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Abstract

Redeveloping sites to accommodate housing or new economic activities is a major urban policy challenge. This problem
belongs to the class of NP-hard problems. In this paper, we present an attractive mixed integer nonlinear programming
formulation for the transportation network and land use problem. We first introduce a new useful nonlinear formulation
of this challenging combinatorial optimization problem. Then, an alternative to considering a linearity of the constraints
is to reformulate the problem as a new exact, compact discrete linear model. The problem is solved by our new algorithm
and numerical results are presented for a number of test problems in academics instances.
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1. Introduction

The Transportation Network and Land-Use (TNLU) problem is a combination of the transportation network optimization
problem and land use planning or Quadratic Assignment Problem (QAP). This model appears, for example, if we decided
to find locations or relocations of some a city amenities (home, shop, work or leisure places), that may reduce travel time
or travel distance. By solving this problem we want to have the best layout of the city in the direction of the location
of activities and roads linking these activities. A better configuration of activity locations and transportation for a city
would reduce congestion and pollution. For example, we can consider the Koopman and Beckmann (1957) version of the
problem, which can informally be stated with reference to the following practical situation: a municipality must decide to
assign n activities to an equal number of locations and want to minimize the total cost of location and transportation. For
each pair of activities (i, j) a flow of communication fi j is known, and for each pair of locations (l, k) the corresponding
distance Lkl is known. The transportation cost between activities i and j is fi jLkl, where i and j are assigned to locations k
and l, respectively. The objective of the municipality is to find (i) an assignment that minimizes the sum of the total linear
cost for installing an activity to a location, (ii) the total quadratic interaction cost, (iii) the flow between the activities and
(iv) total cost that link roads between activities.

Since the 60s many authors are interested in these two problems separately: for example Scott (1969), Boyce, Farhi and
Weischedel (1973)and Hoang Hai Hoc (1973) for network design problems; Lawler (1963), Maniezzo (1997), Xia and
Yuan (2006), Huizhen Zhang (2010) and many others for the activities’s location problems. Marc Los and more recently
Lin and Feng are interested in the combined problem. They have considered a more complex model in the sense that their
formulation allows the location of several activities in the same area. Marc Los gave an exact solving method and heuristic
methods. The Los’s model take into account to the OD flow, once the activities have been fixed, via the shortest paths
in the sense of a fixed cost independent of the flow on the arcs (see Gueye (2012)). For more details or a review of the
literature, we refer the reader to Baldé and Ndiaye (2016), Duranton and Puga (2015), and Gueye (2012). The TNLU can
be formulated as a Mixed Integer NonLinear Programming (MINLP) problem. Many algorithms and softwares (as Cplex
(2016), Gurobi (2016), Couenne (2018), etc.) are proposed in the literature to solve non linear (quadratic) programmming
problem, but present some limitations for large number of variables. The quadratic assignment problem constitutes the
natural formulation of a large number of concrete problems, belonging to various fields. Its complexity is such that the
proposed methods so far to solve it were not of sufficient effectiveness.

In this paper, we propose finite linearization and an algorithm to find good solutions with fewer iterations and running
times. It is a new resolution method based on a dichotomic translation of a hyperplane and can give better results compared
to those obtained by other methods of solvers. We refer the reader to see first Lavallée, Ndiaye and Seck (2011); and
Ndiaye, Lavallée and Seck (2013) for an application of the algorithm to the Klee and Minty problem, for example. As
the algorithm is designed to solve a linear programming problem, we first linearize the TNLU problem and introduce
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(arbitrary constraint) support hyperplane guaranteed by the objective function. In other words, we add in the constraint
a hyperplane parameterized by real α0, which serves as a barrier. Secondly, to start with the resolution, we set an initial
condition and a stopping criterion. To verify the obtained solution of the senegaulois algorithm, we compare it with
solutions given by Cplex and Gurobi (we give to Cplex and Gurobi the quadratic problem).

The paper is organized as follows. In section 2 we present definition and assumptions. In section 3, we give the formulation
of the TNLU. In section 4 we introduce a new linearization for the TNLU. In section 5 we develop a brief presentation of
senegaulois algorithm. The section 6 provides numerical simulations using test problems in academics instances. Finally,
in section 7, we provide conclusions and suggestions for future works.

2. Definitions, Assumptions and Theorems

Let us formulate the main concepts used in the paper, mainly for sections 3 and 5.

Definition 2.1 (Construction graph). Let G1 = (N1, E1) and G2 = (N2, E2) two non-oriented graphs, where N1 and N2
(|N1| = |N2| = n) represent respectively the set of vertices of the graph G1 and G2, and E1 and E2 represent respectively
all edges (or arcs) of G1 and G2.

