
http://jmr.ccsenet.org Journal of Mathematics Research Vol. 11, No. 1; 2019

Mathematical Details on Singular Integral Equation Method for
Solving Crack Problems

Youn-Sha Chan1 & Sergiy Koshkin1

1 Department of Mathematics and Statistics, University Houston-Downtown, Houston, USA

Correspondence: Youn-Sha Chan, Department of Mathematics and Statistics, University Houston-Downtown, One Main
Street, Houston, Texas 77002, USA.

Received: October 6, 2018 Accepted: January 21, 2019 Online Published: January 27, 2019

doi:10.5539/jmr.v11n1p102 URL: https://doi.org/10.5539/jmr.v11n1p102

Abstract

This article provides a detail derivation of a singular Fredholm integral equation for the solution of a mixed mode crack
problem in a nonhomogeneous medium. The integral equation derived here has already been addressed by F. Delale and
F. Erdogan (Delale & Erdogan 1983), one of the most cited and pioneer papers in fracture mechanics that uses singulalr
integral equation method (SIEM) to solve crack problems. However, probably due to its limit of paper length, some
mathematical details are not provided to bring this powerful method, SIEM, to its full strength. In this paper we fill in
the mathematical gaps, and both analytical and numerical parts are addressed in details. Some discussions from the view
point of differential equations are given, and new numerical outcomes under different loading functions are provided.
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1. Introduction

1.1 Motivation and Background

Rigorously speaking, most numerical approximation methods (including finite elements, finite difference, and finite vol-
ume) in engineering applications can be considered as “hybrid” methods. That is, there must be a beginning stage of
theoretical developments upon which the discretization steps are constructed so that accuracy, convergence, and stability
can be ensured. However, due to the crack-tip singularity (Kaya & Erdogan, 1987; Muskhelishvili, 1953; Muskhelishvili
1963), most computational methods are not adequate to cope with the crack problems. One of the better methods to solve
crack problems is by singulalr integral equation method (SIEM) due to its nature of “capturing the crack-tip singularity”
(Muskhelishvili, 1953; Sneddon, 1972; Sneddon & Lowengrub, 1969). Usually the solution outcomes obtained by SIEM
are considered to be benchmarks for other numerical outcomes (Erdogan, 1978; Kaya & Erdogan, 1987; Konda & Erdo-
gan, 1994). In order to incorporate the crack-tip singularity it takes a somewhat lengthy mathematical derivation in SIEM
(Muskhelishvili, 1953; Muskhelishvili. 1963). Though SIEM has been broadly used in solving crack problems, perhaps
because of its lengthy mathematical derivation, the method itself does not seem to be very well documented. In other
word, whenever SIEM is used, the theoretical derivations always seem to be very brief and sometimes even skipped in
many cases. It is this motivation that we present a detail account of mathematical derivation on SIEM.

The example used here is a mode-I crack problem in nonhomogeneous materials, also well known as functionally graded
materials, FGMs (Chan, Paulino, & Fannjiang, 2001; Erdogan, 1978; Erdogan, 1995; Erdogan & Ozturk, 1992; Jin &
Noda, 1994; Konda & Erdogan, 1994). This is another SIEM advantage—in addition to its accuracy and the ability to
incorporate the crack-tip singularity, it can be very flexible to model crack problems in nonhomogeneous materials. This
mode-I crack problem in nonhomogeneous materials has already been solved by Delale and Erdogan (Delale & Erdogan
1983). It is highly recommended that readers should have an access to the paper (Delale & Erdogan 1983) when studying
this paper. We actually conducted an REU (Research Experience for Undergraduates) grant funded by National Science
Foundation by studying paper (Delale & Erdogan 1983) for the “Solid Mechanic Team” in summer 2017 and 2018. We
have filled in every theoretical step with mathematical details.

1.2 Steps to Singulalr Integral Equation Method

Basically the theoretical procedures that eventually lead to a type of Fredholm integral equation can be divided into
following steps (Chan, Paulino, & Fannjiang, 2001; Erdogan, 1978; Erdogan & Ozturk, 1992; Muskhelishvili, 1953;
Sneddon, 1966; Sneddon & Lowengrub, 1969):
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1. Linear elasticity and geometry of the crack problem

2. Governing partial differential equation (PDE)

3. Fourier transform and inverse Fourier transform

4. Solution to the ordinary differential equation (ODE)

5. Boundary conditions imposed

6. Fredholm integral equation

These six steps of formulation of the crack problem is pretty uniform in solving problems in linear elasticity fracture
mechanics (LEFM), and it can be considered as a standard solution technique to the partial differential equations (PDEs)
that arise in LEFM. We shall follow above outlines in giving detail formulation of the crack problem. Once the Fredholm
integral equation is obtained, the discretization steps start, and it becomes the numerical part of SIEM. It is another
important component of SIEM. However, due to the page limit we briefly address the numerical procedures, and we may
pursue the numerical part in a more detail manner at another occasion. Some of the numerical results are given in terms
of crack opening displacement profile and the mode-I stress intensity factors (SIFs).

