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Abstract

The Brent-McMillan algorithm is the fastest known procedure for the high-precision computation of Euler’s constant
γ and is based on the modified Bessel functions I0(2x) and K0(2x). An error estimate for this algorithm relies on the
optimally truncated asymptotic expansion for the product I0(2x)K0(2x) when x assumes large positive integer values. An
asymptotic expansion for this optimal error term is derived by exploiting the techniques developed in hyperasymptotics,
thereby enabling more precise information on the error term than recently obtained bounds and estimates.
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1. Introduction

The Brent-McMillan algorithm (Brent & McMillan, 1980), when implemented with binary splitting, is the fastest known
method of high-precision computation of Euler’s constant γ. This relies on the formula (Olver, Lozier, Boisvert, & Clark,
2010, (10.31.3))

γ =
S 0(2x)
I0(2x)

− log x − K0(2x)
I0(2x)

, (1.1)

where throughout we take x to be a positive integer, I0(x), K0(x) are the standard modified Bessel functions and

S 0(x) :=
∞∑

n=0

Hn

(n!)2 ( 1
2 x)2n, Hn := 1 +

1
2
+ · · · + 1

n
.

For large x, the final term in (1.1) is O(e−4x). Greater precision can be achieved following the suggestion made in (Brent
& McMillan, 1980) of truncating the asymptotic expansion

I0(2x)K0(2x) ∼ 1
4x

∞∑
k=0

((2k)!)3

(k!)4(16x)2k (x→ +∞) (1.2)

at its optimal truncation index k = 2x (corresponding to truncation at, or near, the least term), followed by computing the
term K0(2x)/I0(2x) from I0(2x)K0(2x)/(I0(2x))2. Brent and Johansson (2015) obtained a bound for the remainder term
in the optimally truncated expansion (1.2) given by 24e−8x, thereby providing rigour to the algorithm. More recently,
Demailly (2017) established the leading large-x behaviour of this remainder, together with an error bound, in the form

−e−4x
( 5x−3/2

24
√

2π
+ ϵ(x)

)
, |ϵ(x)| < 0.863

x2 . (1.3)

This leads to the error in the optimally truncated expansion of the final term in (1.1) given by −5
√

2πe−8x/(12x1/2) to
leading order.

The problem with using the well-known asymptotic expansions of the modified Bessel functions is that the positive real
axis is a Stokes line for I0(x) (but not for K0(x)). The standard expansion (Olver et al., 2010, (10.40.5)), (Watson, 1952,
p. 203)

I0(x) ∼ ex

√
2πx

∞∑
k=0

( 1
2 )k( 1

2 )k

k!(2x)k +
ie−x

√
2πx

∞∑
k=0

(−)k( 1
2 )k( 1

2 )k

k!(2x)k (x→ +∞) (1.4)

is clearly inadequate, since this predicts a purely imaginary exponentially small contribution as x → +∞ when clearly it
must be real. The correct form of the expansion of I0(x) for x→ +∞ that takes into account the Stokes phenomenon on the
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positive x-axis has been considered in Paris (2017).. In this paper we derive an asymptotic expansion for the remainder in
the optimally truncated expansion (1.2) by applying the first stage of the hyperasymptotic expansion process (also known
as exponential improvement) to a suitable integral representation for the product I0(x)K0(x), thereby bypassing the above-
mentioned problem. A discussion of the new theory of hyperasymptotics, initiated by Berry (1991), can be found in the
book (Paris & Kaminski, 2001, Ch. 6) in the context of the confluent hypergeometric functions; see also (Olver et al.,
2010, Section 2.11). We present some numerical results to illustrate the accuracy of the expansion so obtained.

2. Exponentially Improved Expansion for I0(x)K0(x)

We start with the Mellin-Barnes integral representation (Paris & Kaminski, 2001, p. 116)

I0(x)K0(x) =
1

2πi

∫ −c+∞i

−c−∞i
Γ3(s + 1

2 )Γ(−s)
cos πs
2π3/2 x−2s−1ds (| arg x| < 1

2π, 0 < c < 1
2 ).

