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Abstract

A vertex subset S of a graph is called a strong geodetic set if there exists a choice of exactly one geodesic for each pair
of vertices of S in such a way that these

(|S |
2

)
geodesics cover all the vertices of graph G. The strong geodetic number of

G, denoted by sg(G), is the smallest cardinality of a strong geodetic set. In this paper, we give an upper bound of strong
geodetic number of the Cartesian product graphs and study this parameter for some Cartesian product networks.
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1. Introduction

All graphs considered in this paper are connected, simple, undirected and finite. We refer to the book (Bondy & Murty,
2008) for graph theoretical notation and terminology not described here. The distance between vertices u and v of a graph
G denoted by dG(u, v), is the length of a shortest path between u and v, a u-v geodesic is a shortest u-v path of G. The
diameter of a graph G diam(G) is the maximum distance between any two vertices. We use the notation [n] = {1, 2, . . . , n},
V(Pn) = [n] for any n ≥ 2 as well as V(Cn) = [n] for any n ≥ 3, where the edges of Pn and Cn are defined in the natural
way.

The problem of covering a graph by geodesic is a topic researched widely in graph theory, application to channel design
of aircraft and vessels, social transport networks and so on. The geodetic set is a vertex subset S , such that each vertex of
G lies on some shortest paths between a pair of vertices from S . (Harary et al., 1993) introduced the geodetic problem,
is to find a geodetic set of minimum size. A class of covering problem is formed by path covering that include the edge
covering problem, the geodesic covering problem, the induced path covering problem and path covering problem. The
parameters are used in analysis of structural behavior of product networks by (Buckley et al., 1998; Chartrand et al., 2000
& 2002).

Let G = (V, E) be a graph. Given a set S ⊆ V , for each pair of vertices {x, y} ⊆ S , x , y, let P̃(x, y) be a selected fixed
shortest path between x and y. Then we set

Ĩ(S ) = {P̃(x, y) : x, y ∈ S },

and let V(Ĩ(S )) = ∪P̃∈Ĩ(S )V(P̃). If V(Ĩ(S )) = V(G) for some V(Ĩ(S )), then the set S is called a strong geodetic set. The
strong geodetic problem is to find a minimum strong geodetic set S of G, the minimum cardinality of a strong geodetic
set is defined as the strong geodetic number, denoted by sg(G).

Later, this concept and other related invariants in various classes of graph are considered in several literature (Atici, 2002;
Brešar et al., 2011; Brešar & Tepeh, 2008; Chartrand et al., 2002; Fitzpatrick, 1999; Manuel et al., 2017; Ye et al., 2007).
More latest papers see(Iršic̆, 2018; Klavžar & Manuel, 2018; Manuel et al., 2018).

Recently there has been an increasing interest in a class of interconnection networks called Cartesian product networks;
see (Bao et al., 1998; Day & AL-Ayyoub, 1997; Ku et al., 2003). The Cartesian product of two graphs G and H, denoted
by G2H, is a graph with vertex set V(G) × V(H) such that (u, v) and (u′, v′) are adjacent if and only if either u = u′ and
vv′ ∈ E(H), or v = v′ and uu′ ∈ E(G). Note that this product is commutative, that is G2H = H2G. For a vertex v ∈ V(H),
set Gv = {(u, v) ∈ V(G2H)|u ∈ V(G)}, Gv is called a G-layer of G2H. We consider Gv as the corresponding induced
subgraph, then Gv is isomorphic to G. For a vertex u ∈ V(H), the H-layer is defined as Hu = {(u, v) ∈ V(G2H)|v ∈ V(H)},
it is isomorphic to H.

Klavžar and Manuel (Klavžar & Manuel, 2018) have given a general upper bound on the Cartesian product of a path with
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an arbitrary graph and showed that the bound is tight on flat grids and flat cylinders. In this paper, we investigate the
strong geodesic problem on the torus network and some other Cartesian product networks. In Section 2, we introduce the
notation and basic concepts. In Section 3, we obtain a lower bound of sg(G) and an upper bound of sg(G2H), and we
obtain the exact value of the strong geodetic number of the two hyper Peterson graph HP3 and HP4. Then, we present an
upper bound of sg(Cr2Cn). Finally, we study the exact value of sg(Qn) for n ≤ 5 and an upper bound when n ≥ 6.

2. Main Results

The following result is well-known.

Lemma 1 (Hammack et al.,2001) Let (u, v) and (u′, v′) be arbitrary vertices of Cartesian product G2H. Then

dG2H((u, v), (u′, v′)) = dG(u, u′) + dH(v, v′).

By Lemma 1, the diameter of the Cartesian product is equal to the sum of the diameter of the original two graphs, that is,
diam(G2H) = diam(G) + diam(H).

For some special graphs, we have following results.

Observation 1 (1) For a complete graph Kn, sg(Kn) = n.

(2) For a tree T with p pendant vertices, sg(T ) = p.

(3) For a cycle Cn, sg(Cn) = 3.

(4) For a wheel graph W1,n,

sg(W1,n) =
{

4, if 3 ≤ n ≤ 6;⌈
n
2

⌉
, if n ≥ 7.

