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Abstract

In this paper, for the first time ever, the properties of the word detection probability in a random string have been inves-
tigated. The formerly known methods led to numerical evaluation of the researched probabilities only. The present work
derives the simplest algorithm for calculation of the word’s at least once detection probability in a random string. A recur-
sive formula that considers the overlap capability has been deduced for the probability under study. This formula is being
used for the proposition on comparison of the word detection probabilities in a random string for the words with different
periods. The result allows determining the structure of words that have maximum and minimum detection probabilities.
In particular, words having equal number of alphabetic characters have been studied. It has been established, that for the
words in question detection probability is minimal for the ideally symmetrical words that have irreducible period - and
maximal for the words devoid of the overlap feature. These results will be useful for molecular genetics, as well as for
students studying discrete mathematics, probability theory and molecular biology.
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1. Introduction

Calculation of detection probability of a given word in a random string is of the great interest, most of all in connection
with the molecular genetics research activities. The substantial breakthrough in the problem solution had been made
by Gentleman and Mullin (1989). The work (Gentleman & Mullin 1989) established distribution of the subsequence’s
occurrence frequencies within the nucleotide sequence, taking into account possible overlaps within the equiprobable
distribution model. Such success was stipulated by employment of the enumerative combinatory analysis and generating
functions (Gulden, 1983). Chufang (2005 ) offered a different scheme to solve the problem in question, based on the finite
Markov chains imbedding technique. A common approach to the similar problems, based on the Markov chains model,
had been also developed in works (Robin & Daudin, 1999), (Robin & Daudin, 2001), (Lotharie, 2004), (Rigner, 1995).
The principal problem in calculation of the word occurrence probability in a random string is the overlap capability. Al-
though the known solution methods give reliable numerical results, they do not allow investigating the extremal properties
of the word detecting probability in a random string that relates to its symmetry, stipulated by presence of overlaps. It
should be emphasized that the symmetry factor plays an important part in the debate on the degree of order and the amount
of information (Ilyevsky, 2014), (Ilyevsky, 2017). This paper offers an original method of deriving a recursion formula
for the word detection probability to obtain recurrence relations in a previously unknown elegant form. The proposed
recursive formula is very simple for computer programming. By means of the derived recurrence formula the theorem on
the extremal properties of the probabilities under study, associated with the presence of overlaps, has been proved.

Section 2 of the present paper considers a random string, n characters of k ≥ 2 alphabetical elements long, within the
equiprobable distribution model. Problem to calculate the probability pn of detecting a specified m characters long word
in a random string at least once, has been solved. The solution has been obtained in the form of a recursive formula that
connects pn with probabilities pn−1, pn−si and pn−m, where si + 1 are coordinates of the word overlap positions, numbered
with the i index. The result allows to calculate the precise pn meaning under any value of m and n. In section 2.3 the
explicit formula for pn has been received for the zero overlap cases. Section 3 offers proposition on comparison of the
word occurrence probabilities in a random string for the words with different periods. Section 4 shows, that for words
with equal number of each of the k alphabetic characters the pn value is maximal at zero overlaps and is minimal at the
ideal symmetry of the word, when it have the irreducible period.

2. Recursive Formula for the Given Word’s at Least Once Occurrence Probability in a Random String

2.1 Basic Idea and Method

In contrast to the known methods, the approach offered below allows us to derive necessary formulas without invoking
the enumerated combinatorics.
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Let us assume there are: an alphabet of k ≥ 2 characters, Rn - a random sequence n characters long and D - a preset
sequence m characters long. For the sake of D and Rn sequence convenience we shall hereinafter denote them a word
and a string, respectively. Let us draw on the model of equiprobable distribution of all alphabetic characters in the Rn

string. Our objective is to find a probability of the D word’s at least once occurrence in the Rn string. Let us consider a
set, that consists of kn different Rn sequences of all kinds. We shall denote this set as Rn. All strings within the Rn set are
equiprobable. Let us denote a subset of the Rn set, in which D does not occur even once, as R′n. Correspondingly, we
shall denote strings that belong to the R′n set, as R′n. The number of sequences in R′n we shall designate by Qn. Now let
us construct a recursive formula for Qn. To this end, we shall employ the idea as follows. The R′n set could be deduced
from the R′n−1 set using the following procedure.