Throughout this paper we shall restrict x to be a positive integer in keeping with the strategy of the Brent-McMillan
algorithm, although the analysis can be developed for complex x. The integrand has simple poles situated at s = 0, 1, 2, . . .
and double poles at s = − 1

2 ,−
3
2 , . . . .

We consider the integral taken round the rectangular contour with vertices at c ± iT and N − c′ ± iT , where N is (for the
moment) an arbitrary positive integer and 0 < c′ < 1. Use of the well-known approximation (with σ real) Γ(σ ± it) =
O(tσ−1/2e−

1
2 πt) as t → +∞, shows that the contribution from the upper and lower sides s = σ± iT , c ≤ σ ≤ N −c′ vanishes

as T → ∞, since the modulus of the integrand on these paths is O(T 2σ−1/2x−2σ−1e−πT ). Displacement of the integration
path to the right over the first N poles, together with the fact that the residue of Γ(−s) at s = k is (−1)k−1/k!, then shows
that

I0(x)K0(x) =
1
2x

N−1∑
k=0

((2k)!)3

(k!)4(8x)2k + RN(x), (2.1)

where the remainder RN(x) is

RN(x) = − 1
2πi

∫
LN

Γ3(s + 1
2 )

Γ(s + 1)
cot πs

x−2s−1

2
√
π

ds, (2.2)

and LN denotes the rectilinear path (−c′+N−∞i,−c′+N+∞i).

We now choose N to be the optimal truncation index of the expansion in (2.1), which is easily verified to be N = x. As a
consequence, since x→ +∞ the variable s in the quotient of gamma functions in (2.2) is uniformly large on the displaced
path LN . From Lemma 2.2 in (Paris & Kaminski, 2001, p. 39) we have the inverse factorial expansion

Γ3(s + 1
2 )

Γ(s + 1)
=

2
√
π

22s

{M−1∑
j=0

(−) jc jΓ(2s − j) + ρM(s)Γ(2s − M)
}

(2.3)

for positive integer M, where

c0 = 1, c1 =
1
2 , c2 =

5
8 , c3 =

21
16 , c4 =

507
128 , c5 =

4035
256 ; (2.4)

see the appendix. The remainder function ρM(s) is analytic in s except at the points s = − 1
2 ,−

3
2 , . . . and is such that

ρM(s) = O(1) for |s| → ∞ in | arg s| < π. Then we obtain

RN(x) = −1
x

{M−1∑
j=0

(−) jc j
1

2πi

∫
LN

Γ(2s − j) cot πs (2x)−2sds + RM,N(x)
}
,

where

RM,N(x) =
1

2πi

∫
LN

ρM(s)Γ(2s − M) cot πs (2x)−2sds

=
1

2πi

∫
LN

ρM(s)
Γ(2s − M)

sin 2πs
(1 + cos 2πs) (2x)−2sds.

The remainder RM,N(x) can be split into three separate integrals with variables (2x)−2s and (2xe±πi)−2s, to each of which
we can apply Lemma 2.9 in (Paris & Kaminski, 2001, p. 75). Since we have chosen N = x, we therefore obtain the order
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estimates O(x−M− 1
2 e−2x) for the integral with variable (2x)−2s and O(x−Me−2x) for the integrals with variables (2xe±πi)−2s.

Hence RM,N(x) = O(x−Me−2x) as x→ +∞. Then we find

RN(x) = −1
x

{M−1∑
j=0

(−) jc j
1

2πi

∫
LN

Γ(2s − j)
sin 2πs

(1 + cos 2πs) (2x)−2sds + O(x−Me−2x)
}
. (2.5)

We now introduce the so-called terminant function Tν(z) defined1 as a multiple of the incomplete gamma function Γ(a, z)
by

Tν(z) :=
Γ(ν)
2π
Γ(1 − ν, z).