2.1 Bounds for sg(G) and sg(G2H)

First, we give two general results for strong geodetic number.

Lemma 2 For a connected graph G, we have

sg(G) ≥
d − 3 +

√
(d − 3)2 + 8|V(G)|(d − 1)

2(d − 1)

 ,
where d is the diameter of graph G.

Proof. From the definition of the strong geodetic set S , for each pair of vertices {x, y} ⊆ S , there are at most diam(G) − 1
internal vertices are covered by x-y shortest path, that is

V |P̃(x, y)| − {x, y} ≤ diam(G) − 1.

The collection Ĩ(S ) of geodesics consist of exactly
(

sg(G)
2

)
paths, then

sg(G) +
(
sg(G)

2

)
(diam(G) − 1) ≥ |V(G)|.

as desired.

Next, we give an upper bound of sg(G2H).

Theorem 1 Let G and H be two graphs of order n and m, respectively. Then

sg(G2H) ≤ min{n(sg(H) − 1) + 1,m(sg(G) − 1) + 1}.

Proof. Let sg(G) = p and sg(H) = q, and let V(G2H) = {(ui, v j)|ui ∈ V(G), v j ∈ V(H)} (i = 1, 2, · · · , n; j = 1, 2, · · · ,m).
Then there are n H-layers Hu1 ,Hu2 , · · · ,Hun in G2H. Denote by S = {v j1 , v j2 , · · · , v jq } ( j1, j2, · · · , jq ∈ [m]) the geodetic
set of H. Then we let S i ⊆ {(ui, v j1 ), (ui, v j2 ), · · · , (ui, v jq )} be the geodetic set in Hui corresponding to S in H, where
1 ≤ i ≤ n. Choose

S 1 = {(u1, v j1 ), (u1, v j2 ), · · · , (u1, v jq )},
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S 2 = {(u2, v j1 ), (u2, v j2 ), · · · , (u2, v jq−1 )},

...

S n = {(un, v j1 ), (un, v j2 ), · · · , (un, v jq−1 )}.

Then V(Ĩ(∪n
i=1S i)) = ∪n

i=1V(Hui ) = V(G2H).

Clearly, V(Ĩ(S 1)) = V(Hu1 ), the geodesic between one vertex of S 2 and (u1, v jq ) can cover the vertex (u2, v jq ), and so
V(Hu2 ) ⊂ V(Ĩ(S 2∪(u1, v jq ))). Furthermore, we have V(Ĩ(S 1∪S 2)) = V(Hu1 )∪V(Hu2 ). Similarly, we have V(Ĩ(S 1∪S 3)) =
V(Hu1 ) ∪ V(Hu3 ), · · · , V(Ĩ(S 1 ∪ S n)) = V(Hu1 ) ∪ V(Hun ). Since V(Ĩ(∪n

i=1S i)) = ∪n
i=1V(Hui ) = V(G2H), it follows that

sg(G2H) ≤ n(q − 1) + 1.

By the symmetry, we have sg(G2H) ≤ m(p − 1) + 1, and hence sg(G2H) ≤ min{n(q − 1) + 1,m(p − 1) + 1}.
2.2 Hyper Peterson Network

An n-dimensional hyper Peterson network HPn is the product of the well-known Peterson graph and Qn−3 (Das et al.,
1995), where n ≥ 3 and Qn−3 denotes an (n−3)-dimensional hypercube. The case n = 3 and 4 of hyper Peterson networks
are depicted in Figure 1. Note that HP3 is just the Peterson graph.
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Figure 1. (a) Peterson graph, (b) The network HP4

For a Peterson graph, we have the following result.

Theorem 2 For a Peterson graph HP3, sg(HP3) = 4.

Proof. From Lemma 2, we have sg(HP3) ≥ 4. Let S={v1, v3, v9, v10} and Ĩ(S )={v1-v2-v3, v1-v6-v9, v1-v5-v10, v3-v4-v9,
v3-v8-v10, v9-v7-v10}. Then V(Ĩ(S )) = V(HP3), and hence sg(HP3) = 4.

Above example shows equality holding in Lemma 2.

Theorem 3 For a network HP4, sg(HP4) = 6.

Proof. For the network HP4, there are two copies of Peterson graphs, say HP3 and HP′3. Let V(HP3) = {vi | 1 ≤ i ≤ 10}
and V(HP′3) = {u j | 1 ≤ j ≤ 10}.
We first prove 5 ≤ sg(HP4) ≤ 6. Since diam(HP4) = 2 and |V(HP4)| = 20, it follows from Lemma 2 that sg(HP4) ≥ 5.
Choose S = {v1, v7, v9, u3, u4, u8}. Let Ĩ(S )={v1-v2-v7, v1-v6-v9, v1-v2-v3-u3, v1-v5-u5-u4, v1-u1-u6-u8, v7-v2-u2-u3, v7-u7-
u9-u4, v7-v10-u10-u8, v9-v6-v8-u8, v9-v4-u4}. Then V(Ĩ(S )) = V(HP4), and hence sg(HP4) ≤ 6.

