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Abstract

This paper refers to mathematical modelling and numerical analysis. The analysis to be presented through this paper deals
with Robin’s problem which boundary equation is a linear combination of Dirichlet and Neumann-type boundary condi-
tions. For this purpose we proved the existence and uniqueness of the solution. It is worth noting that the implementation
of numerical simulations depends on the type of problem since it requires a search for explicit solution. Consequently, the
motivation exists in this paper for choosing a classical method of variation of constants and employing a finite difference
method to find the exact and numerical solutions, respectively so that numerical simulations were implemented in S cilab.
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1. Introduction

Let Ω be a bounded domain in RN ,N > 1, with boundary ∂Ω. We shall consider the following Robin elliptic boundary
value problem (H. Beghr & G. Harutjunjan, 2006)

−∆u(x) + c(x)u(x) = f (x), x ∈ Ω ,

αu(x) + ∂u(x)
∂η
= g(x), x ∈ ∂Ω ,

(1)

where u is the solution of problem, f ∈ L2(Ω), g ∈ L2(∂Ω), η is the exterior normal to
the boundary ∂Ω of the domain Ω.We shall assume that c(x) > co > 0 and α ∈ R+.
Note that, by combining the Dirichlet- and Neumann-type boundary conditions we get a Robin-type boundary condition.
Then for example, if α = 0 the problem (1) becomes Neumann boundary problem. Finite element method and finite
difference method for solving Dirichlet and Neumann problems have been extensively analyzed by (Gabriel et al., 2015),
( Bourchra Bensiali et al., 2006), (H. Beghr & G. Harutjunjan, 2006) and (Aslak Tveito & Ragnar Winther, 1998). The
resolution algorithm and the implementation of numerical simulations depend on the type of problem and require a search
of explicit solution. Then, the aim of this paper is to design and employ a finite difference method for approximating
the solution of (1). It is also appropriate to choose a classical method of variation of constants for the one-dimensional
Robin problem to be solved exactly. Thus using the above exact and numerical solutions, numerical simulations will be
implemented in S cilab. The analysis to be presented below makes strong use of the results and arguments of (Shao-Gao
Deng, 2009) and ( M. Hinze et al., 2009). An outline of this paper is as follows. A weak form will be presented. The
existence and uniqueness of the solution of the problem (1) will be demonstrated. Then, the problem will be solved
numerically and analytically by using the finite difference method and the classical method of variation of constants,
respectively. Finally using these solutions, numerical simulation will be implemented in S cilab.

1. Weak Form of the Problem

For later use, we seek the Sobolev space containing the solution u

f ∈ L2(Ω) =⇒ −∆u(x) + c(x)u(x) ∈ L2(Ω),
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∆u(x) ∈ L2(Ω),

u ∈ H1(Ω),

So that
V = H1(Ω),which is a Hilbert space (Peter Knabner et al., 2000).

In the following we multiply the first equation of (1) by v, integrate over Ω to obtain∫
Ω

−∆u.vdΩ +
∫
Ω

c.udΩ =
∫
Ω

f .vdΩ, for v ∈ H1(Ω)

By using Green’s formula (M. Hinze et al., 2009), we have∫
Ω

∇u.∇vdΩ −
∫
∂Ω

∂u
∂η
.vdσ +

∫
Ω

c.u.vdΩ =
∫
Ω

f .vdΩ,

∫
Ω

∇u.∇vdΩ −
∫
∂Ω

(g − αu).vdσ +
∫
Ω

c.u.vdΩ =
∫
Ω

f .vdΩ,

∫
Ω

∇u.∇vdΩ −
∫
∂Ω

gvdσ + α
∫
∂Ω

uvdσ +
∫
Ω

c.u.vdΩ =
∫
Ω

f .vdΩ,

∫
Ω

∇u.∇vdΩ + α
∫
∂Ω

u.vdσ +
∫
Ω

c.u.vdΩ =
∫
∂Ω

g.vdσ +
∫
Ω

f vdΩ.

Hence the variational formulation of (1) may be written

a(u, v) = L(v) for any v ∈ H1(Ω), (2)

Where
a(u, v) =

∫
Ω

∇u.∇vdΩ + α
∫
∂Ω

u.vdσ +
∫
Ω

c.u.vdΩ, L(v) =
∫
∂Ω

g.vdσ +
∫
Ω

f .vdΩ.