Let us denote a set of all possible alphabet characters asW. Let us add all possible wϵW words to the left of every R′n−1
string. We shall have a set of strings, hereinafter referred to asWR′n−1. The number of such strings shall be:

|WR′n−1| = kQn−1.

Now let us cross out all strings that have word D from theWR′n−1 set. We shall have a R′n set. Hereinafter we shall refer
to the procedure described above as the R′n−1 to R′n transition. (We shall also use such transitions step by step to describe
the transition from R′n−m to R′n.) The number of crossed-out strings in the transition R′n−1 → R′n will be:

|WR′n−1| − |R′n| = kQn−1 − Qn.

On the other hand, the number of crossed-out strings in transition from R′n−1 to R′n can be expressed through Qn−m.
Indeed, since length of the word D equals m, in crossed-out strings it occupies positions from n − m + 1 to n. Should we
add all possible words of length m to the left of each of the R′n−m set strings, then D will be one of these words. Therefore,
the number of strings with length n and prefix D that are deleted in transition from R′n−1 to R′n, must equal Qn−m minus
number of strings crossed out in the overlap positions. The corresponding detailed analysis of the overlap accounting
is given below in sections 2.2, 2.5. Equating the number of crossed out strings obtained in two ways, we arrive at the
required recurrence relation.

2.2 Overlap Description

As already noted, when constructing a recursive formula for Qn, one shall take into account all possible overlaps of the
word D in the string Rn. D’s overlap feature represents a certain type of the shift symmetry. Let us write D down as
follows: D = a1a2 . . . am, where a j represents characters of the given alphabet. Under the string D we shall write down an
identical string, shifted to the right by si characters.

a1a2 . . . asi asi+1 . . . am

a1 . . . am−si . . . am

If all the characters of the upper and lower strings, one above the other, are the same, then equivalent definitions are
introduced by different authors, such as: the notion of autocorrelation of the D word (Guibus & Odlyzko, 1981), D’s
overlap capability (Gentleman, 1989), or periodicity (Lotharie, 2001). For our purposes it would be more convenient to
define overlaps as follows.

Definition. A word D has an overlap position with the coordinate si + 1 if within the range 1 ≤ si ≤ m − 1 there exists
such si, to which

a1a2 . . . am−si = asi+1asi+2 . . . am. (1)

Index i in (1) enumerate possible overlaps from left to right. A a1a2 . . . asi word is usually referred as the D period. Length
of the period equals si. As an example, let us consider the following word from the alphabet 1,2,3:

1121123112112311211 (2)

In the above example (2) we have: s1 = 7, s2 = 14, s3 = 17, s4 = 18, and, correspondingly, coordinates of the overlap
positions are :8, 15, 18, 19. In the discussions that follow, we omit the case of the D’s trivial coincidence with himself,
that corresponds to s0 = 0. Let us note here, that si values can not be arbitrary, but obey certain rules, derived in work
(Guibus & Odlyzko, 1981). To begin with, let us consider a case, when a word D does not have any overlap positions.
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2.3 Recursive Formula for Zero Overlaps in D

Let a m - long word D have no overlaps, meaning that D does not have any such s1 within the 1 ≤ s1 ≤ m − 1 range, for
which (1) holds. We shall hereinafter refer to a word D, having such property, as D0. For the Qn number of strings in the
set Rn, that have no D0 words, we have the recurrence relation as follows:

Qn = kn, 0 ≤ n ≤ m − 1, (3)

Qn = kQn−1 − Qn−m, n ≥ m. (4)

