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Abstract

The article investigates how the two divisors of a RSA modulus distribute in the T3 tree. It proves that, the two divisors
of a RSA modulus lie on the same level or on two adjacent levels and at least one of them is clamped on the same level
where the square root of the RSA modulus lies. Then the paper proposes three interval-subdivisions that can indicate
which subinterval the two divisors lie in. Mathematical deductions are showed in detail, which can be a reference to
design algorithm of RSA factorization.
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1. Introduction

The RSA modulus, which is also called a RSA number, is a big semiprime composed of two distinct prime divisors, say
p and q with 3 ≤ p < q such that 1 < q/p <

√
2, according to the American Digital Signature Standard (DSS)(NIST,

2009). As stated in WANG’s paper(WANG, 2017: Strategy RSA), the RSA numbers have been essentially important
in cryptography ever since the RSA public cryptosystem was established. It is believed that, a systematic theory or
method that can factorize the RSA numbers means the failure of the RSA public cryptosystem. Thus factorization of
the RSA numbers has been a dream filled with fantasies of researchers and engineers working on information security.
Nevertheless, the list of unfactroized RSA numbers gets longer and longer on the bulletin.

In August 2016, WANG introduced a new approach, called T3 tree, to study integers in article (WANG, 2016: Valuated
Binary Tree). Through the approach, many new properties of integers were disclosed, as introduced in papers list in the
references of WANG’s papers (WANG, 2016, 2017, 2018) and CHEN’s paper (CHEN, 2018), and even new approaches
to factorize integers were found, as claimed in FU’s paper (FU, 2017) and LI’s paper (LI, 2018).

Due to the importance of RSA numbers, it is necessary to investigate them on the T3 tree. Accordingly, this article makes
a brief investigation on the trait of the RSA modulus on the T3 tree. The research in this article may provide certain
foundation for knowing the RSA modulus.

2. Preliminaries

2.1 Definitions and Notations

Let S be a set of finite positive integers with s0 and sn being the smallest and the biggest terms respectively; an integer x
is said to be clamped in S if s0 ≤ x ≤ sn. Symbol x ∧= S indicates that x is clamped in S . Symbol ⌊x⌋ is the floor function,
an integer function of real number x that satisfies inequality x−1 < ⌊x⌋ ≤ x, or equivalently ⌊x⌋ ≤ x < ⌊x⌋+1. Let N = pq
be an odd integer with 1 < p < q; then k = q

p is called the divisor-ratio of N.

In this whole paper, symbol T3 is the T3 tree that was introduced in WANG’s papers (WANG, 2016 & 2018: T3 Tree)
and symbol N(k, j) is by default the node at position j on level k of T3, where k ≥ 0 and 0 ≤ j ≤ 2k − 1. By using
the asterisk wildcard ∗, symbol N(k,∗) means a node lying on level k of T3. An integer X is said to be clamped on level
k of T3 if 2k+1 ≤ X ≤ 2k+2 − 1 and symbol X ∧

= k indicates X is clamped on level k. An odd integer O satisfying
2k+1 + 1 ≤ O ≤ 2k+2 − 1 is said to be on level k of T3, and use symbol O ∆

= k to express it. Symbol (p ◦
= q) = k means

integers p and q are on the same level k or clamped on the same level k. Symbol A⊗ B means A holds and simultaneously
B holds, symbol A⊕B means A or B holds. Symbol A⇒ B means conclusion B can be derived from condition A. Symbol
(a = b) > c means a takes the value of c and a > c. The union symbol ∪ of the set operation is also used in this paper.
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2.2 Lemmas

Lemma 1(See in (WANG, 2016 & 2018: T3 Tree)). The T3 tree has the following fundamental properties.
(P1). Every node is an odd integer and every odd integer bigger than 1 must be on the T3 tree. Odd integer N with N > 1
lies on level

⌊
log2N

⌋ − 1.
(P2). N(k, j) is calculated by

N(k, j) = 2k+1 + 1 + 2 j, j = 0, 1, ..., 2k − 1 (1)

and thus
2k+1 + 1 ≤ N(k, j) ≤ 2k+2 − 1 (2)

(P3). The biggest node on level k of left branch is 2k+1 + 2k − 1 whose position is j = 2k−1 − 1, and the smallest node on
level k of right branch is 2k+1 + 2k + 1 whose position is j = 2k−1 . On the same level, there is not a node that is a multiple
of another one.
(P4). Multiplication of arbitrary two nodes of T3, say N(m,α) and N(n,β), is a third node of T3. Let J = 2m(1 + 2β) + 2n(1 +
2α) + 2αβ + α + β; the multiplication N(m,α) × N(n,β) is given by

N(m,α) × N(n,β) = 2m+n+2 + 1 + 2J (3)

If J < 2m+n+1, then N(m,α)×N(n,β) = N(m+n+1,J) lies on level m+n+1 of T3; whereas, if J ≥ 2m+n+1, N(m,α)×N(n,β) = N(m+n+2,χ)
with χ = J − 2m+n+1 lies on level m + n + 2 of T3.