2. Theoretical Formulation of the Crack Problem

2.1 Linear Elasticity and Geometry of the Crack Problem

A plane elasticity problem is considered. The nonhomogeneous material is in terms of the Young’s modulus E = E(x, y),
and the Poisson’s ratio ν is assumed to be constant (Delale & Erdogan, 1983; Konda & Erdogan, 1994). The basic
framework of analysis, background and notations is given below (Gdoutos, 1993; Sneddon & Elliott, 1946; Sneddon &
Lowengrub, 1969; ).

2.1.1 Strain–Displacement Relations

Displacement components: u, v.
Strains (normal): ϵxx = lim△u→0

△u
△x =

∂u
∂x , ϵyy =

∂v
∂y .

Strains (shear): γxy =
∂u
∂y +

∂v
∂x = γyx.

Thus ϵi j =
1
2 ( ∂ui
∂x j
+
∂u j

∂xi
), where i ≡ x, j ≡ y; or in terms of matrix,

[ϵi j] =
[
ϵxx

1
2γxy

1
2γyx ϵyy

]
.

2.1.2 Condition of Strain Compatibility

As a plane problem is considered, following strain compatibility is obtained.

∂2ϵxx

∂y2 =
∂3u
∂x∂y2 , and

∂2ϵyy

∂x2 =
∂3v
∂x2∂y

. (1)

∂2γxy

∂x∂y
=
∂3u
∂x∂y2 +

∂3v
∂x2∂y

(2)

Sum of the two equations in (1) leads to equation (2), which is the statement of condition of compatibility:

∂2ϵxx

∂y2 +
∂2ϵyy

∂x2 =
∂2γxy

∂x∂y
. (3)

2.1.3 (Generalized) Hooke’s Law

Hooke’s law relates the strains and stresses through the following equations:

ϵxx =
σxx

E
− ν
σyy

E
, ϵyy =

σyy

E
− νσxx

E
, γxy =

τxy

G
. (4)

The Young’s modulus is taken as a function of material position (x, y), i.e., E = E(x, y) (Delale & Erdogan, 1983; Erdogan,
1978; Erdogan & Ozturk, 1992; Konda & Erdogan, 1994). Figure 1 shows a crack sitting in a nonhomogeneous material
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Figure 1. Geometry of the mode-I crack problem

with Young’s modulus a function of x-direction. For the sake of simplicity the Poisson ratio ν is taken as a constant. Thus
the shear modulus is

G = G(x, y) =
E(x, y)

2(1 + ν)
. (5)

It is worth of noting is that when the crack problem is solved, we will apply a “superposition principle“ (Bueckner, 1958;
Delale & Erdogan, 1983; Gdoutos, 1993), see Figure 2. This shall clarify why the boundary conditions in equation (30)
are imposed.

+=

σ

σ

σ

σ

σ

σ

Figure 2. Bueckner’s superposition principle (Bueckner, 1958)

2.2 Governing Partial Differential Equation (PDE)

2.2.1 Airy Stress Function

The introduction of Airy stress function is to make a “vector” problem to be a “scalar” problem. That is, instead of solving
a 2 × 2 linear system of second order of PDEs, we solve a fourth order of PDE.

Using classical elasticity , we let the Airy stress function be Φ = Φ(x, y) such that:
σxx =

∂2Φ
∂y2

σyy =
∂2Φ
∂x2

σxy = − ∂
2Φ
∂x∂y

(6)
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Relations between Airy stress function Φ = Φ(x, y) and strains are linked by (generalized) Hooke’s law as:
ϵxx =

1
E (σxx − νσyy) = 1

E ( ∂
2Φ
∂y2 − ν ∂

2Φ
∂x2 )

ϵyy =
1
E (σyy − νσxx) = 1

E ( ∂
2Φ
∂x2 − ν ∂

2Φ
∂y2 )

γxy =
1
Gτxy =

−1
G
∂2Φ
∂x∂y =

−2(1+ν)
E

∂2Φ
∂x∂y

(7)

From the compatibility equation (3), we have1

♠︷︸︸︷
∂2ϵxx

∂y2 +

♣︷︸︸︷
∂2ϵyy

∂x2 −

♡︷︸︸︷
∂2γxy

∂x∂y
= 0 .