We claim that sg(HP4) = 6. Assume, to the contrary, that sg(HP4) = 5. Clearly, there are 10 geodesics. If |S ∩V(HP3)| =
4 and |S ∩ V(HP′3)| = 1, then the 6 geodesics constructed by {v1, v2, · · · , v10} can cover at most 10 vertices of HP3, and
other 4 geodesics between one vertex of {v1, v2, · · · , v10} and one vertex of {u1, u2, · · · , u10} can cover at most 8 vertices in
HP′3. So V(Ĩ(S )) ≤ V(HP4), a contradiction.
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Suppose |S ∩ V(HP3)| = 3 and |S ∩ V(HP′3)| = 2. Since the distance of any two vertices of {v1, v2, · · · , v10} or
{u1, u2, · · · , u10} is at most 2, and the distance between one vertex of {v1, v2, · · · , v10} and one vertex of {u1, u2, · · · , u10} is
at most 3, it follows that there are at most 6 pairs of vertices of S with distance 3 and each geodesic with distance 3 covers
at most 2 vertices outside of S . We claim that there are at least 5 geodesics with distance 3. Assume, to the contrary, that
there are 4 geodesics with distance 3. Since each geodesic with distance 3 covers at most 2 vertices outside of S and each
remaining geodesic covers at most one vertex outside of S , it follows that all the 10 geodesics cover at most 14 vertices
outside of S and 19 vertices of HP4, a contradiction. We distinguish the following cases to show this theorem by the value
of r, where r is the number of geodesics with distance 3.

Case 1. r = 5

If there are 5 geodesics with distance 2, then the 10 geodesics exactly cover all vertices of HP4. Without loss of generality,
suppose S ∩ V(HP′3) = {u1, u3}, S ∩ V(HP3) = {v9, v10, vi}, where the vertex vi satisfies d(v9, vi) = 2 and d(v10, vi) = 2.
Then vi ∈ {v1, v2, v3}. If vi = v1, then d(u1, v1) = 1, a contradiction. If vi = v3, then d(u3, v3) = 1, a contradiction. If
vi = v2, then d(u1, v2) = 2 and d(u3, v2) = 2, also a contradiction.

Case 2. r = 6

If there are 2 geodesics with distance 2 and every geodesic with distance 2 cover at most one vertex outside of S , the
remaining 2 geodesics with distance 1, then the 10 geodesics cover at most 14 vertices outside of S and 19 vertices of
HP4, and hence there are at most 3 geodesics with distance 2.

Suppose there are 3 geodesics with distance 2 and one geodesic with distance 1. For any vertex vi ∈ S ∩V(HP3), u j ∈ S ∩
V(HP′3), we have d(vi, u j) = 3. Without loss of generality, let S∩V(HP′3) = {u1, u2}. Clearly, S∩V(HP3) ⊂ {v4, v8, v9, v10}.
If S = {u1, u2, v4, v8, v9}, then d(v8, v9) = 1. If S = {u1, u2, v4, v8, v10}, then d(v8, v10) = 1. If S = {u1, u2, v4, v9, v10}, then
d(v4, v9) = 1. If S = {u1, u2, v8, v9, v10}, d(v8, v10) = 1, a contradiction.

Suppose there are 4 geodesics with distance 2. Without loss of generality, let S ∩ V(HP′3) = {u1, u3}, and hence S ∩
V(HP3) = {v7, v9, v10}. Now S = {v7, v9, v10, u1, u3}, then d(v7, v9) = d(v7, v10) = 1, a contradiction.

2.3 Torus Network

In this section, we give an upper bound on the strong geodetic number of torus graphs. The strong geodetic number of the
grids (product of two paths) and cylinders (product of a path and a cycle) were given in (Klavžar & Manuel, 2018).

Theorem 4 (Klavzar & Manuel, 2018) (1) If 2 ≤ n ≤ r, then sg(Pr2Pn) ≤
⌈
2
√

n
⌉
.

(2) If 2 ≤ n ≤ r, then sg(Pr2Cn) ≤
⌈
2
√

n
⌉
.

Theorem 5 If 3 ≤ n ≤ r, then sg(Cr2Cn) ≤
⌈
3
√

n
⌉
.

Proof. In order to prove the upper bound, we only need to find a strong geodetic set of cardinality ⌈3
√

n⌉. For convenience
we use previous notation V(Cr) = [r] = {1, 2, . . . , r}, V(Cn) = [n] = {1, 2, . . . , n}. Let ai, bi and ci are some vertices of the
graph Cr2Cn for i ∈ [k] and with

ai = (1, (i − 1)k + 1) ,

bi =

(⌈ r
2

⌉
, (i − 1)k + 1

)
,

ci = (r, (i − 1)k + 1) .

Next we consider the following cases.

Case 1 n = k2.