The graph matching plays a central role in solving correspondence problems in computer vision. Graph matching prob-
lems that incorporate pair-wise constraints can be cast as a quadratic assignment problem (QAP) (see Koopmans and
Beckmann(1957)). Unfortunately, (QAP) is known to be NP-hard (see Sahni and Gonzalez (1976)) and many algorithms
have been proposed to solve different relaxations.

Definition 2.2 (Exact Graph Matching). The graph matching problem can be stated as follows: Given two graphs G1 =

(N1, E1) and G2 = (N2, E2), with |N1| = |N2| the problem is to find a one-to-one mapping π : N1 −→ N2 such that
(i, j) ∈ E1 if and only if (π(i), π( j)) ∈ E2.When such a mapping π exists, this is called an isomorphism.

Definition 2.3 (Isomorphic graphs). Two graphs G1,G2 are isomorphic (symbol �) if there is a bijection π : N(G1) →
N(G2) : (i, j) ∈ E(G1)⇐⇒ (π(i), π( j)) ∈ E(G2).

A bijection of a finite set of cardinal n on itself is a permutations of n elements. We denote by S nthe set of permutations
de {1, ..., n}.

S n = {π : N1 −→ N2 | π is bijective}

Given an activity i ∈ E(G1), then π(i) = k implies that activity i (i− th component in the ordered set N2) is at location k. In
the optimization problem, we are looking for the best assignment, i.e., we have to optimize some objective function which
depends on the assignment π. Assignments can be represented in different ways. The bijective mapping between two finite
sets N1 and N2 can be represented in a straight forward way by a perfect matching in a bipartite graph G = (N1,N2; E),
where the vertex sets N1 and N2 have n vertices. Edge (i, k) ∈ E is an edge of perfect matching iff k = π(i).

Definition 2.4 (Final graph). Let G = (N, E) be the general graph. G is determined by the data of two sets:

• a non-empty finite set N whose elements are called vertices

N =
{
(i, π(i)) : i ∈ N(G1), π(i) ∈ N(G2)

}
• a set E of vertex pairs called edges.

E =
{
((i, k), ( j, l)) : (i, j) ∈ E(G1), (π(i), π( j)) ∈ E(G2), i , j, k , l

}
The arcs ((i, k), ( j, l)) for all i , j, k , l of G are connected if starting from the nodes i to the zone k = π(i) it is
possible to reach the node j at the zone l = π( j). We can see, in the Figure 1 the location of the set of activities on
the zones as a bijective mapping π(.) of all activities to all zones.

Now, let’s define two theorems dealing with the question of existence of a hyperplane that separates two given disjoint
convex subsets.

Definition 2.5. We define hyperplaneH with equation [ f = α] the linear set :

H = {x ∈ Rn : f (x) = α} (1)
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Theorem 1 (Hahn-Banach I). Let E be a finite-dimensional vector space with inner product ⟨., .⟩. Let C1,C2 ⊂ E two
non-empty convex sets such that C∞1 ∩ C∞2 = {0} (where C∞1 and C∞2 are asymptotic cones of C1 and C2, respectively).
Then, it is possible to separate C1 and C2. There exists a vector ξ ∈ E such that:

sup
x1∈C1

⟨ξ, x1⟩ ≤ inf
x2∈C2
⟨ξ, x2⟩

Corollary 1. Suppose that C1,C2 ⊂ E are non-empty closed convex sets with C1 compact, C2 closed. If C1 ∩C2 = ∅ then
C1 and C2 are strictly separated by a hyperplane.

xik

x jl

Zk

Zl
Lkl

Ai

A j

fi j

di j

Configuration

G1: Activities

w

w

w

�

G2: Zones

Figure 1. Localization area and network design

Theorem 2 (Hahn-Banach II). Let E be a finite-dimensional vector space with inner product ⟨., .⟩. Let C1,C2 ⊂ E be two
non-empty disjoint convex subsets. Then, there exists a nonzero vector ξ ∈ E\{0} such that :

sup
x1∈C1

⟨ξ, x1⟩ ≤ inf
x2∈C2
⟨ξ, x2⟩

Corollary 2.

• Let C be a non-empty closed convex set. ∀u ∈ ∂C (the border of C), C is supported at u. If C is a convex set of a
topological vector space, any point of the border of C is in a supporting hyperplane.

• Let C be a closed convex set, then
C =
∩
Π∈p

Π

where p is the set of the half-space containing C.

More details can be found in Lavallée, Ndiaye and Seck (2011); and Ndiaye, Lavallée and Seck (2013).