Proof. For 0 ≤ n < m the proposition (3) is obvious, since in the string Rn, which is shorter then m, a word D0 does not
occur even once. Let n ≥ m. Let us consider the set R′n−1, which means there are n − 1 - long strings, in which D0 does
not occur even once. The R′n−1 set is being derived from Rn−1 by means of elimination from the latter of all strings, in
which D0 occurs. According to the designation introduced as above, number of sequences in R′n−1 equals Qn−1. To each
of the sequences in the set R′n−1 we shall add (to the left, in turn) all characters from the alphabet. Such a procedure
will generate a WR′n−1 set that contains kQn−1 new strings. Apparently, among strings in the WR′n−1 set there are
Rn = D0R′n−m strings that represent concatenation of the word D0 with the string R′n−m. These strings generate a set of D0
- prefixed strings that we shall refer to as D0R′n−m. Let us represent a word D0 in the form of D0 = usvm−s where us and
vm−s shall be parts of the word D0, s and m− s long, correspondingly (sϵ[1,m− 1]). Now let us analyze the set vm−sR′n−m,
in which every R′n−m string has a vm−s word, attached from the left. Since the word D0 does not have any overlaps, the
word vm−s shall not represent a D0 prefix. That is the reason why none of the vm−sR′n−m set elements shall be crossed out
during transition from R′n−m to R′n−1 for all sϵ[1,m − 1] . This means that D0R′n−m ⊂ WR′n−1. Consequently, following
transition from R′n−m toWR′n−1 there appear exactly |D0R′n−m| = Qn−m D0-prefixed strings that belong toWR′n−1 set.
In this way we arrive at the equation (4).

Having divided equation (4) by kn, we get the recursive relation for a qn(D0) probability that not a single word D0 shall
ever occur in the Rn set:

qn =

{
1, 0 ≤ n ≤ m − 1,

qn−1 − k−mqn−m, n ≥ m. (5)

For the probability that word D0 would occur in the set Rn at least once we have:

pn = 1 − qn. (6)

The appropriate recurrence relation for the probability pn(D0) will be:

pn =

{
0, 0 ≤ n ≤ m − 1,

pn−1 + k−m(1 − pn−m), n ≥ m. (7)

2.4 Explicit Formula Fore the Probability pn(D0)

Based on the inclusion - exclusion principle one may derive an explicit formula for the probability pn(D0). At n ≥ m we
get:

pn(D0) =
h(n)∑
t=1

(−1)t−1
(
n − tm + t

t

)
k−tm, h(n) =

⌊ n
m

⌋
. (8)

Let us show, that result (8) satisfies the recurrence relation (7). Substituting the result (8) to the right side of the expression
(7), we obtain for n ≥ m:

pn = A + B, (9)

A =
h(n−1)∑

t=1

(−1)t−1
(
n − 1 − tm + t

t

)
k−tm ,

B = −
h(n−m)∑

t=0

(−1)t−1
(
n − (t + 1)m + t

t

)
k−(t+1)m.
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Performing the substitution t + 1 = t̃ in the sum B, and omitting the tilde sign over t, we get:

B =
h(n−m)+1∑

t=1

(−1)t−1
(
n − tm + t − 1

t − 1

)
k−tm. (10)

Let n ≥ m. Let us denote n = um + v, where u and v are natural numbers, and v satisfies an inequality 0 ≤ v < m.
Thereupon, we obtain as follows:

⌊ n
m

⌋
= u,

⌊
n − 1

m

⌋
=

{
u 1 ≤ v < m,

u − 1 v = 0, (11)

⌊n − m
m

⌋
+ 1 = u. (12)

From (11) and (12) it follows that, provided v , 0 , the upper limits in the sum A and sum B , written down in the form
of (10), equal u. Using well-known property of binomial coefficients, we transform sums of corresponding combination
terms in expressions A and B for the case v , 0 in the following way:

(
n − 1 − tm + t

t

)
+

(
n − tm + t − 1

t − 1

)
=

(
n − tm + t

t

)
. (13)

Then for the case v , 0 we get:

A + B =
h(n)∑
t=1

(−1)t−1
(
n − tm + t

t

)
k−tm = pn, h(n) =

⌊ n
m

⌋
. (14)

When v = 0 , the the sum A (9) has one summand less than the sums (10) and (8). In order to convert the first corresponding
u − 1 terms in the sums A and B (10) we have expression (13), and the last summand in the B (10) equals, as it is easily
seen, the last summand in the sum (8). In this way, we have proven formula (8) on the basis of the recursive relation (7).