Let S = {a1, a2, ..., ak} ∪ {b1, b2, ..., bk} ∪ {c1, c2, ..., ck} and |S | = 3k = 3
√

n. Next, we prove V(Ĩ(S )) = V(Cr2Cn) for some
Ĩ(S ). There are r layers Cn, n layers Cr, denoted by C1

n, C2
n, ... , Cr

n and C1
r , C2

r , ... , Cn
r respectively. We can see that the

subgraph induced by
V(C1

n) ∪ V(C2
n) ∪ ... ∪ V(C⌈

r
2 ⌉

n )

is isomorphic to P⌈ r
2 ⌉2Cn. In order to show the set S 1 = {a1, a2, ..., ak} ∪ {b1, b2, ..., bk} is a geodesic set of P⌈ r

2 ⌉2Cn, it
suffices to prove V(Ĩ(S 1)) = V(P⌈ r

2 ⌉2Cn).

As ai and a j are both on the C1
n-layer, the shortest path from ai to a j is unique. Then the geodesic ai-a j is unique. bi and

b j are on the C⌈
r
2 ⌉

n -layer, ai and bi are on the Ci
r-layer, so the geodesics bi-b j and ai-bi are unique. We select a fixed ai-b j

geodesic (i , j) by the following way.
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Start from a1, through vertex (1, 2) of C1
n-layer, traverse the P2

⌈ r
2 ⌉

-layer until vertex (⌈ r
2 ⌉, 2), through C⌈

r
2 ⌉+1

n -layer to b2,
that is,

a1 − (1, 2) −
(⌈ r

2

⌉
, 2

)
− b2.

Then
a1 − (1, 3) −

(⌈ r
2

⌉
, 3

)
− b3,

...

a1 −
(
1,

⌊
k
2

⌋
+ 1

)
−

(⌈ r
2

⌉
+ 1,

⌊
k
2

⌋
+ 1

)
− b⌊ k

2 ⌋+1,

and hence

a2 − (1, k) −
(⌈ r

2

⌉
, k

)
− b1,

a2 − (1, k − 1) −
(⌈ r

2

⌉
, k − 1

)
− bk,

...

a2 −
(
1,

⌊
k
2

⌋
+ 2

)
−

(⌈ r
2

⌉
,

⌊
k
2

⌋
+ 2

)
− b⌊ k

2 ⌋+2.

those geodesics cover k − 1 layers of P⌈ r
2 ⌉. By symmetry we construct other ai-b j geodesics in the same way. Thus,

V(Ĩ(S 1)) = V(P⌈ r
2 ⌉2Cn).

Similarly, the subgraph induced by
V(C⌈

r
2 ⌉

n ) ∪ V(C⌈
r
2 ⌉+1

n ) ∪ ... ∪ V(Cr
n),

is isomorphic to P′⌊ r
2 ⌋+12Cn, where P′⌊ r

2 ⌋+1 � P⌈ r
2 ⌉ or P⌈ r

2 ⌉+1.

Let S 2 = {b1, b2, ..., bk} ∪ {c1, c2, ..., ck}. Then

V(Ĩ(S 2)) = V(P′⌊ r
2 ⌋+12Cn).

We conclude V(Ĩ(S )) = V(Cr2Cn).

Case 2 n = k2 + l, where 1 ≤ l ≤ k.

Let S = {a1, a2, ..., ak} ∪ {b1, b2, ..., bk} ∪ {c1, c2, ..., ck} ∪ {(⌈ r
2 ⌉, k2 + ⌈ l

2 ⌉)}. Clearly, |S | = 3k + 1 ≤ ⌈3
√

n⌉.
As the case above, the geodesics consisting by {a1, a2, ..., ak} ∪ {b1, b2, ..., bk} ∪ {c1, c2, ..., ck} have covered all ver-
tices of Cr2Ck2 , and the geodesics (⌈ r

2 ⌉, k2 + ⌈ l
2 ⌉) − ai and (⌈ r

2 ⌉, k2 + ⌈ l
2 ⌉) − ci (i = 1, 2, · · · , k) cover the vertices of

(Cr2Ck2+l)\(Cr2Ck2 ).

Case 3 n = k2 + l, where k + 1 ≤ l ≤ 2k.

By adding two vertices (⌈ r
2 ⌉, k2 + ⌈ l

3 ⌉) and (⌈ r
2 ⌉, k2 + 2⌈ l

3 ⌉) to S of Case 1, we have |S | = 3k + 2 ≤
⌈
3
√

n
⌉
.

By Case 2, we have covered all vertices of Cr2Ck2+k, and the geodesics (⌈ r
2 ⌉, k2 + ⌈ l

3 ⌉) − ai, (⌈ r
2 ⌉, k2 + 2⌈ l

3 ⌉) − ai and
(⌈ r

2 ⌉, k2 + ⌈ l
3 ⌉) − ci, (⌈ r

2 ⌉, k2 + 2⌈ l
3 ⌉) − ci (i = 1, 2, · · · , k) can cover the vertices of (Cr2Ck2+l)\(Cr2Ck2+k).