3. Formulation of the Mathematical Model

3.1 Indices, Sets and Parameters

• N1: set of activities (= {1, ..., n}),

• N2: set of zones (= {1, ..., n}),

• N: set of assignment,

• E1 = {(i, j) : i, j ∈ N1, i , j}: set of arcs between each activity pairs,
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• E2 = {(k, l) : k, l ∈ N2, k , l}: set of arcs between each pairs of the area,

• E = {((i, k), ( j, l)) : (i, j) ∈ E1, (k, l) ∈ E2, i , j, k , l}: set of edges,

• F = ( fi j)n×n: the flow matrix volume from activity i and j,

• D = (di j)n×n: the distance matrix between location i and j,

• C = (cik)n×n: location cost matrix of the activity i on the area k,

• B = (bi j)n×n: construction cost matrix of ”build” the link or road (i, j).

3.2 Variables

The variables of the model can be divided into three groups. The first group includes the binary variables xik. The second
group yi j represents the network configuration. The last group contains the continuous variables Lkl that determine the
length of the path k to l.

• Let us start with the observation that every permutation π of the set N = {1, ..., n} can be represented by an n × n
matrix Xπ = (xi j), such that

xik =

 1 if activity i is assigned to area k (π(i) = k),
0 otherwise (π(i) , k).

(2)

Matrix Xπ = (xi j) is called a permutation matrix and caracterized by following assignment contraints:∑
k:(i,k) ∈ E

xik = 1, for all i ∈ N1 (3)∑
i:(i,k) ∈ E

xik = 1, for all k ∈ N2 (4)

xik ∈ {0, 1}, for all (i, k) ∈ E.

The 3 and 4 equalities of assigning each element of N1 to an element of N2.

• To determine the existence of a path in the network (whether or not there is a direct road link between i and j), we
define binary variables (boolean) yi j here below:

yi j =

 1 if the link (i, j) is selected for construction,
0 otherwise.

(5)

• Then it is necessary to introduce variables of shortest path Lkl between the location k and location l and variables
zkl

i j which take value 1 if the shortest path between k and l goes by link (i, j) and 0 otherwise. We have:

zkl
i j =

 1 if the link (i, j) is selected in the path from k to l

0 otherwise.
(6)

If we consider the distances of the arcs (i.e. between each pair of activity) as the costs associated with the flow on the
arcs, then the problem of the shortest path from k to l can be formulated as a minimum-cost flow problem (FCM) to move
a flow unit from the activity i to k to the activity j to l.

The out-degree of i: δ+(i) =
{
j ∈ N1 : (i, j) ∈ E1

}
is the number of arcs that have i as an initial vertex (e.g. the number of

arcs coming out of i).

The in-degree of i: δ−(i) =
{
j ∈ N1 : ( j, i) ∈ E1

}
is the number of arcs that have i as a terminal vertex (e.g. the number of

arcs coming into i).
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The minimum-cost network flow problem (FCM) is a fundamental problem in network analysis that involves sending flow
over a network at minimal cost. Let G1 = (N1, E1) be a directed graph. For each link (i, j) ∈ E1, associate a cost per unit
of flow, designated by di j.

(FCM) : min
π∈S n,z

∑
(i, j)∈E1

∑
(k,l)∈E2

di jzkl
i j (7)

s.t. :
∑

j:(i, j)∈δ+(i)

zkl
i j −

∑
j:( j,i)∈δ−(i)

zkl
ji =


1 si i = o(k)
0 si i ∈ N \ {o(k), d(l)}
−1 si i = d(l)

(8)

zkl
i j ∈ {0, 1}, (i, j) ∈ E1, (k, l) ∈ E2. (9)

where, o(k): is origin (area of origin) and d(l): is destination (area of destination) .

The shortest-path problem (SPP) (Kelly and O’Neill (1991))is to find the directed paths of shortest length from a given
root node to all other nodes. Moreover, the (SPP) is also a special case of the (FCM), where the objective is to find the
minimum distance or length between two given nodes (e.g., nodes k and l). Here, the values of the n × 1 vector b are now
restricted only to 0, 1 or −1. The mathematical formulation of the (SPP) is as follows:

(S PP) : min
(k,l)∈E2

Lkl (10)

s.t. :
∑

(i, j)∈E1

di jzkl
i j ≤ Lkl, (k, l) ∈ E2 (11)

∑
j:(i, j)∈δ+(i)

zkl
i j −

∑
j:( j,i)∈δ−(i)

zkl
ji = b(i) =


1 si i = o(k)
0 si i ∈ N \ {o(k), d(l)}
−1 si i = d(l)

(12)

zkl
i j ∈ {0, 1}, (i, j) ∈ E1, (k, l) ∈ E2. (13)

The optimum solution to this problem sends unit flow from the root to every other node along a shortest path.