2.5 Recurrence Formula for the D Overlaps Case

2.5.1 Recurrence Formula for Qn

Theorem 1. Let a word D have l ≥ 1 overlap positions. We shall denote these overlap positions’ coordinates as follows:

s1 + 1, s2 + 1, . . . , sl + 1,

where 1 ≤ sl ≤ m − 1. Then, the following recursive formula is valid:

Qn = kn, 0 ≤ n ≤ m − 1, (15)

Qn = kQn−1 +

l∑
i=1

(kQn−si−1 − Qn−si ) − Qn−m, n ≥ m. (16)

Proof. Expression (15) is obvious. Let us prove equation (16). Similar to equation (4) we shall write:

Qn = kQn−1 − Un−m, (17)

where Un−m is a number of D words crossed out during R′n−1 to R′n transition. For now, however, due to the presence of
overlaps, Un−m < Qn−m. Let us express Un−m through Qn−m and Qn−si . A word D will be presented as concatenation of
words u0, u1, . . . , ul: D = u0u1 . . . ul, where u0 is the beginning of the D, s1 characters long, u1 is the next word s2 − s1
characters long etc. The last word ul will be m − sl - long. The first character of every ui word for 1 ≤ i ≤ l matches the
i-numbered overlap position. Alternatively, due to overlaps, for every 1 ≤ i ≤ l a word D may be presented as follows:

D = uiui+1 . . . ul fi, (18)

where fi is the corresponding suffix. The R′n−m set does not have any D words, but its strings may incorporate fi prefixes.
Let us consider a Fi subset of the set R′n−m, strings of which have prefix fi, but lack prefixes fi+1, . . . , fl. Having extended
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the R′n−m set strings to the left, step by step according to the procedure described earlier and as far as the n position, we
shall getWR′n−1 set. Let us single out subsets of the strings, that have prefix D: DR′n−m and DFi. During transition from
R′n−m to R′n−1 all strings, that have prefix D (18), are being crossed out consequentially, starting with i = l and ending
with i = 1. Therefore, the setWR′n−1 has no strings containing D words (18), that begin at n− si position for all 1 ≤ i ≤ l
(D fi <WR′n−1). All such strings, however, are present in the DR′n−m set, because DFi ⊆ DR′n−m. Subsets DFi do not
intersect for different i. Therefore, the number of D - prefixed strings, that should be crossed out from theWR′n−1 set,
shall be as follows:

Un−m = |DR′n−m| −
l∑

i=1

|DFi|. (19)

The number of strings, crossed out from each of the n − si overlap positions, may be written down in the following way:

|DFi| = |Fi| = Jn−si , (20)

J j = −Q j + kQ j−1, j ≥ 1. (21)

From (19) and (20) we get:

Un−m = Qn−m −
l∑

i=1

Jn−si . (22)

Substituting expression (22) into equation (17) we get the recurrence formula (16). In this way the Theorem 1 is proven.

2.5.2 Recurrence Formula for the pn Probability

Recurrence formula for the probability pn is the Theorem 1 corollary. Having divided equation (16) by kn, we get the
recurrence formula for the probability qn that not a single word D shell never occur in the set Rn:

qn = 1, 0 ≤ n ≤ m − 1, (23)

qn =

l∑
i=0

(qn−si−1

ksi
− qn−si+1

ksi+1

)
, n ≥ m. (24)

In equation (24) and in the following text, we denote s0 = 0, sl+1 = m. From equation (24) we get a recursive formula for
pn = 1 − qn:

pn = 0, 0 ≤ n ≤ m − 1, (25)

pn =

l∑
i=0

( pn−si−1

ksi
− pn−si+1

ksi+1

)
+

1
km , n ≥ m. (26)

3. Comparison of the Given Word Occurrence Probability in a Random String for Two Words With Different
Periods

3.1 Lemma on the Number of Crossings out

Lemma 1. The number of crossings out J j, performed during transition from the set R′ j−1 to the set R′ j, is a nondecreas-
ing function of j, that is for any j ≥ m:

J j ≥ J j−1. (27)