Term ♠ undergoes the following process:

∂ϵxx

∂y
=
∂

∂y
(

1
E
∂2Φ

∂y2 −
ν

E
∂2Φ

∂x2 )

=
−1
E2

∂E
∂y
∂2Φ

∂y2 +
1
E
∂3Φ

∂y3 +
ν

E2

∂E
∂y
∂2Φ

∂x2 −
ν

E
∂3Φ

∂x2∂y

∂2ϵxx

∂y2 =
∂

∂y
(
∂ϵxx

∂y
)

=
2

E3 (
∂E
∂y

)2 ∂
2Φ

∂y2 −
1

E2

∂2E
∂y2

∂2Φ

∂y2 −
1

E2

∂E
∂y
∂3Φ

∂y3

− 1
E2

∂E
∂y
∂3Φ

∂y3 +
1
E
∂4Φ

∂y4

− 2ν
E3 (
∂E
∂y

)2 ∂
2Φ

∂x2 +
ν

E2

∂2E
∂y2

∂2Φ

∂x2 +
ν

E2

∂E
∂y
∂3Φ

∂x2∂y

+
ν

E2

∂E
∂y
∂3Φ

∂x2∂y
− ν

E
∂4Φ

∂x2∂y2 (8)

Term ♣ takes very similar route:

∂ϵyy

∂x
=

∂

∂x
(

1
E
∂2Φ

∂x2 −
ν

E
∂2Φ

∂y2 )

=
−1
E2

∂E
∂x
∂2Φ

∂x2 +
1
E
∂3Φ

∂x3 +
ν

E2

∂E
∂x
∂2Φ

∂y2 −
ν

E
∂3Φ

∂x∂y2

∂2ϵyy

∂x2 =
∂

∂x
(
∂ϵyy

∂x
)

=
2

E3 (
∂E
∂x

)2 ∂
2Φ

∂x2 −
1

E2

∂2E
∂x2

∂2Φ

∂x2 −
1

E2

∂E
∂x
∂3Φ

∂x3

− 1
E2

∂E
∂x
∂3Φ

∂x3 +
1
E
∂4Φ

∂x4

− 2ν
E3 (
∂E
∂x

)2 ∂
2Φ

∂y2 +
ν

E2

∂2E
∂x2

∂2Φ

∂y2 +
ν

E2

∂E
∂x
∂3Φ

∂x∂y2

+
ν

E2

∂E
∂x
∂3Φ

∂x∂y2 −
ν

E
∂4Φ

∂x2∂y2 (9)

Finally, term ♡ can be rewritten as

∂γxy

∂y
=
∂

∂y
(
−2(1 + ν)

E
∂2Φ

∂x∂y
)

=
2(1 + ν)

E2

∂E
∂y
∂2Φ

∂x∂y
− 2(1 + ν)

E
∂3Φ

∂x∂y2

1Note that E is a function of x and y.
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∂

∂x
(
∂γxy

∂y
) =

−4(1 + ν)
E3

∂E
∂x
∂E
∂y
∂2Φ

∂x∂y
+

2(1 + ν)
E2

∂2E
∂x∂y

∂2Φ

∂x∂y
+

2(1 + ν)
E2

∂E
∂y
∂3Φ

∂x2∂y

+
2(1 + ν)

E2

∂E
∂x
∂3Φ

∂x∂y2 −
2(1 + ν)

E
∂4Φ

∂x2∂y2 (10)

Substitution of equations (8), (9) and (10) in the compatibility equation (3) leads to

E2∇4Φ − 2E(
∂E
∂x
∂

∂x
+
∂E
∂y
∂

∂y
)∇2Φ

+ 2(1 + ν)(2
∂E
∂x
∂E
∂y
− E
∂2E
∂x∂y

)
∂2Φ

∂x∂y

+

[
2(
∂E
∂x

)2 − 2ν(
∂E
∂y

)2 − E
∂2E
∂x2 + νE

∂2E
∂y2

]
∂2Φ

∂x2

+

[
2(
∂E
∂y

)2 − 2ν(
∂E
∂x

)2 − E
∂2E
∂y2 + νE

∂2E
∂x2

]
∂2Φ

∂y2

= 0 , (11)

which is the governing PDE of the elasticity problem for generalized plane stress. The PDE for plane strain can be
obtained by replacing E and ν by E

1−ν2 and ν
1−ν , respectively.

2.2.2 Simplification of the PDE

Clearly the fourth order PDE (11) depends on the function form of the Young’s modulus E(x, y). As a mathematical
convenience we let E = E(x, y) = E0eβx+γy (Delale Erdogan, 1983; Erdogan, 1978; Erdogan & Ozturk, 1992) where β and
γ are material parameters, then the PDE (11) is simplified to

∇4Φ − 2(β
∂

∂x
+ γ
∂

∂y
)∇2Φ + (β2 − νγ2)

∂2Φ

∂x2

+ 2(1 + ν)βγ
∂2Φ

∂x∂y
+ (γ2 − νβ2)

∂2Φ

∂y2

= 0 (12)

By letting γ = 0, the PDE (12) above reduces to the simpler form

∇4Φ − 2β(
∂3Φ

∂x3 +
∂3Φ

∂x∂y2 ) + β2 ∂
2Φ

∂x2 − νβ
2 ∂

2Φ

∂y2 = 0 , (13)

which is the form that will be investigated in the remainder of this manuscript.