3.3 Transportation Network and Land Use (TNLU) Problem

This problem is a combined model composed of the following subproblems: an activity localization problem for the
optimal location of activities; a problem of configuration and dimensioning of the transport network to define a transport
network or its evolutions, considering a set of potential road, having a cost of construction and use, according to the
observed flows. The objective is to assign each activity to a location such that the total cost is minimized:

The constraints 3.14 and 3.15 are the so-called assignment polytope or assignment constraints (see Burkard, Cela, Pardalos
and Pitsoulis (1999)), they make it possible to ensure that each activity is assigned in a zone and each zone accommodates
one and only one activity. Equalities 3.16 and 3.17 define the origin and destination of the path. The constraint 3.18 is the
conservation constraint at each node. The constraints 3.19 ensure that the sum of the distances of the activities assigned to
the different zones does not exceed the maximum distance (or length) Lkl between the zones. The constraints 3.20 make it
possible to define the roads to construires or not. The 3.21 and 3.22 constraints ensure that the decision variable is binary.
The 3.23 constraints ensure that the decision variables are continuous.

4. Linearizations of the QAP

To linearize the objective function we introduce new variables and linear contraints for the QAP to eliminate the quadratic
term of 3.13. This methods transform the problem into a mixed linear program (see Burkard, Cela, Pardalos and Pitsoulis
(1999)). The first linearization, proposed independently by several authors Fortet (1960), Watters (1967) , involved the
addition of one binary variable and two linear constraints for each product of two variables. In 1974, Glover and Woolsey
(1974) made a major breakthrough by proposing a linearization where the additional variable was not required to be
explicitly defined as an integer. This linearization will be referred to, in this paper, as the standard linearization. Consider
the problem of assigning a set of activities to a set of locations, with the cost being a function of the distance and flow
between the activities, plus costs associated with a facility being placed at a certain location. Hence the name Quadratic
Assignment Problem by Koopmans and Beckmann (1957):

(QAP) : Minimize
x,L

∑
(i,k)∈E

cik xik +
∑

((i,k),( j,l))∈E
fi jLklxik x jl (14)

s.t. x ∈ X, x binary. (15)
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MINLP: Mixed Integer NonLinear Problem

minimize
x,y,L

∑

(i,k)∈E

cik xik +

∑

((i,k),( j,l))∈E

fi jLklxik x jl +

∑

(i, j)∈E1

bi jyi j (3.13)

s.t. :
∑

i:(i,k)∈E

xik = 1, ∀ k ∈ N2, (3.14)

∑

k:(i,k)∈E

xik = 1, ∀ i ∈ N1, (3.15)

∑

j:(i, j)∈E1

zkl
k j = 1, ∀ (k, l) ∈ E2, (3.16)

∑

i:( j,i)∈E1

zkl
il = 1, ∀ (k, l) ∈ E2, (3.17)

∑

j:(i, j)∈E1

zkl
i j =

∑

j:( j,i)∈E1

zkl
ji, ∀ (k, l) ∈ E2,∀ i ∈ N1 (3.18)

∑

(i, j)∈E1

di jz
kl
i j ≤ Lkl, ∀ (k, l) ∈ E2, (3.19)

zkl
i j + zkl

ji ≤ yi j, ∀ (i, j) ∈ E1, (k, l) ∈ E2, (3.20)

xik, yi j ∈ {0, 1}, ∀ (i, k) ∈ E, (i, j) ∈ E1, (3.21)

zkl
i j ∈ {0, 1}, ∀ (i, j) ∈ E1, (k, l) ∈ E2, (3.22)

Lkl ≥ 0, ∀ (k, l) ∈ E2. (3.23)

Here the feasible region X is the assignment polytope.

X =
{
xik ∈ {0, 1} :

∑
i:(i,k)∈E

xik = 1 for all k ∈ N2,
∑

k:(i,k)∈E
xik = 1 for all i ∈ N1

}
(16)

4.1 Linearization of the Product of Two Variables

4.1.1 Standard Linearization (Bin × Bin)

Standard Linearization (S L) consists of linearizing the product of two binary variables (see Glover (1975)). The principle
of ”standard” (or ”classic”) linearization is to replace remplace xik x jl par Xik jl. Then add the three inequalities below:

(S L) :



Xik jl ≤ xik,

Xik jl ≤ x jl,

Xik jl ≥ xik + x jl − 1,
Xik jl ≥ 0 ∀ ((i, k), ( j, l)) ∈ E,

xik ∈ {0, 1} ∀ (i, k) ∈ E.