2. Existence and Uniqueness of the Solution

The demonstration of the existence and uniqueness of the solution of the problem (1) relies on Lax-Milgram theorem (M.
Hinze et al., 2009). Since, it is trivial that a is bilinear, it remains to prove the continuity of a.

We have
|a(u, v)| = |

∫
Ω

∇u.∇vdΩ + α
∫
∂Ω

u.vdσ +
∫
Ω

c.u.vdΩ|

6
∫
Ω

|∇u.∇v|dΩ + |α|
∫
∂Ω

|u.v|dσ +
∫
Ω

|c.u.v|dΩ

Thus
|a(u, v)| 6

∫
Ω

|∇u.∇v|dΩ + |α|
∫
∂Ω

|u.v|dσ + |c|
∫
Ω

|u.v|dΩ

By using Cauchy-Schwartz’s inequality, we obtain

|a(u, v)| 6 (
∫
Ω

|∇u|2dΩ)
1
2 (
∫
Ω

|∇u|2dΩ)
1
2 + |α|(

∫
∂Ω

|u|2dσ)
1
2 (
∫
∂Ω

|v|2dσ)
1
2 + |c|(

∫
Ω

|u|2dΩ)
1
2 (
∫
Ω

|v|2dΩ)
1
2 ,

6∥ ∇u ∥L2(Ω)∥ ∇v ∥L2(Ω) +|α| ∥ u ∥L2(∂Ω)∥ v ∥L2(∂Ω) +|c| ∥ u ∥L2(Ω)∥ v ∥L2(Ω)

|a(u, v)| 6∥ u ∥H1(Ω)∥ v ∥H1(Ω) +|α| ∥ u ∥L2(∂Ω)∥ v ∥L2(∂Ω) +|c| ∥ u ∥L2(Ω)∥ v ∥L2(Ω)
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By using Poincare’s inequality and the trace inequality (Aslak et al., 1998), we hence obtain

|a(u, v)| 6∥ u ∥H1(Ω)∥ v ∥H1(Ω) +k3k4|α| ∥ u ∥H1(Ω)∥ v ∥H1(Ω) +|c|k1k2 ∥ u ∥H1(Ω)∥ v ∥H1(Ω),

6 (1 + k3k4|α| + |c|k1k2) ∥ u ∥H1(Ω)∥ v ∥H1(Ω);

|a(u, v)| 6 k ∥ u ∥H1(Ω)∥ v ∥H1(Ω) .

where
k = 1 + k3k4|α| + |c|k1k2

Therefore a is continuous.

Since obviously, L is linear, then it remains to prove that L is continuous.

|L(v)| = |
∫
∂Ω

g.vdσ +
∫
Ω

f .vdΩ|

6 |
∫
∂Ω

g.vdσ| + |
∫
Ω

f .vdΩ|

6
∫
∂Ω

|g.v|dσ +
∫
Ω

| f .v|dΩ.

Then, it follows from Cauchy-Schwartz’s inequality (M. Hinze et al., 2009)

|L(v)| 6 (
∫
∂Ω

|g|2dσ)
1
2 (
∫
∂Ω

|v|2dσ)
1
2 ) + (

∫
Ω

| f |2dΩ)
1
2 (
∫
Ω

|v|2dΩ)
1
2 ,

|L(v)| 6∥ g ∥L2(∂Ω)∥ v ∥L2(∂Ω) + ∥ f ∥L2(Ω)∥ v ∥L2(Ω),

By Poincare inequality we have

∥ v ∥L2(Ω)6 M1 ∥ v ∥H1(Ω) .

Moreover, according to the continuity of the trace function on H1(Ω), v 7−→ v|∂Ω = v such that:

∥v∥L2(∂Ω) 6 M2 ∥ v ∥H1(Ω)

and the following known results (Aslak et al., 1998)

f ∈ L2(Ω) =⇒ ∥ f ∥L2(Ω)6 M3

g ∈ L2(∂Ω) =⇒ ∥ g ∥L2(∂Ω)6 M4

Thus
|L(v)| 6 M2M4 ∥ v ∥H1(Ω) +M1M3 ∥ v ∥H1(Ω);