2.3 Fourier Transform and Inverse Fourier Transform

One of the most useful methods for solving PDEs is the Fourier transform, which transforms the PDE into an ordinary
differential equation () By solving the ODE then we solve the associated PDE by taking its inverse Fourier transform. Let
the Fourier transform and the inverse Fourier transform be defined as

F (F)(α) = f (α) =
∫ ∞

−∞
F(x)eixαdx (14)

F −1( f )(x) = F(x) =
1

2π

∫ ∞

−∞
f (α)e−ixαdα (15)

Now let us assume that

Φ(x, y) =
1

2π

∫ ∞

−∞
f (y, α)e−ixαdα , (16)

that is, Φ(x, y) is the inverse Fourier transform of the function f (y, α).

Considering each of the terms in equation (13), we have:

∇4Φ =
∂4Φ

∂x4 + 2
∂4Φ

∂x2∂y2 +
∂4Φ

∂y4

=
1

2π

∫ ∞

−∞
(α4 f (y, α) − 2α2 ∂

2 f
∂y2 +

∂4 f
∂y4 )e−ixαdα (17)
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−2β
∂3Φ

∂x3 =
1

2π

∫ ∞

−∞
f (y, α)(−2iα3β)e−ixαdα (18)

−2β
∂3Φ

∂x∂y2 =
1

2π

∫ ∞

−∞

∂2 f (y, α)
∂y2 (2iαβ)e−ixαdα (19)

β2 ∂
2Φ

∂x2 =
1

2π
β2

∫ ∞

−∞
f (y, α)(−iα)2e−ixαdα (20)

−νβ2 ∂
2Φ

∂y2 =
1

2π
(−νβ2)

∫ ∞

−∞

∂2 f (y, α)
∂y2 e−ixαdα (21)

Summing equations (17) to (21) leads to the following ODE:

d4 f
dy4 + (2iβα − 2α2 − β2ν)

d2 f
dy2 + (α4 − 2iβα3 − β2α2) f = 0 (22)

2.4 Solution to the ODE

The corresponding characteristic equation to the ODE (22) is

m4 + (2iβα − 2α2 − β2ν)m2 + (α4 − 2iβα3 − β2α2) = 0 , (23)

and function f (y, α) takes the form of
emi(α)y ,

where mi (i = 1, 2, 3, 4)2 are the roots of equation (23). We can assume that the real parts of m1 and m2 are positive and

m1 = −m3 , m2 = −m4

for the polynomial in equation (23) has only even powers. Without loss of generality we may find3 that

m2
1 = m2

3 =
−(2iβα − 2α2 − β2ν) +

√
β4ν2 − 4iβ3αν + 4β2α2ν

2
(24)

m2
2 = m2

4 =
−(2iβα − 2α2 − β2ν) −

√
β4ν2 − 4iβ3αν + 4β2α2ν

2
(25)

We like to point out some observations:

• Roots mi’s may take very complicated algebraic form, but sum or product of mi’s can be expressed in simpler form.
Depending on the Fredholm kernel, we may want to find other forms of mi’s (e.g. m1 + m2, m1m2, m2

1 − m2
2, . . . ,

etc.) rather than each exact mi.

• Roots mi’s are in terms of material parameters.

• m2
1 − m2

2 =
√
β4ν2 − 4iβ3αν + 4β2α2ν .

• m2
1 + m2

2 = 2α2 + β2ν − 2iβα .

• m2
1m2

2 = α
4 − 2iβα3 − β2α2 = [±(α2 − iβα)]2 .

As we are only interested in the case that the displacements and stresses vanish as (x2 + y2) → ∞, the so called far-field
condition, solution to ODE (22) takes the form4

f (y, α) = A1(α) e−m1y + A2(α) e−m2y , (0 < y < ∞). (26)

2Note that each mi is a function of α , β , and ν .
3Knowing exact form of the roots mi’s is actually important for they are deeply involved in the Fredholm kernel of the integral equation which we

are going to derive.
4Note that both A1 and A2 are functions of α , β , and ν .
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Before the boundary conditions are imposed in the next sub-section, we need to express each stress component in terms of
the solution obtained from ODE. Equations (6), (16), and (26) lead to the following expression for the stress components.

σxx(x, y) =
∂2Φ

∂y2

=
1

2π

∫ ∞

−∞

[
A1m2

1e−m1y + A2m2
2e−m2y

]
e−ixαdα (27)

σyy(x, y) =
∂2Φ

∂x2

=
−1
2π

∫ ∞

−∞
α2 [

A1e−m1y + A2e−m2y] e−ixαdα (28)

σxy(x, y) =
−∂2Φ

∂x∂y

=
−i
2π

∫ ∞

−∞
α
[
A1m1e−m1y + A2m2e−m2y] e−ixαdα (29)

2.5 Boundary Conditions Imposed

The following boundary conditions corresponding to a Mode I crack problem are imposed:
σxy(x, 0) = 0, −∞ < x < ∞, . . . (a)
σyy(x,+0) = p(x), −a < x < a, . . . (b)
v(x, 0) = 0, a < |x| < ∞. . . . (c)

(30)

where p(x) is a known function (loading). The material function is simplified to5

E = E(x) = E0eβx, −∞ < x < ∞ , (31)

and v is the y-component of the displacement which needs to be determined.