(17)

The problem (QAP) is then rewritten thus adding to the assignment constraint the system 17:

(QAP) :


Minimize

L,X

∑
(i,k)∈E

cik xik +
∑

((i,k),( j,l))∈E
fi jLklXik jl

subject to 15,− 16.
(18)
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4.1.2 Product Linearization (Bin × Bin)

We always consider the formulation of Koopmans and Beckmann (1957). We multiply both sets of assignment con-
straints 4.3 by each problem variable xik, ∀ (i, k) ∈ E. We then linearize the resulting products by requiring Xik jl =

xik x jl, ∀ ((i, k), ( j, l)) ∈ E. We obtain the following linearization constraints (see Blanchard, Elloumi, Faye and Wicker
(2002):


∑

i

xik x jl = x jl∑
k

xik x jl = x jl

=⇒ (Xik jl = xik x jl) =⇒


∑

i

Xik jl = x jl∑
k

Xik jl = x jl

(19)

The reformulation of the problem (QAP) is given as follows:



Minimize
X,L

∑
(i,k)∈E

cik xik +
∑

((i,k),( j,l))∈E
fi jLklXik jl

s.t. :
∑

i:(i,k)∈E
Xik jl = x jl, ∀ j ∈ N1, ∀ k, l ∈ N2∑

k:(i,k)∈E
Xik jl = x jl, ∀ i, j ∈ N1, ∀ l ∈ N2

Xik jl ≥ 0 ∀ ((i, k), ( j, l)) ∈ E

xik ∈ {0, 1} ∀ (i, k) ∈ E.

(20)

4.1.3 Linearizing the Product of a Binary and a Continuous Variable (Bin ×Cont)

In the objective-function, the product LklXik jl is replaced by a non-negative variable Zik jl which will take the same value
as Lkl when Xik jl = 1, and will be zero when Xik jl = 0. If Lkl is bounded below by zero and above by Lmax (or any BigM),
i.e. 0 ≤ Lkl ≤ Lmax. Suppose now that we have Zik jl = LklXik jl, where Lkl is a continuous variable and Xik jl is your binary
variable. Add the three inequalities below (Coelho (2018))

Zik jl = LklXik jl =⇒


Zik jl ≤ LmaxXik jl,

Zik jl ≤ Lkl,

Zik jl ≥ Lkl − (1 − Xik jl)Lmax,

Zik jl ≥ 0,

(21)

Note that if Xik jl is zero, than the first inequality ensures that Zik jl will be zero as well (note that the third inequality only
states that Zik jl has to be greater than a negative number) . On the other hand, if Xik jl is 1, the first inequality ensures that
Zik jl is less than our BigM = Lmax, which is further tightened by our second inequality. The last inequality states then that
Zik jl has to be greater than or equal to Lmax, exactly as we wanted. Finally, if Lmax is not bounded below by 0, but has
bounds [0, Lmax] (with Lmax assumed to be positive due to the last inequality), then the form of the linearized inequalities
are the following:

4.2 Binary to Continuous Variables

Consider a problem (IP)0−1 involving a binary variable x ∈ {0, 1}. This can be reformulated as follows (see Billionnet,
Elloumi and Lambert (2013)):

(IP)0−1 :


Min

x
f (x)

s.t.
xi ∈ X ⊆ {0, 1}, i = 1, ..., n.

⇐⇒


min

x
f (x)

s.t.

x2
i − xi = 0, i = 1, ..., n.

(22)

Since a binary variable xi ∈ X can only take values in {0, 1}, any univariate equation in x that has exactly x = 0 and
x = 1 as solutions can replace the binary constraint xi ∈ {0, 1}n. The most commonly used is the quadratic constraint
x2

i = xi. The linear reformulation of (IP)0−1 consists of asking Xii = xixi, ∀ i, and then using standard linearization 4.1.1.
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Additionally, for all xi ∈ {0, 1}, i = 1, ..., n, Xii = xi, ∀ i.

Xii ≤ xi,

Xii ≥ xi,

Xii ≥ xi + xi − 1,
Xii ≥ 0 ∀ i, j,

xi ∈ {0, 1} ∀ i.

⇐⇒


Xii ≤ xi, (a)
Xii ≥ xi, (b)
Xii ≥ 2xi − 1, (c)
Xii ≥ 0 ∀ i (d)

(23)

Constraints (a) and (b) imply Xii = xi. Consequently, contraints (c) and (d) become 0 ≤ Xii ≤ 1.

This process would reduce all binary problems to nonconvex quadratically constrained problems. We refer the reader to
Liberti, Cafieri and Tarissan (2009) for more details.

Finally, we obtain the continue linearization problem:

5. The Senegaulois Algorithm

We consider a linear programming problem below :

max cT x

s.c. Ax ≤ b (24)
x ≥ 0

where x represents the vector of variables (to be determined), c and b are vectors of (known) coefficients, A is a (known)
matrix of coefficients, and (.)T is the matrix transpose. Recall that convex polyhedron on E is a set P as:

P = {x ∈ Rn : Ax ≤ b}, (25)

Let f be a linear functional on E, α ∈ R, C1 ⊂ E and C2 ⊂ E.

f (x) = cT x, x ∈ Rn

Now we briefly recall some concepts, such as the Hahn-Banach theorems. The proofs can be obtained in Achmanov
(1984), and in Brezis, Ciarlet and Lions (1999) for polyhedron.

