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Abstract

Overlap coefficient (OVL) represents the proportion of overlap between two probability distributions, as a measure of
the similarity between them. In this paper, we define a new overlap coefficient Λ based on Kullback-Leibler divergence
and compare its performance to three known overlap coefficients, namely Matusia’s Measure ρ, Morisita’s Measure λ,
Weitzman’s Measure δ. We study their properties, relations between them, and give approximate expressions for the
biases and the variances.
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1. Introduction

Overlap measure are commonly used in reliability analysis to estimate the proportion of machines or electronic devices
that have similar range of failure time. The machines may come from two different sources or may be under different
stress, which implies different probability densities of failure time. This proportion can be measured by the overlap
coefficients (OVL) of the two densities. For applications of OVLs in ecology refer to Pianka (Pianka, 1973), Hurlbert
(Hurlbert, 1978), Horn (Horn, 1966), and in geology refer to Sneath (Sneath, 1977). However, due to the unknown nature
of sampling distributions of these measures, decisions are often made using only point estimates.

In the literature, overlap coefficients are mostly used in ecology. Other applications include the lowest bound for the
probability of failure in the stress-strength models of reliability analysis (Ichikawa 1993), an estimate of the proportion of
genetic deviates in segregating populations (Federer et al. 1963), and a measure of disjunction (Sneath 1977). For more
details and applications of OVL coefficients including application on income differentials, please see Mulekar and Mishra
(Mulekar and Mishra, 1994, 2000) , Inmanand Bradley (Inmanand Bradley, 1989) and Gastwirth (Gastwirth, 1975).

The overlap coefficient have been used for two exponential populations with different means (Al-Saleh and Samawi 2007
and Dhaker et al. 2017), and Mulekar and Andrade (Mulekar and Andrade, 2017) established a necessary condition to
obtain valid values of Weitzman’s Measure for normal densities and extend the result to lognormal, exponential, Weibull,
and Pareto densities. Sibil and Seemon (Sibil and Seemon, 2019) constructed of the confidence interval of the overlap
coefficient under one way random models.

Let X be a random variable defined on the real line for two different populations and f1(x) and f2(x) their respective
probability density functions. The overlapping coefficients are the common areas under the two functions, defined as
follows:

• Matusia’s Measure (Matusia, 1955)

ρ =

∫ √
f1(x) f2(x)dx

• Morisita’s Measure (Morisita, 1959)

λ =
2 f1(x) f2(x)∫

[ f1(x)]2dx +
∫

[ f2(x)]2dx
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Figure 1. The overlap of two normal densities

• Weitzman’s Measure (Weitzman, 1970)

∆ =

∫
min{ f1(x), f2(x)}dx

• OVL based Kullback-Leibler (Kullback and Leibler, 1951)

Λ =
1

1 + KL( f1∥ f2)
(1)

with KL( f1∥ f2) =
∫

( f1 − f2) log
(

f1
f2

)
dx

Our goal in this paper is to compare the Kullback-Leibler Measure Λ’s performance to Matusia’s Measure ρ, Morisita’s
Measure λ, and Weitzman’s Measure δ. We study their properties, their relations, in addition to approximating expressions
for their biases and variances. The organisation of this paper is as follows. In Section 2, we derive the expressions of
the measures described above and study their properties along the lines of Mulekar and Mishra (Mulekar and Mishra,
1994). In Section 3, we provide their maximum likelihood estimators along with approximate bias and variances of ÔVL.
In Section 4, a simulation study is perform to evaluate and compare biases and mean square errors of OVL measures
estimates. In Section 5 we give an example using a real dataset. Finally, the conclusion is presented in Section 6.

2. Properties of Different Overlap Measures

Let f1(x) and f2(x) represent the two populations normal densities with common expectation parameter µ and variances
σ2

i (i = 1, 2) respectively. We define C = σ1/σ2 (C ≥ 0) as the ratio of standard deviations. Under the equal means
condition, the four similarity measures of interest are given by:

ρ =

√
2C

1 +C2 (2)

λ =
2
√

2
√

1 +C2

( C
1 +C

)
(3)

∆ =


1 − 2Φ(b) + 2Φ(Cb) i f 0 < C < 1

1 + 2Φ(b) − 2Φ(Cb) i f C ≥ 1
(4)
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Figure 2. Measures of similarity as functions of C

Λ =
2C2

C4 + 1
(5)

where b =
√
− ln C2/(1 −C2) and Φ(.), the cumulative distribution function of a standard normal deviate. Figure 1 shows

overlap of N(0, 0.1) and N(0, 0.2).