The determination of A1 and A2 facilitates completing the problem on the upper half plane (y > 0). A1 and A2 are
determined by (any two) boundary conditions on y = 0 ,−∞ < x < ∞. Consider that the half (upper) plane is subjected to
traction

σyy(x, 0) = σ(x), σxy(x, 0) = τ(x), (−∞ < x < ∞) (32)

Equations (28) and (29) give the following equations (33) and (34), respectively.

σyy(x, 0) =
−1
2π

∫ ∞

−∞
α2 [A1(α) + A2(α)] e−ixαdα

= F −1
(
−α2 [A1(α) + A2(α)]

)
= σ(x) (−∞ < x < ∞) (33)

σxy(x, 0) =
−i
2π

∫ ∞

−∞
α [m1(α)A1(α) + m2(α)A2(α)] e−ixαdα

= F −1 ((−iα) [m1(α)A1(α) + m2(α)A2(α)])

= τ(x) (−∞ < x < ∞) (34)

By taking Fourier transform one obtains

−α2 [A1(α) + A2(α)] =
∫ ∞

−∞
σ(x)eixαdx = Q1 (35)

5The more general form, E(x, y), can be obtained through simplified form, E(x), by a rotation of the coordinates axes. See reference by Konda and
Erdogan, 1994.
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(−iα) [m1(α)A1(α) + m2(α)A2(α)] =
∫ ∞

−∞
τ(x)eixαdx = Q2 (36)

Equation (35) plus equation (36) multiplied by iα
m2

gives that

−α2A1(α) +
m1

m2
α2A1(α) = Q1 +

iα
m2

Q2 (37)

Thus A1 can be obtained as

A1 =
Q1 +

iα
m2

Q2

α2( m1
m2
− 1)

=

m2
α2 Q1 + i Q2

α

m1 − m2
. (38)

To get A2 we consider equation (35) plus equation (36) multiplied by iα
m1

, which gives

−α2A2(α) +
m2

m1
α2A2(α) = Q1 +

iα
m1

Q2 , (39)

so that A2 is obtained as

A2 =
Q1 +

iα
m1

Q2

α2( m2
m1
− 1)

=
m1Q1 + iαQ2

α2(m2 − m1)
. (40)

2.6 Fredholm Integral Equation

Recall the boundary conditions in equation (30). Condition (a), together with equation (29), leads to

m1A1 + m2A2 = 0 . (41)

In order to get both A1 and A2 we need another equation. Thus an unknown function g(x) is introduced and defined as:

g(x) = lim
y→+0

∂v(x, y)
∂x

=
∂v(x,+0)
∂x

. (42)

Note that g(x) = 0 for |x| > a and∫ a

−a
g(x)dx =

∫ a

−a

∂v(x,+0)
∂x

dx = v(a,+0) − v(−a,+0) = 0 . (43)

Hence, using Hooke’s law together with equations (27) and (28), we also have

∂v
∂y

= ϵyy =
σyy

E
− νσxx

E

=
−1

2πE

∫ ∞

−∞

[
α2A1(α)e−m1y + α2A2(α)e−m2y

]
e−ixαdα

− ν

2πE

∫ ∞

−∞

[
m2

1A1(α)e−m1y + m2
2A2(α)e−m2y

]
e−ixαdα . (44)

Moreover6,

v(x, y) =

∫
∂v
∂y

dy + c(x)

=
1

2πE

∫ ∞

−∞
α2

[
A1(α)

m1
e−m1y +

A2(α)
m2

e−m2y
]

e−ixαdα

+
ν

2πE

∫ ∞

−∞

[
m1A1(α)e−m1y + m2A2(α)e−m2y] e−ixαdα

+ c(x) (45)

Using equations (42) and (45), and the fact that
1
E
=

e−βx

E0
,

6c(x) is an integrating constant that is produced by finding antiderivative of v(x, y) with respect to y .
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one obtains

∂v(x, y)
∂x

=
1

2πE

∫ ∞

−∞
α2

[
A1(α)

m1
e−m1y +

A2(α)
m2

e−m2y
]

(−1)(β + iα)e−ixαdα

+
−ν

2πE

∫ ∞

−∞

[
m1A1(α)e−m1y + m2A2(α)e−m2y] (β + iα)e−ixαdα

+ c′(x) (46)

Separating terms for e−m1y and e−m2y , and noting that y > 0, we get

∂v(x, y)
∂x

=
−1

2πE

∫ ∞

−∞
(β + iα)

[
A1

m1
(α2 + νm2

1)e−m1y +
A2

m2
(α2 + νm2

2)e−m2y
]

e−ixαdα

+ c′(x) (47)

Now the function g(x) can be evaluated as

g(x) = lim
y→0

∂v(x, y)
∂x

=
−1

2πE0eβx

∫ ∞

−∞
(β + iα)