Proof by induction. By virtue of the fact that we are only interested in cases of nontrivial overlaps in D, let m ≥ 2. For
j = m conclusion (27) holds, because Jm−1 = 0, Jm = 1. Let us assume, that (27) holds for m + 1 ≤ j ≤ n and show, that
it also holds for j = n + 1. Using the formula of Jn (21) and recurrence relation (16), we get:

Jn+1 = (k − 1)Jn +

l∑
i=1

(k − 1)Jn−si +

l+1∑
i=1

(Jn−si−1 − Jn+1−si ). (28)
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In equation (28) we have: Jn−si ≥ 0, k ≥ 2. Further at si−1 = si − 1 we have Jn−si−1 − Jn+1−si = 0, and if si−1 < si − 1, then
by inductive hypothesis we have: Jn−si−1 − Jn+1−si ≥ 0. Consequently, from (28) it follows that:

Jn+1 ≥ Jn. (29)

In this way the Lemma 1 has been proven.

3.2 Theorem on Comparison of Probabilities

Theorem 2. Let there be given two words of equal length m ≥ 2 , hereinafter referred to as D and E . Let a word D have
l overlaps (l ≥ 0), described dy periods ti, whereas E has l + r overlaps , described dy periods si. Let l first periods of E
be smaller then l corresponding periods of D, i.e. for all 1 ≤ i ≤ l we have si < ti. Then at n > m + s1, probability pn to
detect word E at least once in a random string Rn shall be smaller, than the corresponding probability gn for the word D :

pn < gn. (30)

Let us give an example of two words D and E that satisfy conditions of the theorem:

E : 1121̃121̃121̃121̃1̃

D : 1111211̃11121̃1̃1̃

The highlighted characters mark the overlap positions. Calculations for
k = 2, n = 5000, m = 14 give us pn(E) = 0.2340, gn(D) = 0.2590.

3.3 Proof of the Theorem 2

Let us denote the number of words E and D in the sets R′n(E), R′n(D) by Qn and Gn correspondingly. We shell also
denote δn = Qn −Gn. In this notation inequality (30) is equivalent to inequality δn > 0.

To begin with, let us consider a particular case of the theorem, when number of overlaps in both E and D is the same and
equals l. Primarily, we shall make sure that:

δn = 0, m ≤ n < m + s1. (31)

Then, by induction, we shall prove correctness of the following inequality:

δn > δn−1 ≥ 0, n ≥ m + s1. (32)

(In the (32) the δn−1 = 0 case holds only at n = m + s1). According to the recurrence formula for Qn (15) and (16) we
have:

Qn = Gn = kn, 0 ≤ n ≤ m − 1, (33)

Qm = Gm = km − 1, (34)

Context of the formula (34) is evident - in transition from Rm to R′m exactly one string D and one string E are being
crossed out from Rm . Further, for Qn we have an equation (16) and for Gn - a similar equation as follows:

Gn = kGn−1 +

l∑
i=1

(kGn−ti−1 −Gn−ti ) −Gn−m, n ≥ m. (35)

Let n < m + s1. Then, from (33-35), taking into account that ti > si ≥ 1, m ≥ 2, we get:

kQn−si−1 − Qn−si = 0, 1 ≤ i ≤ l, (36)

kGn−ti−1 −Gn−ti = 0, 1 ≤ i ≤ l, (37)

δn = kδn−1. (38)
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Since at n = m, based upon (34), we have δn = 0, then from (38) there follows conclusion (31). Let us calculate δm+s1 .
From (16) and (35)-(37) we get:

Qm+s1 = kQm+s1−1 − Qm + kQm−1 − Qs1 . (39)

Gm+s1 = kGm+s1−1 −Gs1 . (40)

If s1 = 1 we have:

Qm+1 = km+1 − 2k + 1. (41)

Gm+1 = km+1 − 2k. (42)

At s1 > 1 we get:

Qm+s1 = kQm+s1−1 − ks1 + 1. (43)

Gm+s1 = kQm+s1−1 − ks1 . (44)

From equations (41-44), taking into account (31), we get:

δm+s1 = 1. (45)