Figure 2 shows curves of the three overlap measures according to C All three measures are monotone for all C > 0.
Similar to Mulekar and Mishra (Mulekar and Mishra, 2000), ρ, λ, ∆ and Λ have nice properties, such as, symmetry in C,
i.e. OVL(C) = OVL(1/C) and invariance under linear transformation, Y = aX + b, a , 0. They all attain the maximum
value of 1 at R = 1.

Lemma 1. For ρ, λ, ∆ and Λ defined in equations 2-5, we have

(i) λ ≤ ρ and ∆ ≤ ρ.

(ii) ρ ≤ Λ

For all C > 0, equality holding if C = 1.

Proof. (i) Lemma 2 of Mulekar and Mishra (Mulekar and Mishra, 1994).
(ii) we define h(C) by

h(C) = Λ/ρ =

√
2
√

C3 +C5

1 +C4

and the derivative with respect to C

h
′
(C) =

3C(1 −C)(1 +C)(C2 + 4−
√

7
3 )(C2 + 4+

√
7

3 )
√

2
√

C +C3(1 +C4)2

for C > 0 h
′
(C) = 0 =⇒ C = 1. Then h(C) is an increasing function of C for 0 < C < 1 and a decreasing function of C

for C > 1 (See Figure 3). Also the sup h(C) = 1 is attained at C = 1. Thus, 0 < h(C) < 1 for all (0 < C < 1), which gives
the desired result.

3. Estimation of OVL Measures

As in Folks and Chhikara (Folks and Chhikara, 1978), parallel results to those of the two inverse Gaussian populations can
be established for the normal populations with common mean. This is based on the following results (Lemma 2 below)
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Figure 3. h(C) = Λ/ρ as functions of C

from Mulekar and Mishra (Mulekar and Mishra, 1994).
Suppose (Xi j; j = 1, · · · , ni; i = 1, 2) denote independent observations from two independent ormal random samples draw
from f1(x) and f2(x) respectively, where:

f1(x) =
1

σ1
√

2π
e−

1
2 ( x−µ
σ1

)2

f2(x) =
1

σ2
√

2π
e−

1
2 ( x−µ
σ2

)2

Let C = σ1/σ2 be the ratio of standard deviations as above. An unbiased estimate of σ2
i is given by

σ2
i = S 2

i =
1

n − 1

ni∑
i

(Xi − X)

Lemma 2.
E(Ĉ2) = γ1C2 Var(Ĉ2) = γ2C4

where γ1 and γ2 are constants in R+, then γ1 and γ2 can be determined as functions of n1 and n2 only as,

γ1 =
n2 − 1
n2 − 3

, γ2 =
(n2 − 1)2(n1 + 1)

(n1 − 1)(n2 − 3)(n2 − 5)
− γ2

1

provided n1 > 1, and n2 > 5.

Proof. For the Proof, please see Mulekar and Mishra (Mulekar and Mishra, 1994)

Theorem 1. Let ρ̂, λ̂, ∆̂ and Λ̂ be the estimates of ρ, λ, ∆ and Λ respectively, by substituting Ĉ2 for C2, then for n1 > 1
and n2 > 5 we have the approximate expressions for bias and variance of ρ̂, λ̂, ∆̂ and Λ̂ given above.

where HÔVL = γ2(γ1 − 1)Bias2(ÔVL), ϕ(.) is the density function of standard normal variate and

IC =


1 i f 0 < C < 1

−1 i f C ≥ 1

Proof. Let g(θ) a one parameter function of θ and let θ̂ be an almost sure consistent estimate of θ. Then the mean and
variance of g(̂θ) may be obtained from the linear Taylor approximation around θ.
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OVL Bias(ÔVL) Var(ÔVL)

ρ (γ1−1)ρ
4

(1−C2)
1+C2 Hρ̂

λ λ(γ1−1)
2

[
(1−C)(1+C+C2)

(1+C)(1+C2)

]
Hλ̂

∆ (γ1 − 1)
{
(Cϕ(Cb) − ϕ(b))

(
C2b2−1
b(1−C2)

)
+Cbϕ(Cb)

}
IC H

∆̂

Λ (γ1 − 1)Λ 1−C4

1+C4 H
Λ̂

g1 (̂θ) = g1(θ) + (̂θ − θ)g′1(θ) (6)

For example, letting θ = C2, the estimator of Λ̂:

Λ̂ = g1 (̂θ), g1(θ) =
2θ

1 + θ2
.

