinger’s Operator on MY, (RN , (C)

Definition 94. We define A = iA, the Schrodinger’s operator on MY, (RN , (C), with p > 1.
We prove that A is a generator of a a-integrated semigroup on MY, (RN , (C) for all p > 1 and that A is a generator of a
Co-semigroup on MY, (RN , (C) if, and only if p = 2.
Since MY, (RN , (C) clI? (RN , (C) we obtain that
A= Ayully 2 Allull,  Yu € MY, (RY,C), 2> 0;

but
llullo2 = llully  Yu € MY, (RY,C);

then
2 = A)ullo = Allullgs  Vu € MY (RY,C), 2> 0.

Let’s take [|(A — A) ul|;, with i > 1, then
(A= A)ull;, = ||D® (2 - A)w)|,
where |k| = i. Since D® (1 = A)u) = (A — A) D®y and D®u € MY, (RN, (C), we have
A= A)ullp = Allull;y  Yu e MY,(RY,C), 1> 0eieN;
then A is §s-dissipative on §, with § = MY, (RN s (C); by Theorem (80) A is a generator of a Cy-semigroup on MY, (RN s (C).
Since (w, +00) C p(A) and
[ =wyt ®R,A) J2 n!] ) (101)

is bounded in MY, (RN s (C) for all n € N and for each x € MY, (RN , (C); then by Theorem (86) A is a generator of a
(m + 1)-integrated semigroup on MY, (RN , (C), forall p > 1.

Lemma 95. Forall p € (1,+) and every @ > N '% - %‘ the Riesz mean operator defined by

L{)=r" f (t—-s5)"eMds (102)
0

fort>0,andl,(t) = E(—t)for t <0, acts continously on MY , (RN, C).

Theorem 96. For all p € (1,+00) and every @« > N '% - %| A generates a a-integrated semigroup S on MY, (RN, (C),
define by

S () = ﬁla . (103)

Remark 97. Then A is a generator of a Cy-semigroup on MY , (RN, (C) if, and only if p = 2.
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