Thus, we obtain:

δm+s1 > δm+s1−1. (46)

In order to prove inequality (32), let us make use of the result (46) as the induction beginning on the variable n . Let us
suppose, that for all j values in the interval of m + s1 ≤ j ≤ n − 1 the following inequality has been fulfilled:

δ j > δ j−1 ≥ 0 (47)

Let us prove that for j = n inequality (47) has also been fulfilled. From (16) and (35) we have:

δn = kδn−1 −
l∑

i=1

[(Qn−si −Gn−ti ) − k(Qn−si−1 −Gn−ti−1)] − (Qn−m −Gn−m). (48)

Let us represent equation (48) in the next form:

δn =

l∑
i=0

[(k − 1)δn−si−1 + (δn−si−1 − δn−si+1 )] +
l∑

i=1

(JD
n−si
− JD

n−ti ). (49)

In the formula (49) JD
j is a number of crossings out of the strings, that have D while in transition from R′ j−1 to R′ j:

JD
j = −G j + kG j−1. (50)

According to the inductive hypothesis (47), and taking into account that si+1 ≥ si + 1, in equation (49) we have:

δn−si−1 ≥ 0. (51)

δn−si−1 − δn−si+1 ≥ 0. (52)
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In accordance with Lemma 1 we get:
JD

n−si
− JD

n−ti ≥ 0. (53)

In addition to inequalities (51-53), we have k ≥ 2. Also, for n ≥ m + s1 + 1 we have a strict inequality δn−1 > 0. By virtue
of the above mentioned, from (49) we obtain, that for all n ≥ m + s1 + 1:

δn > δn−1. (54)

In this way, Theorem 2 for the equal number of overlaps positions has been proven. If r > 0, then next additional sum
appears in the equation (49):

JE
n−sl+1

+ JE
n−sl+2

+ · · · + JE
n−sl+r
, (55)

where JE
j is the number of crossing out of strings that contain E during transitions from R′ j−1 to R′ j. All terms in the sum

(55) are not negative, therefore conclusions (32) and (30) remain valid.

3.4 Corollary of the Theorem 2

The word D at least once occurrence probability in a random string is maximal if the word has no overlaps and is minimal
if all m characters of the word are identical.

4. Theorem on Extreme Probabilities for the Words With Equal Number of All Alphabetic Characters

4.1 Statement of the Theorem

Theorem 3. We shall consider the set D that consists of m = kd - long D words, in which every alphabetic character
occurs exactly d times, where d ≥ 2. As above, let us denote probability, that a word DϵD would be detected in a random
string Rn at least once, as pn = pn(D). In particular, let us single out an ideally symmetrical word EϵD, in which a single
set of all alphabetic characters circulates exactly d times. (For example, for d = 3, k = 3:
E = abcabcabc.) In this case, two conclusions hold true:

1. Probability pn is maximal in the case of overlaps absence, i.e. when word D lacks the shift symmetry.

2. Probability pn is minimal in case of the D word’s ideal symmetry, that is:

pn(E) ≤ pn(D). (56)

4.2 Proof of the Theorem 3

Proposition 1 follows directly from the Theorem 2. In order to prove Proposition 2, let us consider an ideally symmetrical
word E and word D̃ϵD with a minimal period T > k. Let us show, that pair of words E and D̃ satisfy Theorem 2
conditions. Let us denote number of overlaps in E and D̃ as l0 and l correspondingly. To begin with, let us establish
relation between l0 and l, required for the proof. Let us write words E and D̃ down in the following way:

E = v0v1 . . . vl0 , (57)

D̃ = w0w1 . . .wl. (58)

In (57) all vi words are identical and include one of each of the alphabetic elements. The number of nontrivial overlaps
in the ideally symmetric word E is, apparently, l0 = d − 1. In (58) we have |w0| = T > k ; all overlap positions in D̃
correspond to the first character of the word wi (1 ≤ i ≤ l). For D̃ words with equal number of all alphabetic elements and
the minimal period T > k the number of overlaps l shall not exceed l0. It can be argued that:

{
l ≤ l0, d = 2,
l < l0, d > 2. (59)

