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Abstract
This paper mainly studies oscillatory of all solutions for a class higher order linear functional equations of the form

x(9(1) = P(O)x(t) + iQi Ox(g"'®)

Where P,Q, g:t,,c0] = R* =[0,0]are given real valued functions and 9(t) #t,limg(t) =oo

Some sufficient conditions are obtained. Our results generalize or improve some results in some literature given. An
example is also given to illustrate the results.
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1. Introduction

Consider the high order functional equation :

x(g(V) = P(t)X(t)+iQi (Hx(g"" (1) (1.1)
P,Q :1 > (0,0)(i=1,2,3,....,m), g: 1 — | which is a given function and X(t) is an unknown function. | isan

unbounded subset in (0.0). g(t) #t, limg(t)=co(tel) g™ that M times iteration of function 9 means:

o’ =t,g" (M) =g(g'®).teli=12...m.
As a solution of equation (1.1) if x:1 — R, such that:
sup{| x(s)[:s eI, =[t;, ) 1}>0 for Vi, e(0, )
is setting up, satisfied (1.1) fort e | ., we call this solution is oscillatory.
When i=1k=1:
x(9(1) = PO)X(t) + Q()x(g*(1)). 12)

Where Q: 1 — (0,20) s a functional equation of a given.

In 1994, Golda and Werbowski firstly did the research of the oscillation of the solutions of equation (1.2), and we could
know it from their research. If

limsupQ(OP(g 1) >1 13)

or
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liminf QUP(3(0) > 7 19

every solution of function (1.2) will oscillate.
At the same time they also will be extended (1.3) to:
limsup{Q(t)P(9(1)) + ZHQ(gj“(t))P(g "2 E)}>1 (1.5)
i=0 j=0
There k>0 isan integer.
In 1995, Nowakowska and Werbowsk [2] extended the condition (1.4) to

x(9(t)) = P(Ox() + ZQi Ox(g" ()

!Lfginfiz:Qi(t)le(gl(t)P% (1.6)
or
imint 3660 [P(6"/0)> () @)
where
G- 30,00, ,("M) +Q,0 (19

In 1999, Zhou Yong and Yu Yuanhong [3] research the oscillation of solution of equation (1.1). They proved the
oscillation equation (1.1). If

lumunsz(t)ﬁP(g O)=A> k;)m (1.9)
or
k k+i-1
(k l)M,IlmsupZQ (t)H P(g’(t)) > [ﬂ(A)] (1.10)

Ais the only real root of AA*' — 2 +1=0 in 1 ((k +1)A)7

In recent years, the oscillation of the function equation has become a hot topic for mathematicians (see literature s[4-12]),
theyobtain some oscillate criterion of the solutions of various linear advanced functional equations. Inspired by them, we
obtaint some new results.

2. Results and Ploofs
Consider the high order functional equation (1.1)

x(9(t) = p(O)x(t) + iQi ®x(@""' (1)

let
k+i-1
_I|m|anQ (t)H P(g’ (1) (2.1)
and
_ P(®)x(t) _X@*M) < I
oy (t) = QD) ’ w,(t) = X(a(D) 2 ZQ()H P(g’(t) (2.2)

k

ﬁ , X(t) is the final positive solutions of equation (1.1),then

Lemma 1.1 AssumeO < u <

!imsupa),(t) <d,i=12 (2.3)
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PROOF: By equation (1.1), we know:
x(g(1) = p(t)x(t) (2.4)

d,=1> POXO - XOW) by g (1.1) s established when =05 i =1

x(g) XM

then:

In addition, we proveO < < (ki)kﬂfor any ¢ < (0, 1) whent — o0 Thus
3 (t)kﬁl P(g' (1) s 25)
Iterate (2.4) return:
X(gk+i (t)) d 7(k+ifl)k+HP i
oo H (g’ (2.6)
substitute into (1.1), we have:
oo.m k+i-1 .
X(g(t) > P)x(t)+x(g®)d, Y QO [P’ ®) 2.7
i=1 j=k+l
By (2.7), we have:
X(g(0) > POx(1) + x(g(©)(u- £)d, (28)

and

P(t)X(t)<1_y £

Xo®) G
Substitute d,,---,d, into (2.4) and iterate in turn, we have:

POX®) _, s _

Ko@) T d

(2.9)

By this we can know that it always has:

POX(®) _d, "™ —(u-¢)
X(g@®) ~  d,

We can see that is a decreasing function of the item by item by above, so it’s !1'_[[‘0 d,=d,

oy (t) =

By IImd =d andl- =d, we have: Whend,,d, _, —d multiply d**Lon both sides of the equation such

k+i-1
dn—l

thatd, g satisfiedd*"' —d*"'* + (u — &) = 0.Then we have:

u—e=d""(1-d) (2.10)

Substitute (2.10) into (2.9), the proof of (2.3) is completed.
Next, proof i=2 by (1.1). We have:

H9(0)2 2 Q0" ()

X(@*O) & o
(a0) - ZQ()H P(g’®) <1-d,

X(gk+| (t)) —(k+i—2)k+| -1 i
>d P
X(@2(0) = ]J_! (9'®)

@,(t) =
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Substituting (1.1), we obtain:

k+i-1

X(9* (1) = P(g(0)x(9 (1) +x(g (t))ZQ (g(t))H P(g’®)

_ PEOX(W) |, X@°0) mp
200 X 2 OO TTPE)

and
420 (t)ﬁ o)< 2 )
by
X(9°(1) < b
X((1) 2 ZQ (t)H P(g’(t)) <1.
Hence
WRTSECROS PU S
T e ) 2 (g(»H (9'®).
By
wz(t)<% d,, calculating in turn we obtain: wz(t)<w.

Equations above show that: d, is a decreasing function of the item by item. Thus limd,=d By limd, =dgng

1—%=dnwe obtain: Whend,,d, ; —d, we multiply d*“on both sides of the equation, such that d, zsatisfied

" —d" 4 (14— £)=0.Substituting (2.10) into wz(t)<%,

We obtain limsupe,(t)<d

k

Wand & — 0, equation (1.1) with X(t) is the final positive solutions of equations. Have

Thus, when0< <
!imsupa),(t)sd,i:l,z_

The proof of lemma (1.1) is completed.

k

k
O<puy<—
Theorem 1.1. WhenO< u < kD"

7, Satisfy

limsup3-Q O] [ Ple'®)>d,

then all solutions of equation (1.1) are oscillatory.
PROOF By (2.9), we obtain:

fimsup PEOXEO)
e x(g°(1)
and
m k+i-1
tA) Py -
Multiply PEO)X(9() by G (t))ZQ(t)kﬁlP(g () will certainly exist

x(@®) Y X)) £

138


http://dict.youdao.com/w/oscillatory/

http://jmr.ccsenet.org Journal of Mathematics Research

\ol. 11, No. 2; 2019

k+i-1

>QOITPE)<d”.

By Lemma (1.1)we know that X(t) is the eventually positive solution of equation (1.1) when itisin 0< u<

m k+i-1
and > QM[[Pa*®)<d?,

i=1 j=1
By this we have:

k
When k=>1m>1 | 0<u< W , every solution of equation (1.1) is
A m k+i-1 .
limsup > Q) [ ] P(9’ (1) >d*.The proof of Theorem (1.1) is completed.
) i=1 j=1
k

Theorem 1.2 In equation(1.1), when 0< u<————, theintegerk >0, it satisfied:

(k +1)
k+i-1 k4 K+i

imsup” > QOTPE' @)+ "> QO [P’ O)>1

i=1
Then, when ; =d ~Lall of the solutions of equation (1.1) are oscillatory.

PROOF: Assume that (1.1) has a solution. In lemma 1.1, thereisan &>0, and t
Is as large as possible, such that:

X(9(t) > 2, PO)X(t)
By (2.11) iteration, we get:

g2 (" TT P O)xo0)
X(9(0) > 4, 2. QOX(g"" (1)
i=1
Have: X(@(1)=P(@O)X((0) + 3-Q9(0)x(a" (1)

Obtain: x(g*(t)) 2 P(g(t))uiiQi (®x(g"*" (t))+i Q(g®)x(g“" (1))

—k+i-1

x(9* (1) 2 x(g* ®) 4,

—k+i-1

>QOITPE' O +X@OR"Y QO [PE’®)

Finally obtain:

k+i-1 : k+i

122 YOI [PE' O+ Y QEOT[PE'®).

When t =, we can obtain that equation (1.1) have finally positive solution when
k+i-1 k+i

limsupga, "> QO P(@'®)+ Y. QO] [P(@ O <1

The proof is completed.
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3. Examples

X(t+7) = %x(t) +tl%x(t +27) +t2(%+§cos )x(t+37),g=t+7x (3.1)
PROOF: By the question, we know

P(t)— QM= Q0= t(1+§cos 1),

- 2 - t+rx 1.1 t+xz 1
inf NOIBLECHG 4t = +
;Q'()H (g'@) = (100 8)tz 100t T8

Then
1 1
lim inf ZQ (t)H P(g’ (1) = 37
t+r7 2} § l:t+7z @
SUPIZ:,Q (t)H P(g'(t)) = [100 (8 + 5)]t2 100t2 + 40
Then
2 2 29
!msupZQi O P’ ®)="><1
i1 j=1
Let

k+i-1

_I|m|anQ(t)H P(g’ (1)),
As well as because whend** —d*"™* + =0, k=1i=2, d3_d2+%=0,wecouldobtaind=%.

By |ImSUpZQ(t)HP g’ () >d’ obtain that

j=1

29 1
40 4
It can prove that the solution of equation (3.1) is osmllatory for a large t.
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