Since, in this case,

g
′

1(θ) =
2(1 − θ2)
(1 + θ2)2

from (6)

Bias(Λ̂) = E(Λ̂) − Λ = E(̂θ − θ)g′1(θ) = (γ1 − 1)
2θ

1 + θ2
1 − θ2
1 + θ2

= (γ1 − 1)Λ
1 − θ2
1 + θ2

(7)

= (γ1 − 1)Λ
1 −C4

1 +C4 (8)

for the estimator λ̂:

λ̂ = g2 (̂θ) =

√
2
√
θ

1 + θ

Since, in this case,

g
′

2(θ) =
√

2
1
4θ
−3/4 − (1 + θ)−1/2θ1/4

1 + θ

Bias(̂ρ) = E(̂ρ) − ρ = E(̂θ − θ)g′2(θ) = (γ1 − 1)θ
√

2
1
4θ
−3/4 − (1 + θ)−1/2θ1/4

1 + θ

= (γ1 − 1)ρ
1
4

√
1 + θ − 1

2
θ√
1+θ√

1 + θ
(9)

=
(γ1 − 1)

4
ρ

1 − θ
1 + θ

(10)

=
(γ1 − 1)

4
ρ

1 −C2

1 +C2 (11)

Similar arguments can be used for the other overlap coefficients.
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The MLEs for the two-parameter Normal distribution are asymptotically efficient and they are asymptotically normally
distributed (see, Mulekar and Mishra 1994). However, the OVL measures are functions of the Normal distribution param-
eters. Therefore, by using the Delta-method, the OVL measures estimators are asymptotically normally distributed. Thus,
the 100(1 − α)% approximate confidence intervals are given by

ÔVL ± Z1−α/2

√
Var(ÔVL)

where Z1−α/2 is the α/2 upper quantile of the standard normal distribution.

For large samples these confidence intervals work fairly well. However, for small sample sizes more refined versions of
the above confidence intervals can be obtained by

{
ÔVL − Bias(ÔVL) − Z1−α/2

√
Var(ÔVL), ÔVL − Bias(ÔVL) + Z1−α/2

√
Var(ÔVL)

}
4. Simulation Study

We performed a numerical study to examine the behavior of overlap coefficients and for comparing the approximate
formula for biases and mean square errors derived in the previous section for different OVL measures. Samples of sizes
n = 10, 25, 50, 100, 200, and 500 each were generated. From each pair of generated samples, the similarity measures ρ,
λ, ∆ and Λ were estimated and the amount of biases and the standard deviations of the estimates were determined. The
mean squared error (MS E) and bias values for C = 0.05, 0.25, 0.5, 0.75, 0.95 are reported in Table 1. Tables 1 indicates
that the bias of proposed OVL estimators is negligible and decreases as the sample size n increases. As expected, both
bias and MS E decrease steadily as the sample size increases.

The bias estimates for n = 25 are plotted in Figure 4. Only one plot of bias values is presented because a similar pattern
is observed for other sample sizes. For C < 0.6 the bias estimates of the measures λ̂, ∆̂ and Λ̂ behave more similarly, but
for the bias of ρ̂ shows a different pattern. For C > 0.6, the bias estimates of the measures λ̂ and ∆̂ are still growing, but
for that of ρ̂ and Λ̂ are decreasing and tends towards 0.

The standard deviation estimates for the overlap coefficients with sample size 25 are plotted in Figure 5. Again, only one
figure for standard deviations is presented because similar pattern is observed for the other sample sizes. The standard
deviation estimates for all four coefficients show the same behavior as the bias estimates of the measures.

The estimate of MS E are plotted in Figure 6 for all four overlap coefficients. For C < 0.3, the MS E estimates for the
overlap coefficients have almost the same values. the MS E estimates of the measures λ̂ and ∆̂ are still growing, but for that
of ρ̂ is decreasing and tends towards 0, and for Λ̂ has a peak at C = 0.6 and declining steadily thereafter as C increases.
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Table 1. Bias and MSE of Estimates of OVLs

ρ̂ λ̂ ∆̂ Λ̂

n Bias MS E Bias MS E Bias MS E Bias MS E

c=0.05 ρ = 0.316 λ = 0.134 ∆ = 0.112 Λ = 0.005
10 0.022 0.008 0.018 0.005 0.014 0.003 0.001 0.000∗

25 0.007 0.001 0.006 0.0009 0.004 0.0006 0.0004 0.000∗

50 0.003 0.0006 0.003 0.0004 0.002 0.0002 0.0002 0.000∗

100 0.0016 0.0003 0.0013 0.0002 0.001 0.0001 0.0001 0.000∗

200 0.0008 0.0001 0.0006 0.000∗ 0.0005 0.000∗ 0.000∗ 0.000∗

500 0.0003 0.000∗ 0.0002 0.000∗ 0.0002 0.000∗ 0.000∗ 0.000∗

c=0.25 ρ = 0.686 λ = 0.549 ∆ = 0.418 Λ = 0.124
10 0.043 0.029 0.058 0.052 0.045 0.031 0.035 0.02
25 0.014 0.005 0.0185 0.01 0.0142 0.006 0.011 0.004
50 0.006 0.0022 0.009 0.004 0.007 0.002 0.005 0.001