[
A1

m1
(α2 + νm2

1) +
A2

m2
(α2 + νm2

2)
]

e−ixαdα

+ c′(x) (48)

Multiplying equation (48) by eβx, we obtain

eβx(g(x) − c′(x)) =
−1

E02π

∫ ∞

−∞
(β + iα)

A1(α2 + νm2
1)

m1
+

A2(α2 + νm2
2)

m2

︸                                                ︷︷                                                ︸
h(α)

e−ixαdα (49)

The above equation says that eβx(g(x)−c′(x)) is the Inverse Fourier transform of function h(α). By taking Fourier transform
and using the fact that g(x) = 0 for |x| > a , we have:

−(β + iα)
E0

[
A1

m1
(α2 + νm2

1) +
A2

m2
(α2 + νm2

2)
]
=

∫ ∞

−∞
eβx(g(x) − c′(x))eixαdx

=

∫ a

−a
e(β+iα)t(g(t) − c′(t))dt (50)

From equation (41), A2 =
−m1A1

m2
; using this expression in the equation above, one obtains∫ a

−a
e(β+iα)t(g(t) − c′(t))dt =

−(β + iα)
E0

A1(α)
m1

(α2 + νm2
1) +
−m1A1(α)

m2
2

(α2 + νm2
2)
 (51)

By simplifying the terms inside the bracket, we get

β + iα
E0

A1(α)
m1α

2

m2
2

+ νm1 −
α2

m1
− νm1

︸                             ︷︷                             ︸
α2

m2
1−m2

2
m1m2

2

=

∫ a

−a
e(β+iα)t(g(t) − c′(t))dt , (52)

which leads to

A1(α) =
E0m1m2

2

α2(m2
1 − m2

2)(β + iα)

∫ a

−a
e(β+iα)tg(t)dt =

−m2

m1
A2 (53)

By substituting

A1(α) =
E0m1m2

2

α2(m2
1 − m2

2)(β + iα)

∫ a

−a
e(β+iα)tg(t)dt

A2(α) =
−E0m2

1m2

α2(m2
1 − m2

2)(β + iα)

∫ a

−a
e(β+iα)tg(t)dt
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into σyy in equation (28) and using boundary condition (b) σyy(x,+0) = p(x) in equation (30), we obtain

p(x) = lim
y→+0

1
2π

∫ a

−a
g(t)eβt

∫ ∞

−∞

E0m1m2(m1e−m2y − m2e−m1y)
(m2

1 − m2
2)(β + iα)︸                                ︷︷                                ︸

K(y,α)

ei(t−x)αdαdt , |x| < a , (54)

which is the expression for the loading on the crack face. The derived integral equation (54) is the target that we have been
seeking, and asymptotic analysis needs to be conducted here to determine the type of singularity that the kernel K(y, α)
may possess (Mikhlin, 1964; Muskhelishvili, 1953; Sneddon & Lowengrub, 1969).

2.6.1 Asymptotic Analysis of Kernel K(y, α) in Equation (54)

Equations (24) and (25) show that the asymptotic behavior of m1 and m2 is

m1 → |α| and m2 → |α| as |α| → ∞ (55)

Let K(y, α) be the following part of the integrand in the inner integral of equation (54):

K(y, α) =
E0m1m2(m1e−m2y − m2e−m1y)

(m2
1 − m2

2)(β + iα)
(56)

Accordingly, let the inner integral of equation (54) be denoted as

h(x, y, t) =
∫ ∞

−∞
K(y, α)ei(t−x)αdα (57)

and let K∞ be the asymptotic value of K(y, α) , that is

K∞(y, α) = lim
|α|→∞

K(y, α)

= lim
|α|→∞

E0m1m2(m1e−m2y − m2e−m1y)
(m2

1 − m2
2)(β + iα)

 . (58)

Substituting equation (55) into equation (56), which states that m1 → |α| and m2 → |α| as |α| → ∞, we obtain

K∞(y, α) =
E0|α||α|(m1 − m2)e−|α|y

iα(m1 − m2)(|α| + |α|)

=
E0

2i
α

|α|e
−|α|y (59)

Using addition and subtraction, equation (57) can be rewritten as

h(x, y, t) =
∫ ∞

−∞
[K(y, α) − K∞(y, α)]ei(t−x)αdα +

∫ ∞

−∞
K∞(y, α)ei(t−x)αdα . (60)

The second integral in the above equation may be expressed as∫ ∞

−∞
K∞(y, α)ei(t−x)αdα =

∫ ∞

−∞

E0

2i
α

|α|e
−|α|yei(t−x)αdα

=

∫ ∞

−∞

E0

2i
α

|α|e
−|α|y[cos(t − x)α︸                   ︷︷                   ︸

an odd function in α

+i sin(t − x)α]dα

=

∫ ∞

−∞

E0

2
α

|α|e
−|α|ysin(t − x)α︸                  ︷︷                  ︸

an even function in α

dα

=

∫ ∞

0
E0e−αy sin(t − x)αdα

=
E0(t − x)

(t − x)2 + y2 , (61)
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where the last equality is obtained from integrating by parts twice. It is worth of pointing out that equation (60) is vital in
SIEM, for this is the step that the singularity is isolated out, and this “singular integral” is carried out analytically.