Using the separation theorem, every such hyperplaneH divides the whole space in two convex sets:

Hl = {x ∈ Rn : f (x) ≤ α}

and
Hr = {x ∈ Rn : f (x) ≥ α}

known as halfspaces. One part contains the polytope K defined from the constraints in 1.

Then, the following cases hold:

1. Hyperplane H does not divide the whole polytope K of constraints, then H is outside the feasible solutions, i.e.
H ∩ K = ∅ (H ∩ K does not contain any solution). In such case, it is necessary to choose another hyperplane
H ′
//H (parallel) such thatH ′

lies between the origin 0 andH .

2. HyperplaneH divides the whole polytope K of constraints, then there is a non-empty intersection between H and
K, i.e. H ∩ K , ∅. In this situation, the problem contains some feasible solutions and K is separated by H . If the
stopping test fails, then a new separation hyperplane H∗// H is chosen such that H∗ lies in the half-space which
does not contain the origin 0.

3. Polytope K is empty, the problem has no solution.

5.1 The Algorithm

SupposeH : f (x) = α and K the initial polytope defined by the set of constraints of problem 5.1. If H ∩ K = ∅, then we
state α :=

α

2
. That is to say that we divide the gap between 0 and α into two parts. It is the main idea of the algorithm.

Now suppose that we have two values of α denoted by α0 and α1 such that:
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MILP1: Mixed Integer Linear Problem with continuous variables

minimize
x,Z,y

∑

(i,k)∈E

cik xik +

∑

((i,k),( j,l))∈E

fi jZik jl +

∑

(i, j)∈E1

bi jyi j

Subject to:

Assignment∑

i

xik = 1, ∀k ∈ N2, (4.11)

∑

k

xik = 1, ∀i ∈ N1, (4.12)

Conservation of flows for each pair (k, l)∑

j:(i, j)∈E1

zkl
k j = 1, (k, l) ∈ E2, (4.13)

∑

i:( j,i)∈E1

zkl
il = 1, (k, l) ∈ E2, (4.14)

∑

j:(i, j)∈E1

zkl
i j =

∑

j:( j,i)∈E1

zkl
ji, (k, l) ∈ E2, (4.15)

∑

(i, j)∈E1

di jz
kl
i j ≤ Lkl, ∀ (k, l) ∈ E2, (4.16)

Links
zkl

i j + zkl
ji ≤ yi j, ∀ (i, j) ∈ E1, (k, l) ∈ E2, (4.17)

Linearization (Bin × Bin) =⇒ Xik jl = xik x jl

Xik jl ≤ xik, ∀ (i, j) ∈ E1, (k, l) ∈ E2, (4.18)

Xik jl ≤ x jl, ∀ (i, j) ∈ E1, (k, l) ∈ E2, (4.19)

Xik jl ≥ xik + x jl − 1, ∀ (i, j) ∈ E1, (k, l) ∈ E2, (4.20)

Linearization (Bin ×Cont) =⇒ Zik jl = LklXik jl

Zik jl ≤ LmaxXik jl, ∀ (i, j) ∈ E1, (k, l) ∈ E2, (4.21)

Zik jl ≤ Lkl, ∀ (i, j) ∈ E1, (k, l) ∈ E2, (4.22)

Zik jl ≥ Lkl − (1 − Xik jl)Lmax, ∀ (i, j) ∈ E1, (k, l) ∈ E2, (4.23)

The variables
0 ≤ xik, yi j ≤ 1, ∀ (i, k) ∈ E, (i, j) ∈ E1, (4.24)

0 ≤ zkl
i j ≤ 1, ∀ (i, j) ∈ E1, (k, l) ∈ E2, (4.25)

Lkl ≥ 0, ∀ (k, l) ∈ E2. (4.26)

Zik jl ≥ 0. ∀ (i, k) ∈ E; (i, j) ∈ E1, (4.27)

• H : f (x) = α0 and K ∩H , ∅

• H : f (x) = α1 and K ∩H = ∅

Then we take a new value of
α =
α0 + α1

2
(26)

In addition, two cases are possible :

1. H : f (x) = α and K ∩H = ∅, then put α1 := α

2. H : f (x) = α and K ∩H , ∅, then put α0 := α
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And so on.
In this algorithm the hyperplane is defined by:

H = {x ∈ Rn :
n∑

i=1

cixi = α} (27)

where
n∑

i=1
cixi is the objective function (the one to maximize in our purpose) of the LP. Remark: From a geometrical point

of view, at each step of the algorithm, the new hyperplane is obtained from the previous one by a translation. Thus, we
search vectors that characterizes polytopeH defined by (27); then we search an unitary vector −→v as vectorial step.

