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Abstract 

This paper mainly studies oscillatory of all solutions for a class higher order linear functional equations of the form 
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Where 0[ , ] [0,, ]   , ：P g t RQ are given real valued functions and ( ) ,lim ( )


 
t

g t t g t . 

Some sufficient conditions are obtained. Our results generalize or improve some results in some literature given. An 

example is also given to illustrate the results. 
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1. Introduction 

Consider the high order functional equation : 
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, : (0, )( 1,2,3,...., ),  :   iP Q I i m g I I , which is a given function and ( )x t is an unknown function. I  is an 

unbounded subset in  (0, ) . ( ) g t t , lim ( ) ( )


 
t

g t t I , 
mg that m times iteration of function g means: 

 0 1( ) ( ) (, , , 1,2..... .)   i ig t g g g t I it t mt  

As a solution of equation (1.1) if : x I R , such that: 

0 0 0: [ ,{| ) 0  (| 0( ) } )      ，tsup s I t I for tx s  

is setting up, satisfied (1.1) for t I ., we call this solution is oscillatory. 

When 1, 1 i k : 

2( ( )) ( ) ( ) ( ) ( ( )) x g t P t x t Q t x g t ,                             (1.2) 

Where : (0, ) Q I is a functional equation of a given. 

In 1994, Golda and Werbowski firstly did the research of the oscillation of the solutions of equation (1.2), and we could 

know it from their research. If 

limsup ( ) ( ( )) 1



t

Q t P g t                                      (1.3) 

or 

http://dict.youdao.com/w/oscillatory/


 

 

http://jmr.ccsenet.org                        Journal of Mathematics Research                       Vol. 11, No. 2; 2019 

136 

1
liminf ( ) ( ( ))
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t
Q t P g t                                     (1.4) 

every solution of function (1.2) will oscillate. 

At the same time they also will be extended (1.3) to： 
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There 0k  is an integer. 

In 1995, Nowakowska and Werbowsk [2] extended the condition (1.4) to       
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In 1999, Zhou Yong and Yu Yuanhong [3] research the oscillation of solution of equation (1.1). They proved the 

oscillation equation (1.1). If 
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 is the only real root of 1 1 0   kA   in 
1

[1,(( 1) )


 kk A . 

In recent years, the oscillation of the function equation has become a hot topic for mathematicians (see literature s[4-12])，
theyobtain some oscillate criterion of the solutions of various linear advanced functional equations. Inspired by them, we 

obtaint some new results. 

2. Results and Ploofs 

Consider the high order functional equation (1.1) 
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Lemma 1.1 Assume
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 ， ( )x t  is the final positive solutions of equation (1.1),then 
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PROOF：By equation (1.1), we know: 
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Iterate (2.4) return: 
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substitute into (1.1), we have: 
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By (2.7), we have: 
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Substitute 2 , , nd d into (2.4) and iterate in turn, we have： 
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By this we can know that it always has: 
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We can see that is a decreasing function of the item by item by above, so it’s lim
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d d . 

By lim
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we have：When 1,  n nd d d  multiply 1 k id on both sides of the equation such 

that ,d   satisfied
1 ( ) 0     k i k id d   .Then we have: 

1(1 )   k id d                                    (2.10) 

Substitute (2.10) into (2.9), the proof of (2.3) is completed. 

Next, proof 2i  by (1.1). We have: 
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Substituting (1.1), we obtain: 
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we obtain：When 1,  n nd d d , we multiply 1 k id on both sides of the equation, such that ,d  satisfied 
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The proof of lemma (1.1) is completed. 
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then all solutions of equation (1.1) are oscillatory. 
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By Lemma (1.1）we know that ( )x t is the eventually positive solution of equation (1.1) when it is in 
1

0
( 1) 

 


k

k

k

k
  

and 
1

2 2

1 1

( ) ( ( ))
 

 

 
k im

i

i j

Q t P g t d . 

By this we have： 

When 1, 1 k m , 
1

0
( 1) 

 


k

k

k

k
 , every solution of equation (1.1) is oscillatory in 

1
2

1 1

limsup ( ) ( ( ))
 


 

 
k im

j

i
t

i j

Q t P g t d .The proof of Theorem (1.1）is completed. 

Theorem 1.2 In equation(1.1), when 
1

0
( 1) 

 


k

k

k

k
 ，the integer 0k ，it satisfied: 

1
1 1

1 11 2

limsup{ ( ) ( ( )) ( ( )) ( ( ))} 1
  

   


  

   
k i k im m

k i k ij j

i i
t

i ij j

Q t P g t Q g t P g t    

Then, when 1 d all of the solutions of equation (1.1）are oscillatory. 
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The proof is completed. 
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3. Examples 
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It can prove that the solution of equation (3.1) is oscillatory for a large  .t  
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