6 (M2M4 + M1M3) ∥ v ∥H1(Ω);

|L(v)| 6 M ∥ v ∥H1(Ω), where M = M2M4 + M1M3

Hence the linear form L is continuous.
Next, let us prove the coercitivity of bilinear form a.
Set u = v, then

a(u, u) =
∫
Ω

∇u∇udΩ + α
∫
∂Ω

u.udσ +
∫
Ω

c.u.udΩ;
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a(u, u) >
∫
Ω

∇u2dΩ + c0

∫
Ω

u2dΩ + α
∫
∂Ω

u2dσ ;

a(u, u) >∥ ∇u ∥2L2(Ω) +co ∥ u ∥2L2(Ω) +α ∥ u ∥2L2(∂Ω)>∥ ∇u ∥2L2(Ω) +c0 ∥ u ∥2L2(Ω);

a(u, u) > min(1, c0) ∥ ∇u ∥2L2(Ω) +min(1, c0) ∥ u ∥2L2(Ω),

a(u, u) > min(1, c0)(∥ ∇u ∥2L2(Ω) + ∥ u ∥2L2(Ω)),

> min(1, c0) ∥ u ∥2L2(Ω)

Let
γ = min(1, c0)

Then

a(u, u) > γ ∥ u ∥2H1(Ω) .

Hence a is coercive.

Then, from the Lax-Milgram theorem, it follows that problem (1) has a unique solution u ∈ H1(Ω) such that a(u, v) =
L(v) and ∥u∥H1(Ω) 6 ∥L∥

γ
.

3. Numerical Resolution of the Problem

In this section, we shall consdier the finite difference method for solving the one-dimensional Robin’s problem (Loredana
Lanzani et al., 2006) which is as follows:−u′′(x) + c(x)u(x) = f (x), x ∈ ]0, 1[ ,

u′(0) + αu(0) = g(0), u′(1) + αu(1) = g(1), α > 0.
(3)

We then consider a partition
0 = x0 < x1 < ... < xN < xN+1 = 1,

of the interval [0, 1] ,where N ∈ N. Suppose the uniform step be given by hi = xi+1 − xi,∀ i = 0, ...,N. The step of the
mesh is

h = max
i=0,...,N

hi

For finite difference methods, we consider
h = hi, ∀i = 0, ...,N.

We have
xi+1 = xi + h for any i = 0, ...,N,

u(xi) ≈ ui, c(xi) ≈ ci, f (xi) ≈ fi et g(xi) ≈ gi.

Thus the problem (3) becomes: −u′′i + ciui = fi, ∀ i = 1, ...,N
u′0 = g0 − αu0, u′N+1 = gN+1 − αuN+1

(4)

Assuming that
u ∈ C2([0, 1])

Using the following

u′′i =
ui+1 − 2ui + ui−1

h2 (5)

and approximating u′0 by

(
∂u
∂x

)i ≈
ui+1 − ui

h
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i.e

u0 =
1

1 − αh
u1 −

h
1 − αh

g0 (6)

and u′N+1 by

(
∂u
∂x

)i ≈
ui−1 − ui

h
i.e

uN+1 =
1

1 − αh
uN −

h
1 − αh

gN+1. (7)

Then the problem (4) becomes: 
− ui+1−2ui+ui−1

h2 + ciui = fi ∀ i = 0, ...,N
u0 =

1
1−αh u1 − h

1−αh g0

uN+1 =
1

1−αh uN − h
1−αh uN+1

(8)

Therefore (8) may be written in matrix form as

1

h2



2 + h2c1 − 1
1−αh −1 0 ... 0

−1 2 + h2c1 − 1
1−αh −1 ... 0

0 −1 2 + h2c1 − 1
1−αh

. . .
...

. . . −1
...

0 ... 0 −1 2 + h2c1 − 1
1−αh





u1
u2
.
.
.

uN−1
uN


=



f1 − 1
h(1−αh) g0

f2
.
.
.

fN−1
fN − 1

h(1−α) gN+1


(9)

i.e
AhU = B (10)

Let us prove the existence and uniqueness of the solution u of the problem which consist on checking that Ah is symmetric
positive-definite. i.e 

At
h = Ah

∀ v ϵ RN, < Ahv, v >≥ 0
< Ahv, v >= 0 =⇒ v = 0

Without sacrified the generality, suppose that α = 0 and assume that h2ci > 1, i = 1, ...N.
It’s trivial that the matrix Ah is symmetric. Choosing v0 = vN+1 = 0, we have

Ahv =
1
h2



1 + h2c1 −1 0 ... 0
−1 2 + h2c2 −1 ... 0

0 −1 2 + h2c3
. . .

...
. . .