5.2 The Stopping Test

As stated above, our algorithm works with successive approximations but the result is obtained with the desired accuracy
1. That is to say that it is the operator who gives the acceptable tolerance. Suppose that margin tolerance is ϵ ∈ Q, with
equation notations in 26, then the stopping test is :

| α0 − α1 |≤ ϵ (28)

5.3 To Provide a Solution

When bothH ∩K , ∅ and | α0 − α1 |≤ ϵ are true, a feasible solution is obtained in the part of the polytope as we can see
it in Figure 2.

x2

x10

f (x)
=
α

2

f (x)
=
α

1

A
B

S 1

S 2

Optimum

C

Figure 2. The dichotomic procedure

Geometrical explanation: Unless we have obtained the optimum, the hyperplane H0 : f (x) = α separate the other
constraints. Basis are vertices of the residual polytope. There are n such vertices associated with the separating hyperplane
satisfying the constraints. But all interior points of the residual polytope satisfy the constraints and are in the permitted
interval. All convex combination of these points is a valid solution2.

More details about the algorithm can be found in Lavallée, Ndiaye and Seck (2011); and Ndiaye, Lavallée and Seck
(2013)

6. Implementation and Numerical Results

In this section we present computational studies on the linearization approaches and the senegaulois algorithm for the
TNLU.

1It is also the case of the Katchiyan’s, Karmarkar’s, and Murty’s algorithms. And the simplex algorithm is also an approximated one due to the
limitation of the coding numbers on computers.

2It’s true because the set of solutions is convex.

51



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 11, No. 1; 2019

6.1 Implementation

Aiming to obtain the best possible bounds, we solve the linearization model globally with the senegaulois algorithm
and the mixed integer model by Cplex (2016) and Gurobi (2016). Simulations are done on a CPU@ 3.40 GHz Intel(R)
Core(TM)i7-370 HP-Pro3500 with 16 GB of main memory running Linux ubuntu. The termination criteria, i.e. the
difference between the lower and upper bounds in our algorithm, is set to 10−5.

To model the TNLU problem, we use a modeling tool known A Mathematical Programming Language (AMPL) (2018),
version 20130609. Developed at Bell Laboratories, AMPL is a high level, an algebraic modeling language for linear and
nonlinear optimization problems. Besides its ability to model optimization problems, AMPL also helps in comprehension
and completeness of the model logic, due to the similarity of its syntax to algebraic notation. It provides for an easy way
to express common linear programming structures (e.g., flow constraints). Although AMPL allows us to mathematically
model the optimization problem, we use two external solvers such as Cplex (version 12.5.) and Gurobi to solve the
problem.

The entry in AMPL includes a template file (*.mod), a data file (*.dat), and a runtime program (*.run). The AMPL
groups them in a format that the solver understands. Our algorithm based on the dichotomous search as an AMPL
script, is implemented in the (*.run) file. The AMPL execution program calls the script file (*.run) which provides the
mathematical description of the model and the data into AMPL. Then, it passes this instance of the problem to the solver,
which in turn, resolves the instance, and makes the solution to AMPL.

6.2 Numerical Results

In order to access the convergence of the senegaulois algorithm presented in section 5, we have applied it to eight exam-
ples. The obtained solutions, with our algorithm, are compared with those obtained with Cplex and Gurobi. The Table
1, with 8 test problems (tnlu1 to tnlu8), shows the result of the computational comparison and the performance of each
resolution technics, where:

• Inst: is the name of the test problem,

• NbVar: the number of variables,

• OptVal: the obtained optimal value,

• Times(s): the execution time in seconds,

• Iter: the number of iterations,

• α0: the initial value for the senegaulois algorithm.

We see that the senegaulois algorithm provides good optimal value for the TNLU problem. For some test problems on
academic instances, the number of iterations is quite small. For instances tnlu1, tnlu4 and tnlu8 the iterations are quite
small compared to Cplex and Gorubi. However, for all instances, the obtained Optimal value remains nearly the same
for the 3 methods. The Figures 3 and 4 show the evolution of the number of iterations and computational time of each

Table 1. Optimal values, times(s) and iterations for Cplex, Gurobi and Senegaulois