The proof is completed.
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3. Cube

The n-dimensional cube Qn is Cartesian product of n copies of the path P2. Let n ≥ 1, the graph Qn has 2n vertices,
each labeled by an n-bit binary string u1u2 · · · un such that ui ∈ {0, 1} for all i. Q1 is isomorphic to the complete graph K2
where one vertex is labeled by the digit 0 and the other by 1. For n ≥ 2, Qn is defined recursively by using two copies
of (n − 1)-dimensional cubes with edges between them, the first copy denoted by Q0

n−1 with vertices u = 0u1u2 · · · un−1,
another copy is Q1

n−1 with vertices v = 1v1v2 · · · vn−1. Qn is a n-regular bipartite graph and diam(Qn) = n. A few examples
of cube are shown in Figure 2.

0 1

Q1

00

10

100

Q2

01

11

Q3

000 001

010 011

101

110 111

Figure 2. Three cubes

Lemma 3 (1) sg(Q1) = 2, sg(Q2) = 3.

(2) sg(Q3) = 4, sg(Q4) = 5.

Proof. (1) The result follows Observation 1, since Q1 � P2 and Q2 � C4.

(2) Choose S={000, 111, 010, 101}, let Ĩ(S )={000-001-011-111, 000-100-101, 111-110-010}. Then V(Ĩ(S )) = V(Q3) and
that S is a strong geodetic set. So sg(Q3) ≤ 4.

For any three vertices {v1, v2, v3} = S ⊆ V(Q3), there are 3 paths Pn1 , Pn2 , Pn3 connecting (v1, v2), (v1, v3), (v2, v3) respec-
tively. There is at most one path with distance 3. Without loss of generality, let |V(Pn1 )| = 4 and d(v1, v2) = 3. Clearly,
Pn1 covers at most 2 vertices outside of S . For Pni (i = 2, 3), |V(Pni )| ≤ 3 and d(v1, v3) ≤ 2, d(v2, v3) ≤ 2, Pni (i = 2, 3)
covers at most one vertex outside S . We conclude that

∪3
i=1 Pni covers at most 4 vertices outside of S and covers at most

7 vertices in Q3. From the arbitrariness of S , we know that sg(Q3) ≥ 4, and hence sg(Q3) = 4.

For Q4, we choose S={0000, 1111, 0001, 1110, 1010} and Ĩ(S )={0000-0100-0110-0111-1111, 0000-1000-1010-1110,
1111-1011-1001-0001, 0001-0101-1101-1100-1110, 0001-0011-0010-1010}. Then V(Ĩ(S )) = V(Q4) and that S is a
strong geodetic set. So sg(Q4) ≤ 5.

For any four vertices {v1, v2, v3, v4} = S ⊆ V(Q4), there are 6 geodesics Pn1 , Pn2 , Pn3 , Pn4 , Pn5 , Pn6 connecting (v1, v2), (v1, v3),
(v1, v4), (v2, v3), (v2, v4), (v3, v4) respectively. Suppose there are r geodesics with distance 4. Then for any vertex vi

(1 ≤ i ≤ 4), there is only one vertex v j (1 ≤ j ≤ 4, i , j) such that d(vi, v j) = 4, and hence there are at most 2
geodesics of {Pn1 , Pn2 , Pn3 , Pn4 , Pn5 , Pn6 } with distance 4, that means r ≤ 2. We consider the following cases by the value
of r.

Case 1. r = 2.

Without loss of generality, let |V(Pn1 )| = |V(Pn6 )| = 5 and d(v1, v2) = d(v3, v4) = 4. Clearly, Pni (i = 1, 6) covers at most
3 vertices outside of S . If there is one geodesic with distance 3, say d(v1, v3) = 3, then d(v2, v4) = 3, d(v1, v4) = 1 and
d(v2, v3) = 1. For example, if S = {0000, 1111, 1110, 0001}, then Pni (i = 2, 5) covers at most 2 vertices outside of S . We
conclude that

∪6
i=1 Pni covers at most 10 vertices outside of S and covers at most 14 vertices in Q4. If d(v1, v3) = 2, then

d(v1, v4) = d(v2, v3) = d(v2, v4) = 2. If S = {0000, 1111, 1010, 0101}, then Pni (i = 2, 3, 4, 5) covers at most one vertex
outside of S . We conclude that

∪6
i=1 Pni covers at most 10 vertices outside of S and covers at most 14 vertices in Q4. By

symmetry of Q4, the case d(v1, v3) = 1 can be proved similarly as the case d(v1, v3) = 3.

Case 2. r = 1.

Without loss of generality, let |V(Pn1 )| = 5 and d(v1, v2) = 4. Clearly, |V(Pni )| ≤ 4 (i = 2, 3, · · · , 6). We claim that
there are at most 2 geodesics of {Pn2 , Pn3 , Pn4 , Pn5 , Pn6 } with distance 3. Otherwise, there are 3 geodesics with distance 3.
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Then there exists one vertex with at least 2 geodesics with distance 3. If this vertex is v1 and d(v1, v3) = d(v1, v4) = 3,
then d(v3, v4) ≤ 2, and hence d(v1, v2) ≤ 3, which contradicting to the fact d(v1, v2) = 4. If this vertex is v3 and
d(v1, v3) = d(v3, v4) = 3, then d(v1, v4) ≤ 2, and hence d(v1, v2) ≤ 3, also a contradiction. Hence, there are at most 2
geodesics of {Pn2 , Pn3 , · · · , Pn6 } with distance 3, say Pn2 , Pn3 . Clearly, Pni (i = 2, 3) covers at most 2 vertices outside of S
and d(v2, v3) ≤ 2, d(v2, v4) ≤ 2, d(v3, v4) ≤ 2, Pni (i = 4, 5, 6) covers at most one vertex outside of S . We conclude that∪6