Let
M(α) =

m1m2

(β + iα)(m1m2)
ei(t−x)α (62)

Substituting equations (56), (59), and (61) into (60), we obtain

h(x, y, t) =

∫ ∞

−∞
[K(y, α) − K∞(y, α)]ei(t−x)αdα +

∫ ∞

−∞
K∞(y, α)ei(t−x)αdα

=

∫ ∞

−∞

E0m1m2(m1e−m2y − m2e−m1y)
(m2

1 − m2
2)(β + iα)

− E0

2i
α

|α|e
−|α|y

 ei(t−x)αdα

+
E0(t − x)

(t − x)2 + y2 . (63)

By letting y→ +0 in the first integral of equation (63)7, one obtains

lim
y→+0

h(x, y, t) =

∫ ∞

−∞

[
E0m1m2

(m1 + m2)(β + iα)
− E0

2i
α

|α|

]
ei(t−x)αdα

+ lim
y→+0

E0(t − x)
(t − x)2 + y2 (64)

The integral in equation (64) can be split into two integrals:

Integral one =

∫ ∞

−∞

E0m1m2

(m1 + m2)(β + iα)
ei(t−x)αdα

=

∫ ∞

0

E0m1m2ei(t−x)α

(m1 + m2)(β + iα)
dα +

∫ ∞

0

E0m1m2ei(t−x)(−α)

(m1 + m2)(β − iα)
dα

= E0

∫ ∞

0
M(α) + M(−α)dα

Integral two =

∫ ∞

−∞

E0

2i
α

|α|e
i(t−x)αdα =

∫ ∞

−∞

E0

2i
α

|α| [cos(t − x)α︸             ︷︷             ︸
an odd term

+i sin(t − x)α]dα

=

∫ ∞

−∞

E0

2
α

|α| sin(t − x)α︸           ︷︷           ︸
an even term

dα =
∫ ∞

0
E0 sin(t − x)αdα .

So we obtain h(x, y, t) as

lim
y→+0

h(x, y, t) = E0

∫ ∞

0
[M(α) + M(−α) − sin(t − x)α]dα

+ lim
y→+0

E0(t − x)
(t − x)2 + y2 (65)

Considering the limit y→ +0 and substituting equation (65) into (54), we obtain

p(x) =
1

2π

∫ a

−a
g(t)eβt

(
E0

∫ ∞

0
[M(α) + M(−α) − sin(t − x)α]dα +

E0

t − x

)
dt , |x| < a . (66)

Replacing E0
2 by 4µ0

1+κ , we get

1 + κ
4µ0

p(x) =
1
π

∫ a

−a
g(t)eβt

(∫ ∞

0
[M(α) + M(−α) − sin(t − x)α]dα +

1
t − x

)
dt , |x| < a . (67)

7limy→+0
E0(t−x)

(t−x)2+y2 =
E0
t−x
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The equation can be rewritten in the form

1
π

∫ a

−a

[
eβt

t − x
+ k(x, t)

]
g(t)dt =

1 + κ
4µ0

p(x) , (−a < x < a) , (68)

where the Fredholm kernel is defined by

k(x, t) = eβt
∫ ∞

0
[M(α) + M(−α) − sin(t − x)α]dα (69)

Therefore, we have reached the singular integral equation (68). It has a Cauchy singularity, and the integral is evaluated
according to Cauchy principal value. Due to the complicated form of the regular kernel k(x, t) in equation (69), one has
to undergo a numerical approximation, which will be addressed in the next section.

3. Numerical Part of SIEM

The numerical part of SIEM actually takes about the same amount effort as the theoretical part. Due to the focus of this
work is on the derivation of the Fredholm singular integral equation, we briefly address the numerical part of SIEM here.
Our plan is to deliver another work on the details of the numerical part of SIEM, same as this paper about the theoretical
part, in summer 2018 REU program.

3.1 Numerical Procedures of SIEM

The numerical solution of equation (68) can be divided in the following six steps (same step number as the theoretical
part):

• Normalization

• Representation of the Density Function

• Tchebyshev Polynomial Expansion

• Formation of Linear System of Equations

• Evaluation of Singular and Hypersingular Integrals

• Evaluation of Non-singular Integral

We shall briefly address some of six steps below.

3.1.1 Normalization

For numerical solution we normalize the interval (−a, a) by defining

s =
t
a
, r =

x
a
, ϕ(s) = g(t) , n(r, s) = k(x, t) , q(r) = p(x) , −1 < r, s < 1 , −a < x, t < a ,

so that the normalized version of integral equation (68) becomes

1
π

∫ 1

−1

[
eβas

s − r
+ n(r, s)

]
ϕ(s)ds =

1 + κ
4µ0

q(r) , (−1 < r < 1), (70)

accompanied with the single-valued condition
∫ 1
−1 ϕ(s)ds = 0 , where a is the crack length, β , κ , and µ0 are material

parameters, ϕ is the slope of the crack profile, n is the Fredholm kernel, q is the loading function, s is the integration
variable, and r is the collocation variable.