. . . −1
...
0 ... 0 −1 1 + h2cN





v1
v2
...

vN+1
vN


,

h2 < Ahv, v >=



(1 + h2c1)v1 − v2
−v1 + (2 + h2c2)v2 − v3
−v2 + (2 + h2c3)v3 − v4

...
−vN−1 + (1 + h2cN)




v1
v2
...

vN

 ,

30



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 11, No. 1; 2019

= [(1+h2c1)v1−v2]v1+[−v1+(2+h2c2)v2−v3]v2+[−v2+(2+h2c3)v3−v4]v3+...+[−vN−1+(1+h2cN)vN]vN ,

=

N∑
i=1

[−vi−1 + (2 + h2ci)vi − vi+1]vi − v2
N − v2

1,

=

N∑
i=1

(−vi−1vi)+
N∑

i=1

(2v2
i )+h2

N∑
i=1

(civ2
i )+

N∑
i=1

(−vi+1vi)−v2
N−v2

1,

Note that
N∑

i=1

(−vi−1vi) =
N+1∑
i=2

(−vivi−1),

N∑
i=1

(2v2
i ) =

N∑
i=1

(v2
i + v2

i−1) + v2
N

Then it follows that

h2 < Ahv, v >=
N∑

i=1

(−2vivi−1) +
N∑

i=1

(v2
i + v2

i−1) + v2
N + h2

N∑
i=1

(civ2
i ) − v2

N − v2
1,

=

N∑
i=1

(vi − vi−1)2 + h2
N∑

i=1

(civ2
i ) − v2

1;

< Ahv, v >=
1
h2

 N∑
i=1

(vi − vi−1)2 + h2
N∑

i=2

(civ2
i ) + (h2c1 − 1)v2

1

 ≥ 0

Hence

< Ahv, v >= 0 =⇒


vi − vi−1 = 0
vi = 0
...

v1 = 0.

=⇒ v = 0.

Therefore the problem (10) has a unique solution.

4. Analytical Resolution of the Problem

In this section we shall use the method of variation of constants to find the exact solution of Robin problem. Let us
consider f (x) = 5π2 cos πx , g(x) = ex and c(x) = c0, thus the problem (1) becomes−u′′(x) + c0u(x) = 5π2 cos πx, x ∈ ]0, 1[

u′(0) + αu(0) = 1, u′(1) + αu(1) = e
(11)

The solution of homogeneous equation is
u = k1e−

√
co x + k2e

√
co x

Now, we seek to find k1(x) and k2(x) such that

u = k1(x)e−
√

co x + k2(x)e
√

co x (12)

satisfies the first equation of (11). Then we have to solve the following system of equations

k′1(x)e−
√

co x + k′2(x)e
√

co x = 0
−
√

cok′1(x)e−
√

co x +
√

cok′2(x)e
√

co x = −5π2 cos πx
(13)

We obtain
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k′1(x) =
5

2
√

co
π2.e

√
co x. cos πx

k′2(x) = − 5
2
√

co
π2.e−

√
co x cos πx.

i.e

k1(x) =
5

2
√

co
π2
∫

e
√

co x cos πxdx

and

k2(x) = − 5
2
√

co
π2
∫

e−
√

co x cos πxdx.

Integrating twice by parts we obtain

k1(x) =
5π3

2
√

co(π2 + co)
e
√

co x sin πx +
5π2

2(π2 + co)
e
√

co x cos πx + λ,

k2(x) =
−5π3

2
√

co(π2 + co)
e−
√

co x sin πx +
5π2

2(π2 + co)
e−
√

co x cos πx + β.

Then, the relation (12) becomes:

u =
5π2

π2 + co
cos πx + λe−

√
co x + βe

√
co x (14)

Let us find λ and β of (14). By using the boundary conditions of the problem (11), it follows that

(α −
√

co)λ + (α +
√

co)β = 1 − 5π2α
π2+co

(α − √co)e−
√

co .λ + (α +
√

co)e
√

co .β = e + 5π2α
π2+co

(15)

We then obtain

λ =
e − e

√
co + (1 + e

√
co )( 5π2α

π2+co
)

−2α sinh
√

co + 2
√

co sinh
√

co

β =
e − e−

√
co + (1 + e−

√
co )( 5π2α

π2+co
)

2α sinh
√

co + 2
√

co sinh
√

co

The relation (14) becomes

u =
5π2

π2 + co
cos πx +

(e − e
√

co )e−
√

co x + (1 + e
√

co )( 5π2α
π2+co

)e−
√

co x

2 sinh
√

co(
√

co − α)