From the formula connecting Γ(a, ze±πi) given in (Olver et al., 2010, (8.2.10)) we have the connection formula (compare
also (Paris & Kaminski, 2001, (6.2.45))

Tν(ze−πi) = e2πiν{Tν(zeπi) − ie−πiν}. (2.6)

The Mellin-Barnes integral representation of this function is (Paris & Kaminski, 2001, (6.2.7))

−2zνezTν(z) =
1

2πi

∫ −c+∞i

−c−∞i

Γ(s + ν)
sin πs

z−sds (| arg z| < 3
2π, 0 < c < 1) (2.7)

provided ν , 0,−1,−2, . . . . Then, if we make the change of variable s → s + N in the integrals appearing in (2.5), write
cos 2πs in terms of exponentials, and use (2.7) (when it is supposed that M < 2N) these integrals can be written as

1
2πi

∫ −c+∞i

−c−∞i

Γ(2s + 2N − j)
sin 2πs

(1 + cos 2πs) (2x)−2s−2Nds

= −(2x)− j
{
e2xT2N− j(2x) + 1

2 e−2x(−) j[T2N− j(2xeπi) + T2N− j(2xe−πi)]
}

= −(2x)− j
{
e2xT2N− j(2x) + e−2x[(−) jT2N− j(2xeπi) − 1

2 i]
}

upon application of (2.6).

This then yields the expansion for RN(x) given by

RN(x) =
e−2x

x

{M−1∑
j=0

(−) jc j

(2x) j

{
e4xT2N− j(2x) + (−) jT2N− j(2xeπi) − 1

2 i
}
+ O(x−M)

}
. (2.8)

It now remains to exploit the known asymptotic expansions of the terminant function Tν(x) when ν ∼ x as x→ +∞, which
we carry out in the next section.

3. An Asymptotic Expansion for RN(x)

The asymptotic expansion of the terminant function Tν(z) for large ν and complex z, when ν ∼ |z|, has been discussed in
detail by Olver (1991); see also (Olver et al., 2010, Section 2.11) and the detailed account in (Paris & Kaminski, 2001,
pp. 259–265). By expressing Tν(z) in terms of the Laplace integral

Tν(z) =
e−z

2π

∫ ∞
0

e−zt tν−1

1 + t
dt,

Olver established by application of the saddle-point method that when µ ∼ x (and bounded integer j)

Tµ− j(x) =
e−2x

2
√

2πx

{K−1∑
k=0

Ak, jx−k + O(x−K)
}

(x→ +∞), (3.1)

where A0, j = 1 ( j ≥ 0) and

A1, j =
1
6 (2 − 6γ j + 3γ2

j ), A2, j =
1

288 (−11 − 120γ j + 300γ2
j − 192γ3

j + 36γ4
j ),

A3, j =
2

51840 (−587 + 3510γ j + 9765γ2
j − 26280γ3

j + 18900γ4
j − 5400γ5

j + 540γ6
j ),

A4, j =
1

2448320 (120341 − 44592γ j − 521736γ2
j − 722880γ3

j + 2336040γ4
j − 1826496γ5

j

+635040γ6
j − 103680γ7

j + 6480γ8
j ), (3.2)

1In (Olver et al., 2010, (2.11.11)) this function is denoted by Fν(z) and is expressed as a multiple of the exponential integral Eν(z) = zν−1Γ(1 − ν, z).
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with
γ j := µ − x − j (0 ≤ j ≤ K − 1). (3.3)

On the negative real axis, where a saddle point and a simple pole become coincident in the above Laplace integral, we
have the expansion

Tµ− j(xeπi) = e−πiµ(−) j
{

1
2 i +

1
√

2πx

(K−1∑
k=0

( 1
2 )kG2k, j ( 1

2 x)−k + O(x−K)
)}

(x→ +∞), (3.4)

where the coefficients Gk, j result from the expansion

τγ j−1

1 − τ
dτ
dw
= − 1

w
+

∞∑
k=0

Gk, jwk, 1
2 w2 = τ − log τ − 1.