i=1 Pni covers at most 10 vertices outside of S and covers at most 14 vertices in Q4. If there is only one geodesic, say
Pn2 with distance 3, then it covers at most 2 vertices outside of S , and hence Pni (3 ≤ i ≤ 6), |V(Pni )| ≤ 3 and d(v1, v4) ≤ 2,
d(v2, v3) ≤ 2, d(v2, v4) ≤ 2, d(v3, v4) ≤ 2. Clearly, Pni (i = 3, 4, 5, 6) covers at most one vertex outside of S ,

∪6
i=1 Pni

covers at most 9 vertices outside of S and covers at most 13 vertices in Q4. If there is no geodesic with distance 3, then Pni

(2 ≤ i ≤ 6), |V(Pni )| ≤ 3 and d(v1, v3) ≤ 2, d(v1, v4) ≤ 2, d(v2, v3) ≤ 2, d(v2, v4) ≤ 2 and d(v3, v4) ≤ 2. Pni (i = 2, 3, · · · , 6)
covers at most one vertex outside of S , and hence

∪6
i=1 Pni covers at most 8 vertices outside of S and covers at most 12

vertices in Q4.

Case 3. r = 0.

We claim that there are at most 3 geodesics of {Pn1 , Pn2 , · · · , Pn6 } with distance 3. Otherwise, there are 4 geodesics with
distance 3, it must be one vertex, say v1 such that d(v1, v2) = d(v1, v3) = 3. Clearly, d(v2, v3) ≤ 2. If d(v3, v4) = 3, then
d(v1, v4) ≤ 2 and d(v2, v4) ≤ 2, and hence there is no fourth geodesic with distance 3. If d(v1, v4) = 3, then d(v3, v4) ≤ 2
and d(v2, v4) ≤ 2, also a contradiction. Without loss of generality, let d(v1, v2) = d(v1, v3) = d(v1, v4) = 3. Clearly, Pmi

(i = 1, 2, 3) covers at most 2 vertices outside of S and d(v2, v3) ≤ 2, d(v2, v4) ≤ 2, d(v3, v4) ≤ 2, and hence Pmi (i = 4, 5, 6)
covers at most one vertex outside of S . We conclude that

∪6
i=1 Pmi covers at most 9 vertices outside of S and covers at

most 13 vertices in Q4.

From the arbitrariness of S , we know that sg(Q4) ≥ 5, and hence sg(Q4) = 5.

Theorem 6 sg(Q5) = 6.

Proof. Let S={00000, 11111, 10101, 01010, 10111, 01000} and Ĩ(S )={00000-100000-10001-11001-11011-11111, 00000-
00001-00101-10101,00000-00010-01010, 00000-00100-00110-00111-10111, 11111-11101-10101, 11111-01111-01011-
01010, 11111-11110-11100-11000,10101-10100-10110-10010-11010-01010, 10101-11101-01101-01001-01000, 01010-
00010-00011-10011-10111, 10111-11111-11110-01110-01100-01000}, then V(Ĩ(S )) = V(Q5) and sg(Q5) ≤ 6.

For any five vertices {v1, v2, v3, v4, v5} = S ⊆ V(Q5), there are 10 geodesics Pn1 , Pn2 , Pn3 , Pn4 , Pn5 , Pn6 , Pn7 , Pn8 , Pn9 , Pn10

connecting (v1, v2), (v1, v3), (v1, v4), (v1, v5), (v2, v3), (v2, v4), (v2, v5), (v3, v4), (v3, v5), (v4, v5) respectively. Suppose there
are r geodesics with distance 5, for any vertex vi (1 ≤ i ≤ 5), there must exist only one vertex v j (1 ≤ j ≤ 5, i , j) such
that d(vi, v j) = 5 and there are at most 2 geodesics of Pni (i = 1, 2, · · · , 10) with distance 5, that means r ≤ 2. We consider
the following cases by the value of r.

Case 1. r = 2.

Without loss of generality, let |V(Pn1 )| = |V(Pn8 )| = 6 and d(v1, v2) = d(v3, v4) = 5. Clearly Pni (i = 1, 8) covers at most
4 vertices outside of S . Suppose there is one geodesic of {Pn2 , · · · , Pn7 , Pn9 , Pn10 } with distance 4, say d(v1, v3) = 4, then
d(v2, v4) = 4, d(v1, v4) = 1 and d(v2, v3) = 1. If the distance between v5 and one of vi (1 ≤ i ≤ 4) is 4, say d(v5, v1) = 4,
then d(v5, v2) = 1, d(v5, v3) = 3, d(v5, v4) = 2. And hence there are at most 3 geodesics of Pni (i , 1, 8) with distance 4.
Clearly, Pni (i = 2, 4, 6) covers at most 3 vertices outsides of S , Pn9 covers at most 2 vertices outside of S , Pn10 covers at
most one vertex outside of S . We conclude that

∪10
i=1 Pni covers at most 20 vertices outside of S and covers at most 25

vertices in Q5. If there are two geodesics with distance 4, say d(v5, v1) = d(v5, v3) = 4, then Pni (i = 4, 9) covers at most
3 vertices outside of S , Pni (i = 2, 3, 5, 6, 7, 10) covers at most 2 vertices outside of S .