+
(e − e−

√
co )e

√
co x + (1 + e−

√
co )( 5π2α

π2+co
)e
√

co x

2 sinh
√

co(
√

co + α)
,

u =
5π2

π2 + co
cos πx + Q. (16)

With

Q =
(e − e

√
co )e−

√
co x + (1 + e

√
co )( 5π2α

π2+co
)e−
√

co x

2 sinh
√

co(
√

co − α)
+

(e − e−
√

co )e
√

co x + (1 + e−
√

co )( 5π2α
π2+co

)e
√

co x

2 sinh
√

co(
√

co + α)
;

=
1

2 sinh
√

co
[
(e − e

√
co )e−

√
co x + (1 + e

√
co )( 5π2α

π2+co
)e−
√

co x

√
co − α

+
(e − e−

√
co )e

√
co x + (1 + e−

√
co )( 5π2α

π2+co
)e
√

co x

√
co + α

]

=
1

2 sinh
√

co(co + α2)
[2e
√

co cosh
√

cox − 2
√

co cosh(
√

co −
√

cox)
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+2
√

co(cosh
√

cox + cosh(
√

co −
√

cox))
5π2α

π2 + co
− 2eα sinh

√
cox − 2α sinh(

√
co −

√
cox)+

−2α(sinh
√

cox − sinh(
√

co −
√

cox))
5π2α

π2 + co
];

Therefore the exact solution of (11) can be written in the form

u =
5π2

π2 + co
cos πx+

(e + 5π2α
π2+co

)(
√

co cosh
√

cox − α sinh
√

cox) + ( 5π2α
π2+co

− 1)(
√

co cosh(
√

co −
√

cox) + α sinh(
√

co −
√

cox))

sinh
√

co(co + α2)
(17)

Taking α = 0, we have therefore

u(x) =
5π2

π2 + co
cos πx +

e
√

c0 cosh
√

c0x − √cO cosh(
√

c0 −
√

c0x)
c0 sinh

√
c0

(18)

5. Numerical Simulations

The aim here is to represent on the same graph the solutions (18) and (10) exact and numerical, respectively, taking into
account the number of points N and the step h of the finite difference method in order to converge the two solutions. This
simulation will be implemented in S cilab.

Figure 1 illustrates the exact solution (18) for c0 = 3.

Figure 1. Representation of the exact solution

By fixing N = 5 in (10), we have attempted to vary the step h of the method to verify the numerical convergence of
numerical solution of (10) on the exact solution of (18). ( See Figure 2).

• Taking h = 0.001, we notice that both exact and numerical solutions converge almost everywhere numerically ( See
Figure 2 a ).

• Taking h = 0.01, we find that at the beginning the two solutions tend to go away and at some point converge and
then move away very quickly, which is explained by slow numerical convergence ( See Figure 2 b ).

• Taking h = 0.5, we notice that the exact and numerical solutions, respectively, have almost a tendency not to
converge except on a few points, this observation can be explained by a numerical divergence ( See Figure 2 c ).
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(a) (b)

(c)

Figure 2. Representation of the exact and numerical solutions for N = 5

In the Figure 3, we fixed N = 10.

• Taking h = 0.001 and h = 0.01, we observe a very fast numerical convergence for both exact and numerical
solutions ( See Figure 3 d and Figure 3 e).

• Taking h = 0.5, we notice that the exact and numerical solutions, respectively, converge numerically almost every-
where. ( See Figure 3 f)
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(d) (e)

(f)

Figure 3. Representation of the exact and numerical solutions for N = 10

The finite difference method being linked to a multiplicative term of the form 1
h2 , requires a very large number of points N

and a very great choice of the step h of the method to ensure the convergence of the numerical solution towards the exact
solution.

6. Conclusion and Perspectives

The numerical resolution of PDEs remains a challenge. In this paper, the existence and uniqueness of the solution of
Robin’s problem has been demonstrated by Lax-Milgram theorem. In order to find the numercial solution of the problem
we have used the finite difference method. In fact, in order to prove the existence and uniqueness of the solution of the
related linear system, it was appropriate to impose α = 0 and h2ci > 1, i = 1, ...,N. We have employed the method of
variation of constants to find the exact solution. Finally, we have implemented numerical simulation in S cilab to approach
the numerical solution towards the exact solution.

In the future we will inverstigate the theoretical convergence of this model. Furthermore, we will try to solve the two or
three-dimensional Robin’s problem.
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