Inst NbVar
OptVal Times(s) Iter

α0Cplex Gurobi Senegaulois Cplex Gurobi Senegaulois Cplex Gurobi Senegaulois
tnlu1 472 3.4813e+4 3.4813e+4 3.4813e+4 6.072 0.644 0.012 43413 1187 112 3.90003e+4
tnlu2 1265 8.900e+10 8.900e+10 8.900e+10 0.08 0.232 0.056 224 571 341 7.770e+12
tnlu3 2796 9.0392e+10 9.0392e+10 9.0392e+10 0.244 0.26 0.284 826 1566 1010 9.039e+12
tnlu4 9584 3.264600e+6 3.264600e+6 3.264600e+06 13.252 25.484 0.94 281393 205037 1674 6.000e+12
tnlu5 24580 1.71398e+11 1.71398e+11 1.7139e+11 8.488 4.504 7.42 15 15658 4056 1.7139e+12
tnlu6 99932 2.58995e+5 2.58995e+5 2.58995e+5 388.06 17.3 217.448 33008 36079 34759 3.000e+6
tnlu7 173536 2.75102e+5 2.75102e+5 2.75102e+5 738.928 27.14 864.4 24144 62134 66547 3.500e+5
tnlu8 222785 8.68577e+09 8.68577e+09 8.68577e+09 585963 2019.68 235.788 198042112 638826 36102 9.780e+10

algorithm, respectively (Cplex, Senegaulois and Gurobi). From these figures can see that iteration and time frequencies
are maintained in senegaulois algorithm.

In addition, to evaluated the results we use the free software R project (2018), and display the 8 observations and the 11
variables:
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Table 2. Average of the values.

NbVar = 66868.75
methods Senegaulois Cplex Gurobi
Time(s) 165.7935 73389.77 261.9055
Iter 18075.12 24803142 120132.2
α0 3.077588e+12

’data.frame’: 8 obs. of 11 variables:

$ Nvar: int 472 1265 2796 9584 24580 99932 173536 222785

$ CplexVal: num 3.48e+04 8.90e+10 9.04e+10 3.26e+06 1.71e+11 ...

$ GurobiVal: num 3.48e+04 8.90e+10 9.04e+10 3.26e+06 1.71e+11 ...

$ SenVal: num 3.48e+04 8.90e+10 9.04e+10 3.26e+06 1.71e+11 ...

$ CplexTime: num 6.072 0.08 0.244 13.252 8.488 ...

$ GurobiTime: num 0.644 0.232 0.26 25.484 4.504 ...

$ SenTime: num 0.012 0.056 0.284 0.94 7.42 ...

$ CplexIter: int 43413 224 826 281393 15 33008 24144 198042112

$ GurobiIter: int 1187 571 1566 205037 15658 36079 62134 638826

$ SenIter: int 112 341 1010 1674 4056 34759 66547 36102

$ SenAlpha0: num 3.90e+04 7.77e+12 9.04e+12 6.00e+12 1.71e+12 ...
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Figure 3. Iterations for the Cplex, Gurobi and Senegaulois

We firt compute only the average of 2 obervations (times and iterations), then the number of variables and the firt value of
the senegaulois algorithm.

On average, the same upper bound is appreciably found, but the running time and the number of iterations of Cplex and
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Figure 4. Times(s) for the Cplex, Gurobi and Senegaulois

Gurobi remain large (see Table 2). Our numerical experiments show convergence with a fewer number of iterations and
computational times.

7. Conclusion and Future Works

This study aims at describing and simulating a new type of optimization problem for the TNLU problem. Our algorithm
for TNLU was presented and applied to problems from the literature designed to highlight some intrinsic difficulties
of TNLU. The Senegaulois algorithm, based on a dichotomic search is compared to two programming solvers such as
Cplex and Gurobi. We investigated the average of iterations and computational times and established interesting results
characterizing some instances. In future work, we plan to study the combination between the senegaulois algorithm and
genetic or greedy algorithm.
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Burkard, R. E., Cela, E., Pardalos, P. M., & Pitsoulis, L. S. (1999). The quadratic assignment problem. In Ding-Zhu Du
and PanosM. Pardalos, editors, Handbook of Combinatorial Optimization, Springer US, 1713-1809.

Coelho, L. C. (2018). Linearization of the product of two variables. Retrived from:
https://www.leandro-coelho.com/linearization-product-variables/

Duranton, G., & Puga, D. (2015). Urban land use, in: Handbook of regional and urban economics, 5, Elsevier, 467-560.

Fortet, R. (1960). L’algebre de boole et ses applications en recherche operationnelle. Trabajos de Estadistica, 11(2),
111-118. https://doi.org/10.1007/BF03006558

Fourer, R., Gay, D., & Kernighan, B. (1993). AMPL: A Mathematical Programming Language, 117, Boyd & Fraser
Danvers, MA. Retrived from http://www.ampl.com/

Glover, F., & Woolsey, E. (1974). Converting the 0-1 polynomial programming problem to a 0-1 linear program. Opera-
tions Research, 22(1), 180-182.

Glover, F. (1975). Improved Linear Integer Programming Formulations of Nonlinear Integer Problems, 22.
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