100 0.0031 0.001 0.0042 0.0018 0.0032 0.001 0.0025 0.0007
200 0.0015 0.0005 0.0021 0.0009 0.0016 0.0005 0.0012 0.0003
500 0.0006 0.0002 0.0008 0.0003 0.0006 0.0002 0.0005 0.0001

c=0.5 ρ = 0.894 λ = 0.843 ∆ = 0.677 Λ = 0.470
10 0.038 0.023 0.056 0.049 0.061 0.058 0.12 0.217
25 0.012 0.0042 0.018 0.0091 0.019 0.011 0.038 0.041
50 0.0057 0.0017 0.0084 0.0037 0.0092 0.0045 0.0177 0.017

100 0.0028 0.0008 0.004 0.0017 0.0044 0.0020 0.008 0.0076
200 0.0014 0.0004 0.002 0.0008 0.0022 0.001 0.0042 0.004
500 0.0005 0.0001 0.0008 0.0003 0.0009 0.0004 0.0017 0.001

c=0.75 ρ = 0.988 λ = 0.970 ∆ = 0.862 Λ = 0.855
10 0.019 0.006 0.029 0.013 0.068 0.07 0.127 0.025
25 0.006 0.001 0.009 0.002 0.021 0.013 0.04 0.046
50 0.0029 0.0004 0.0044 0.001 0.01 0.005 0.019 0.019

100 0.0014 0.0002 0.0021 0.0005 005 0.002 0.009 0.009
200 0.0007 0.000∗ 0.001 0.0002 0.002 0.001 0.0045 0.001
500 0.0003 0.000∗ 0.0004 0.000∗ 0.0009 0.0005 0.002 0.001

c=0.95 ρ = 0.999 λ = 0.999 ∆ = 0.975 Λ = 0.995
10 0.004 0.0002 0.005 0.0005 0.069 0.07 0.03 0.01
25 0.0012 0.000∗ 0.002 0.000∗ 0.022 0.01 0.009 0.002
50 0.0005 0.000∗ 0.0008 0.000∗ 0.01 0.006 0.004 0.0009

100 0.0003 0.000∗ 0.0004 0.000∗ 005 0.002 0.002 0.0004
200 0.0001 0.000∗ 0.0002 0.000∗ 0.002 0.001 0.001 0.0002
500 0.000∗ 0.000∗ 0.000∗ 0.000∗ 0.0009 0.0005 0.0004 0.000∗

∗|value| < 0.00001
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Figure 4. The bias estimates of overlap coefficients by C

Figure 5. The standard deviation estimates of overlap coefficients by C
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Figure 6. The MSE estimates for overlap coefficients by C

5. Example

As application of the new method, consider the dataset discussed by Federer et al. (Federer et al., 1963). The authors
estimated the superior genetic deviates in segregating populations of sugar beets. The population is assumed to be nor-
mally distributed with mean µ ( as in Mulekar and Mishra 1994). Using a sample of size 320, the estimated total and
environmental deviations are σ̂2

t = 0.911 and σ̂2
e = 0.509, respectively (total variance= genetic variance + environmental

variance). The estimate of the ratio Ĉ is given as Ĉ = σ̂e/σ̂t = 0.7475. Applying Theorem 1, the estimates of bias,
variance, and the 95%, confidence intervals for the OVLs are obtained and presented in Table 2.

From Table 2, all four confidence intervals does not include the value 1 the population distributions for the two groups
should not be considered to be identical. However, the large lower bounds for the OVLs (For the four similarity coeffi-
cients) indicates substantial similarity between the two distributions.

Table 2. Results based on the real data of Federer et al (1963)

ρ λ ∆ Λ

ÔVL 0.9793 0.9691 0.8701 0.8516

Bias(ÔVL) 0.00044 0.00065 0.00216 0.00281

Var(ÔVL) 0.00006 0.00014 0.0015 0.0025

95% confidence (0.963, 0.994) (0.945, 0.991) (0.806, 0.911) (0.772, 0.930)

6. Conclusion

In this paper we considered four measures of overlap, namely Matusia’s measure ρ, Morisita’s measure λ, Weitzman’s
measure ∆ and Kullback-Leibler Λ. We used these measures in the case two Normal distributions having the same
expectations and different standard deviations. The overall conclusion is that the biases and MS E of each of the OVL
measures are close to zero and approximations are adequate for samples of size as small as 50. The values of the OVL
measures are very similar, the coefficient based on Kullback-Leibler is always one of the best for having small values of
Bias and MS E. It is clear, in general, that the approximations to bias and MS E presented here may require extremely
large samples for example n > 50.
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