The branch of w(τ) is chosen such that w ∼ τ − 1 as τ→ 1. Upon reversion of the w-τ mapping to yield

τ = 1 + w + 1
3 w2 + 1

36 w3 − 1
270 w4 + 1

4320 w5 + · · · ,

it is found with the help of Mathematica that the first five even-order coefficients G2k, j ≡ 6−2kĜ2k, j are

Ĝ0, j =
2
3 − γ j, Ĝ2, j =

1
15 (46 − 225γ j + 270γ2

j − 90γ3
j ),

Ĝ4, j =
1
70 (230 − 3969γ j + 11340γ2

j − 11760γ3
j + 5040γ4

j − 756γ5
j ),

Ĝ6, j =
1

350 (−3626 − 17781γ j + 183330γ2
j − 397530γ3

j + 370440γ4
j − 170100γ5

j

+37800γ6
j − 3240γ7

j ),

Ĝ8, j =
1

231000 (−4032746 + 43924815γ j + 88280280γ2
j − 743046480γ3

j

+1353607200γ4
j − 1160830440γ5

j + 541870560γ6
j − 141134400γ7

j

+19245600γ8
j − 1069200γ9

j ). (3.5)

Substitution of the expansions (3.1) and (3.4) with µ = 2N into RN(x) in (2.8) then yields (where we put K = M for
convenience)

RN(x) =
e−2x

4
√
πx3/2

M−1∑
j=0

(−) jc j

(2x) j

M−1∑
k=0

Dk, j

(2x)k + O(x−M−1e−2x)

for x→ +∞, where
Dk, j := Ak, j + 2k+1( 1

2 )kG2k, j (3.6)

and, since the variables in the terminant functions in (2.8) involve 2x = 2N, we have from (3.3) that γ j = − j. Then we
obtain the following theorem:

Theorem 1.. Let M, N be positive integers and the variable x assume integer values. Then the remainder RN(x) in the
optimally truncated asymptotic expansion for I0(x)K0(x) in (2.1) when N = x has the expansion

RN(x) =
e−2x

4
√
πx3/2

{M−1∑
j=0

B j(2x)− j + O(x−M+ 1
2 )
}

(3.7)

as x→ +∞. The coefficients B j are defined by

B j =

j∑
k=0

(−)kckD j−k,k, (3.8)

where the coefficients ck and Dk, j are specified in (2.4) and (3.6). The quantities Ak, j and G2k, j appearing in (3.6) are
defined in (3.2) and (3.5) with γ j = − j.
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Routine computations show that

B0 =
7
3
, B1 = −

449
270
, B2 =

55949
3024

, B3 = −
87499
17010

,

B4 =
137885143760267
7067908108800

.

This produces the expansion

RN(x) ∼ 7e−2x

12
√
πx3/2

{
1 − 449

1260 x
+

55949
282240 x2 −

87499
317520 x3 +

137885143760267
263868569395200 x4 + · · ·

}
(3.9)

as x → +∞, which is the main result of the paper. In Table 1 we present values of the absolute relative error in the
computation of the expansion for RN(x) in (3.7) for different x and truncation index M compared with the exact evaluation
from (2.1).

Table 1. Values of the absolute relative error in the computation of RN(x) from (3.7)

M x = 50 x = 100 x = 150

1 7.100 × 10−3 3.557 × 10−3 2.373 × 10−3

2 7.772 × 10−5 1.962 × 10−5 8.750 × 10−6

3 2.140 × 10−6 2.714 × 10−7 8.082 × 10−8

4 8.065 × 10−8 5.130 × 10−9 1.020 × 10−9

5 3.555 × 10−9 1.137 × 10−10 1.510 × 10−11

4. Concluding Remarks

In the Brent-McMillan algorithm we have, with N = x,

I0(2x)K0(2x) =
1
4x

2N−1∑
k=0

((2k)!)3

(k!)4(16x)2k + R2N(2x),

where from (3.9)

R2N(2x) ∼ 7e−4x

24
√

2πx3/2

{
1 − 449

2520 x
+

55949
1128960 x2 −

87499
2540160 x3 +

137885143760267
4221897110323200 x4 + · · ·

}
(4.1)

for x→ +∞. From (1.4), the expansion of (I0(2x))2 (upon neglecting the exponentially small contribution) is

(I0(2x))2 ∼ e4x

4πx

{
1 +

1
8x
+

5
128x2 +

21
1024x3 +

507
32768x4 + · · ·

}
(x→ +∞).