3.1.2 Representation of the Density Function

Because of the Cauchy singularity, we select our density function to be

eaβs ϕ(s) =
Φ(s)
√

1 − s2
. (71)

This step is actually the key step that how SIEM can capture the crack singularity. The representation of the density
function by a function 1√

1−s2
is a mathematical outcome from solving a Cauchy singular integral equation (Hadamard,

1952; Martin, 1991; Martin, 1992; Muskhelishvili, 1953; Muskhelishvili, 1963; Sölingen, 1939).
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3.1.3 Tchebyshev Polynomial Expansion

The Φ(s) in equation (71) is approximated by Tchebyshev polynomials (Hochstrasser, 1972):

Φ(s) ≈
N−1∑
n=0

AnTn(s) , (72)

where Tn(s) are the Tchebyshev polynomials of first kind, and An’s are coefficients that need to be determined numerically.
The upper index N − 1 is related to the number of collocation points we choose.

3.1.4 Formation of Linear System of Equations

By the approximation of Φ(s) in equation (72), if we choose N collocation points, then we will need to solve an N × N
linear system of the unknown An’s.

3.1.5 Evaluation of Singular Integrals

The main formula used in evaluation of the singular integrals is ()

1
π

∫ 1

−1
− Un(s)

√
1 − s2

s − r
ds = −Tn+1(r) , n ≥ 0 and |r| < 1 , (73)

where the Tn(r) and Un(r) are the Tchebyshev polynomials of the first and second type, respectively.

3.1.6 Evaluation of Non-singular Integrals

Some quadrature methods are used in evaluation of the non-singular integrals. As the integral domain is from 0 to infinity,
convergence test at this step needs to be carefully conducted to make sure the numerical results are stable.

3.2 Numerical Results

Figure 3. Normalized SIFs at different material parameters βa for an infinite nonhomogeneous plane subjected to uniform
crack surface traction σyy(x, 0) = −p0. E(x) = E0eβx; ν = 0.3; “◦” is for KI(a)/(p0

√
πa), and “△” is for KI(−a)/(p0

√
πa).

3.2.1 Stress Intensity Factors

Since the propagation of a crack starts around its tips, it is very important to study and determine the stress intensity
factors (SIFs) at both crack tips. The mode-I SIFs can be calculated from (Erdogan, 1995; Gdoutos, 1993)

KI(a) = lim
x→a+

√
2π(x − a)σyy(x, 0) , (x > a) (74)

and

KI(−a) = lim
x→−a−

√
2π(−a − x)σyy(x, 0) , (x < −a) (75)

After normalization one may consider the crack-tip are located at r = 1 and r = −1.
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To compute the SIFs, a useful integral involving Tchebyshev polynomials is given here [?]:

1
π

∫ 1

−1

Tn(s)

(s − r)
√

1 − s2
ds = −

(
r − |r|r

√
r2 − 1

)n

|r|
r

√
r2 − 1

, |r| > 1 . (76)

Notice that the integral is no longer singular, as |r| > 1. We report the SIFs in Figure 3.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x/a

0

0.2

0.4

0.6

0.8

1

1.2

1.4
E

0
V

(x
) 

/ (
a 

p 0
) 

Crack surface displacement E
0
V(x)/(a p

0
) for β = 1.0(-), 0.5(--), 0.1(-.)

β = 0.1

β = 0.5

β = 1.0

Figure 4. Crack surface displacements in an infinite nonhomogeneous plane under uniform crack surface loading
σyy(x, 0) = −p0 at various material parameters βa, and a is the half crack length; ν = 0.3.

3.2.2 Crack Surface Displacement

We also compute the crack surface displacements at various material parameters βa, and they are shown in Figurer. The
numerical outcomes have been compared with the results by Delale and Erdogan (Delale & Erdogan, 1983) and they are
consistent.

4. Conclusion Remarks

Our contribution of this paper falls into the review category, but singulalr integral equation method (SIEM) is a method
that a lot of original research can take advantage of it; just like finite element method (FEM) has been so widely used in
fracture mechanics. However, compared with other numerical methods, SIEM sometimes is called a “semi-analytical”
method due to its nature involving heavy analytical work. As SIEM is so suitable for dealing with crack singularity
and its flexibility in the underlying linear elasticity theory, it has been used so frequently in fracture mechanics, and
authors believe that SIEM deserves a comprehensive and a well documented treatment. Our work in this paper is focus on
theoretical part, and we also briefly address the numerical part. (Authors plan to have another focus work on the numerical
part in the near future.) We also provide some solution results including crack surface displacement profiles and stress
intensity factors (SIFs). By a comprehensive and well organized presentation of SIEM, we hope that fracture mechanics
community can benefit from our work.
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