∪10
i=1 Pni covers at most 26 vertices

outside of S and covers at most 31 vertices in Q5. If there is only one geodesic with distance 4, say d(v5, v1) = 4, then Pn4

covers at most 3 vertices outside of S , Pni (i = 2, 3, 5, 6, 7, 9, 10) covers at most 2 vertices outside of S .
∪10

i=1 Pni covers at
most 25 vertices outside of S and covers at most 30 vertices in Q5. If there is no geodesic with distance 4, Pni (1 ≤ i ≤ 10,
i , 1, 8) covers at most 2 vertices outside of S , then

∪10
i=1 Pni covers at most 24 vertices outside of S and covers at most

29 vertices in Q5.

Case 2. r = 1.

Let |V(Pn1 )| = 6 and d(v1, v2) = 5, Pn1 covers at most 4 vertices outside of S . First we claim that there are at least 3
geodesics with distance 4 of {Pn2 , Pn3 , · · · , Pn10 }. Otherwise there are 2 geodesics with distance 4, say Pn2 , Pn3 and Pni

(i = 2, 3) covers at most 3 vertices outside of S . Clearly, Pni (i = 4, 5, · · · , 10) covers at most 2 vertices outside of S , we
conclude

∪10
i=1 Pni covers at most 24 vertices outside of S and covers at most 29 vertices in Q5, a contradiction. For any

vertex vi (3 ≤ i ≤ 5), there is at most one geodesic with distance 4 of the two geodesics connecting vi and v j ( j = 1, 2),
at most 3 geodesics with distance 4 of the set of geodesics {Pn2 , Pn3 , Pn4 , Pn5 , Pn6 , Pn7 } connecting vi (3 ≤ i ≤ 5) and v j
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( j = 1, 2). Let t be the number of geodesics with distance 4 connecting vi (3 ≤ i ≤ 5) and v j ( j = 1, 2), we consider the
subcases as follows by the value of t.

Subcase 1. t = 3.

Suppose d(v1, v3) = d(v1, v4) = d(v1, v5) = 4, then d(v3, v4) = d(v3, v5) = d(v4, v5) = 2, d(v2, v3) = d(v2, v4) = d(v2, v5) =
1. Clearly, Pni (i = 2, 3, 4) covers at most 3 vertices outside of S , Pni (i = 8, 9, 10) covers at most one vertex outside of
S ,

∪10
i=1 Pni covers at most 16 vertices outside of S and covers at most 21 vertices in Q5. Suppose d(v1, v4) = d(v1, v5) =

d(v2, v3) = 4, then d(v3, v4) = d(v3, v5) = 3, d(v4, v5) = 2, d(v1, v3) = d(v2, v4) = d(v2, v5) = 1. Pni (i = 3, 4, 5) covers at
most 3 vertices outside of S , Pni (i = 8, 9) covers at most 2 vertices outside of S , Pn10 covers at most one vertex outside of
S ,

∪10
i=1 Pni covers at most 18 vertices outside of S and covers at most 23 vertices in Q5.

Subcase 2. t = 2.

Suppose d(v1, v4) = d(v1, v5) = 4. If d(v3, v5) = 4, then d(v3, v4) = 4 or d(v3, v4) = 2. If d(v3, v4) = 2, then d(v3, v4) = 4,
d(v2, v3) = 3, d(v1, v3) = d(v4, v5) = 2, d(v2, v5) = 1. Pni (i = 3, 4, 9) covers at most 3 vertices outside of S , Pn5

covers at most 2 vertices outside of S , Pni (i = 2, 8, 10) covers at most one vertex outside of S ,
∪10

i=1 Pni covers at
most 18 vertices outside of S and covers at most 23 vertices in Q5. If d(v3, v4) = 4, then d(v3, v4) = 4, d(v2, v3) = 3,
d(v1, v3) = d(v4, v5) = 2, d(v2, v5) = 1, Pni (i = 3, 4, 8, 9) covers at most 3 vertices outside of S , Pn5 cover at most 2 vertices
outside of S , Pni (i = 2, 10) covers at most one vertex outside of S ,

∪10
i=1 Pni covers at most 20 vertices outside of S and

covers at most 25 vertices in Q5. Suppose d(v1, v5) = d(v2, v3) = 4. If d(v3, v4) = 4, then d(v3, v5) = 3 or d(v3, v5) = 5. If
d(v3, v5) = 5, then there are 2 geodesics with distance 5, a contradiction. If d(v3, v5) = 3, then d(v1, v4) = d(v4, v5) = 3,
d(v2, v4) = 2, d(v1, v3) = d(v2, v5) = 1. Pni (i = 4, 5, 8) covers at most 3 vertices outside of S , Pni (i = 3, 9, 10) covers at
most 2 vertices outside of S , Pn6 covers at most one vertex outside of S ,

∪10
i=1 Pni covers at most 20 vertices outside of S

and covers at most 25 vertices in Q5.