Indeed, if there is one full minimum period in D̃, that is in the case ⌊m/T ⌋ = 1 we have l ≤ ⌊0.5d⌋, at that, if d = 2 we
have l ≤ 1 = l0. Let the word D̃ have more than one complete minimal period. Subsequently, we need to consider two
cases. The first one is when all wi words in D̃ are identical. Then m/T = u, where u is a natural number and u ≥ 2. In
this case, l = kd/T − 1 < l0. The second one is when m/T is not a natural number and ⌊m/T ⌋ ≥ 2. In this case the word
D̃ has two or more complete periods T , i.e. w0 = w1 at least. Then, because of T > k, one of the alphabetic elements, for
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example, character α, occurs in the period w0 at least twice. Consequently, in the word w1 . . .wl character α occurs d − 2
times at most. With the provision as above, number of overlaps in the word D̃ cannot exceed d − 2 < l0.

Statement of the Theorem 3 for d = 2 is being verified directly, so we shall concentrate on the case d > 2. As above, we
shall denote coordinates of overlaps in E by means si+1, whereas coordinates of overlaps in D̃ - by means ti+1. It would
be sufficient for the proof to show, that for both E and D̃ Theorem 2 statement had been fulfilled, i.e. for all 1 ≤ i ≤ l:

si < ti. (60)

We shall write down the periods of words E and D̃ correspondingly for 1 ≤ i ≤ l in the following way:

si = ik = m − (l0 + 1 − i)k, 1 ≤ i ≤ l, (61)

ti =
i−1∑
j=0

|w j| = m −
l∑

j=i

|w j|, 1 ≤ i ≤ l. (62)

From the results, presented in (Guibus & Odlyzko 1981), (Lotharie, 2001), it follows, that sequence of the wi words’
lengths does not increase:

|wi+1| ≤ |wi|. (63)

If for all i we have |wi| > k, then from (61), (62) it follows, that inequality (60) is satisfied. Let us assume now, that for
1 ≤ i ≤ i1 we have |wi| > k, whereas for i1 < i ≤ l we have |wi| ≤ k. Then, due to the fact, that l < l0 holds at d > 2, for
i1 < i ≤ l we get:

ti = m −
l∑

j=i

|w j| ≥ m − k(l + 1 − i) > m − k(l0 + 1 − i) = si. (64)

In this way for all i condition (60) is satisfied and, consequently, Theorem 2 conditions had been fulfilled for words E and
D̃. Hence it follows, that for words E and D̃ we have: pn(E) < pn(D̃) or pn(E) ≤ pn(D).

As an example, let us present three following words that illustrate conclusion of the Theorem 3.

E : 123123123123

D̃1 : 112233112233

D̃2 : 123123123132

In the above example, the word D̃1 has one overlap, whereas D̃2 has none. Calculations for n = 40000 give us: pn(E) =
0.0699, pn(D̃1) = 0.0724, pn(D̃2) = 0.0725. Let us emphasize a certain point of interest. The ideally symmetrical word
E and the word D̃2 differs only in rearrangement of the two last characters. Nevertheless, such rearrangement deprives
the word D̃2 of the shift symmetry and, therefore, probability of its occurrence in a random string is the same as for any
other word devoid of overlaps.

5. Conclusion

The main result of this work is establishment of the extremal properties of the word’s at least once occurrence probability
in a random string. The method used to derive the necessary formula for the probability under study can be generalized in
the event of calculating a given word’s occurrence frequency distribution in a random string. The corresponding recursion
relations and further study of the discussed probabilities’ properties have been obtained by the author and will be offered
for publication in the nearest future.

In conclusion, let us cite a number of open questions stemming from the research undertaken above.

• It seems very likely that Theorem 2 conditions may be substantially weaken by replacing condition si < ti for all
1 ≤ i ≤ l by single requirement s1 < t1.

• Obviously, along with increase of the alphabet’s size k , difference between Pn(E) and Pn(D̃) shrinks. It would be
interesting to establish the relevant asymptotic dependence.

• It would be interesting to locate words that possess extreme detection probabilities in a random string, generated by
the Markov process.
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