Then, from (4.1), we obtain

Theorem 2.. The error resulting from K0(2x)/I0(2x) in the Brent-McMillan algorithm in (1.1) at optimal truncation has
the expansion

R2N(2x)
(I0(2x))2 =

7
√

2πe−8x

12x1/2

{
1 − 191

630x
+

18211
376320 x2 −

799201
16257024 x3 +

116774621369177
4221897110323200 x4 + · · ·

}
(4.2)

as x→ +∞.

Demailly (2017) defined his remainder function ∆(x) using the optimal truncation index k = 2N, instead of k = 2N − 1,
and wrote

∆(x) := I0(2x)K0(2x) − 1
4x

2N∑
k=0

((2k)!)3

(k!)4(16x)2k (N = x).

The connection with our R2N(2x) is consequently given by

∆(x) = R2N(2x) − 1
4x

((4x)!)3

((2x)!)4(16x)4x . (4.3)
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The expansion of the second term in (4.3) can be obtained by application of Stirling’s formula (see (A.3) with s = 2x) to
yield

∆(x) ∼ − 5e−4x

24
√

2πx3/2

{
1 − 1

1800 x
− 45449

806400 x2 +
294911

5806080 x3 + · · ·
}

as x → +∞. It is clear that the error estimate in (1.3) considerably overestimates the first-order correction to ∆(x) in the
limit x→ +∞.

Appendix: Determination of the coefficients c j in the expansion (2.3)

Use of the duplication formula Γ(2s) = π−1/222s−1Γ(s)Γ(s + 1
2 ) shows that the inverse factorial expansion (2.3) can be

written as
22s

2
√
π

Γ3(s + 1
2 )

Γ(s + 1)Γ(2s)
=

1
s

(Γ(s + 1
2 )

Γ(s)

)2
=

M−1∑
j=0

c j

(1 − 2s) j
+

(−)MρM(s)
(1 − 2s)M

. (A.1)

From (Olver et al., 2010, (5.11.13)), we have

Γ(s + 1
2 )

Γ(s)
= s1/2

{
1 − 1

8s
+

1
128s2 +

5
1024s3 −

21
32768s4 −

399
262144s5 + · · ·

}
(s→ +∞),

whence
1
s

(Γ(s + 1
2 )

Γ(s)

)2
= 1 − 1

4s
+

1
32s2 +

1
128s3 −

5
2048s4 −

23
8192s5 + · · · (A.2)

= c0 −
c1

2s
+ (c2 − c1)

1
4s2 + (−c1 + 3c2 − c3)

1
8s3 + (−c1 + 7c2 − 6c3 + c4)

1
16s4

+(−c1 + 15c2 − 25c3 + 10c4 − c5)
1

32s5 + · · ·

upon expansion of the right-hand side of (A.1) in inverse powers of s. Comparison of the coefficients of corresponding
powers of s then yields the values

c0 = 1, c1 =
1
2 , c2 =

5
8 , c3 =

21
16 , c4 =

507
128 , c5 =

4035
256 .

We can make use of (A.2) and the duplication formula to obtain the expansion of the quantity required in Section 4

1
2s

((2s)!)3

(s!)4(8s)2s =
Γ3(s + 1

2 )
2π3/2Γ(s + 1)s2s+1 =

Γ(2s)
πs(2s)2s

1
s

(Γ(s + 1
2 )

Γ(s)

)2
=
Γ(2s)
πs(2s)2s

{
1 − 1

4s
+

1
32s2 +

1
128s3 −

5
2048s4 −

23
8192s5 + · · ·

}
.

Use of the well-known expansion (Olver et al., 2010, (5.11.3))

Γ(z) =
√

2πzz− 1
2 e−z
{
1 +

1
12z
+

1
288z2 −

139
51840z3 + · · ·

}
(z→ +∞)

then shows that
1
2s

((2s)!)3

(s!)4(8s)2s =
e−2s

√
πs3/2

{
1 − 5

24s
+

25
1152s2 +

3551
414720s3 + O(s−4)

}
(A.3)

as s→ +∞.
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