Subcase 3. t = 1.

Suppose d(v1, v5) = 4 and d(v4, v5) = 4. If d(v3, v4) = 4, then d(v1, v3) = 4, d(v2, v4) = 3, d(v1, v4) = d(v3, v5) = 2,
d(v2, v3) = d(v2, v5) = 1. Clearly, Pni (i = 2, 4, 8, 10) covers at most 3 vertices outside of S , Pn6 covers at most 2 vertices
outside of S , Pni (i = 3, 9) covers at most 1 vertex outside of S ,

∪10
i=1 Pni covers at most 20 vertices outside of S and covers

at most 25 vertices in Q5. If d(v3, v5) = 4, then d(v2, v3) = d(v2, v4) = 3, d(v1, v3) = d(v1, v4) = d(v3, v4) = 2, d(v2, v5) = 1.
Pni (i = 4, 9, 10) covers at most 3 vertices outside of S , Pni (i = 5, 6) covers at most 2 vertices outside of S , Pni (i = 2, 3, 8)
covers at most one vertex outside of S ,

∪10
i=1 Pni covers at most 20 vertices outside of S and covers at most 25 vertices in

Q5.

Subcase 4. t = 0.

Clearly, d(v3, v4) = d(v3, v5) = d(v4, v5) = 4. Let v3 = 00000, v4 = 01111. Then v5 must be one in {10111, 11011, 11101,
11110}, and hence d(v4, v5) = 2, a contradiction.

Case 3. r = 0.

From the previous proof, there are at most 5 geodesics with distance 4 of the set of geodesics {Pn1 , Pn2 , · · · , Pn10 }. If
d(v1, v2) = d(v2, v3) = 4, then d(v3, v4) = 4, d(v4, v5) = 4, d(v5, v1) = 4, we have d(v1, v3) = d(v1, v4) = d(v2, v4) =
d(v2, v5) = d(v3, v5) = 2, then Pni (i = 1, 4, 5, 8, 10) covers at most 3 vertices outside of S , Pni (i = 2, 3, 6, 7, 9) covers
at most one vertex outside of S , we conclude that

∪10
i=1 Pni covers at most 20 vertices outside of S and cover at most 25

vertices in Q5. For example, S = {00000, 11110, 00011, 10100, 01111}. If there are less than 5 geodesics with distance 4,
then

∪10
i=1 Pni can not cover 32 vertices of Q5.

From the arbitrariness of S , we have sg(Q5) ≥ 6, and hence sg(Q5) = 6.

The following example shows that for Q2, the equality holds for Theorem 1. Clearly,

sg(Q2) = 3 = sg(Q12P2)

= min{V(Q1) (sg(P2) − 1) + 1,V(P2) (sg(Q1) − 1) + 1}.

For sg(Qn) (n = 8), if there exists a geodetic set S of cardinality n + 1 satisfying V(Ĩ(S )) = V(Qn). In fact, there are
exactly 36 geodesics. But for any vertex u ∈ S , there is only one vertex v ∈ S such that d(u, v) = 8, and hence we can find
at most 4 geodesics with distance 8. It is clear that the remaining 32 geodesics can not cover other vertices. So, we get an
upper bound as follow:

Theorem 7 For Qn (n ≥ 5), sg(Qn) ≤ 2n−5 × 5 + 1.
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Proof. From Theorem 6, we have

sg(Qn) = sg(Qn−12P2)

≤ min {V(Qn−1) (sg(P2) − 1) + 1,V(P2) (sg(Qn−1) − 1) + 1}
= min{2n−1 + 1, 2sg(Qn−1) − 1}

when n ≥ 5. Then 2n−1 + 1 ≥ 2sg(Qn−1) − 1, and hence

sg(Qn) ≤ 2(sg(Qn−1) − 1) + 1

≤ 22(sg(Qn−2) − 1) + 1

≤ 23(sg(Qn−3) − 1) + 1

...

≤ 2n−5(sg(Q5) − 1) + 1

= 2n−5 × 5 + 1.

4. Further Research

In this paper, we have studied the strong geodesic problem on the torus network and some other Cartesian product net-
works. Next we can try to determine the exact strong geodetic number for Qn(n ≥ 6) and consider the strong geodetic
number on Lexicographic product, Strong product and Direct product.
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Klavžar, S., & Manuel, P. (2018). Strong geodetic problem in grid like architectures, Bulletion of the Malaysian Mathe-
matical Sciences Society. 41(3), 1671–1680.

28



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 11, No. 2; 2019

Ku, S., Wang, B., & Hung, T. (2003). Constructing edge-disjoint spanning trees in product networks, IEEE Trans. Parall.
Distr. Sys. 14(3), 213–221.
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