Lemma 2(See in (WANG, 2018: Square root)). Let N > 3 be an odd integer and k =
⌊
log2N

⌋ − 1 ; then (
⌊√

N
⌋
≤⌊

2⌊ k+1
2 ⌋ √2

⌋
) ∧=
⌊

k−1
2

⌋
when k is odd whereas (

⌊
2⌊ k+1

2 ⌋ √2
⌋
≤
⌊√

N
⌋
) ∧=
⌊

k−1
2

⌋
when k is even.

Lemma 3(See in (WANG, 2017: Summary floor function)). For real numbers x and y, it holds
(P2). ⌊x⌋ − ⌊y⌋ − 1 ≤ ⌊x − y⌋ ≤ ⌊x⌋ − ⌊y⌋ < ⌊x⌋ − ⌊y⌋ + 1
(P6). ⌊xy⌋ ≥ ⌊x⌋ ⌊y⌋ with x, y ≥ 0.
(P7).

⌊
y
x

⌋
≤ ⌊y⌋⌊x⌋ with x ≥ 1 and y > 0.

(P13). x ≤ y⇒ ⌊x⌋ ≤ ⌊y⌋.
(P15).

⌊ ⌊x⌋
m

⌋
=
⌊

x
m

⌋
with m ≥ 1 .

(P28). N −
⌊√

N
⌋2 ≥ 0 with N being a positive integer.

(P31). i − 1 ≤ 2
⌊

i
2

⌋
≤ i with i being a positive integer.

Lemma 4(See in (WANG, 2018: Inequalities)). Let α and x be a positive real numbers; then it holds

α ⌊x⌋ − 1 < ⌊αx⌋ < α(⌊x⌋ + 1)

Particularly, if α is a positive integer, say α = n, then it yields

n ⌊x⌋ ≤ ⌊nx⌋ ≤ n(⌊x⌋ + 1) − 1

Lemma 5. Let n be a positive odd integer; then n =
⌊√

n
⌋2

or n =
⌊√

n
⌋

(
⌊√

n
⌋
+ 2) if

⌊√
n
⌋
|n.

Proof. Since
⌊√

n
⌋
|n, it knows that there is a positive integer k such that n = k

⌊√
n
⌋
. By definition of the floor function,⌊√

n
⌋
≤
√

n <
⌊√

n
⌋
+ 1; hence

⌊√
n
⌋2 ≤ n < (

⌊√
n
⌋
+ 1)2 =

⌊√
n
⌋2
+ 2
⌊√

n
⌋
+ 1

⇒
⌊√

n
⌋2 ≤ k

⌊√
n
⌋
<
⌊√

n
⌋2
+ 2
⌊√

n
⌋
+ 1

⇒
⌊√

n
⌋
≤ k <

⌊√
n
⌋
+ 2 + 1

⌊√n⌋
⇒
⌊√

n
⌋
≤ k ≤

⌊√
n
⌋
+ 2

which means k takes one of
⌊√

n
⌋

,
⌊√

n
⌋
+ 1 and

⌊√
n
⌋
+ 2.

Obviously the case k =
⌊√

n
⌋
+ 1 is impossible because n is odd. Hence k =

⌊√
n
⌋

or k =
⌊√

n
⌋
+ 2. �
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3. Main Results

Proposition 1. Let N = pq be an odd integer with 1 < p < q and 1 < q
p < k; then⌊

3 − k
2

√
N
⌋
< p ≤

⌊√
N
⌋
⊗
⌊√

N
⌋
≤ q ≤

⌊
k + 1

2

√
N
⌋

(4)

where k is real, ⌊x⌋ = 0 if x ≤ 0.
Particularly, when k = 2, it yields  √N

2

 < p ≤
⌊√

N
⌋
⊗
⌊√

N
⌋
≤ q ≤

⌊
3
2

√
N
⌋

(5)

when k = 3
2 , it yields ⌊

3
4

√
N
⌋
< p ≤

⌊√
N
⌋
⊗
⌊√

N
⌋
≤ q ≤

⌊
5
4

√
N
⌋

(6)

when k =
√

2, it yields (1 − √2 − 1
2

)
√

N

 < p ≤
⌊√

N
⌋
⊗
⌊√

N
⌋
≤ q ≤

 √2 + 1
2

√
N

 (7)

Proof. By 1 < p < q, it knows
p ≤
√

N ⊗ q ≥
√

N

Then the conditions 1 < p < q and 1 < q
p < k directly yield

q + p > 2
√

pq ⊗ p < q < kp
⇒ −q − p < −2

√
N ⊗ 0 < q − p < (k − 1)p ≤ (k − 1)

√
N

⇒ −2p < (k − 3)
√

N ⊗ 2q < (k + 1)
√

N
⇒ 3−k

2

√
N < p ≤

√
N ⊗
√

N ≤ q < k+1
2

√
N

⇒
⌊

3−k
2

√
N
⌋
< p ≤

⌊√
N
⌋
⊗
⌊√

N
⌋
≤ q ≤

⌊
k+1

2

√
N
⌋

�

Proposition 2. Let N = pq be an odd integer with 1 < p < q and 1 < q
p < k; then

p ≤
⌊√

N
⌋
< kp ⊗ q

k
<
⌊√

N
⌋
≤ q

Proof. Use proof by contradiction. Assume kp ≤
⌊√

N
⌋
; then by 1 < q

p < k it yields p < q < kp ≤
√

N which is

contradictory to q ≥
√

N. Likewise, by 1 < q
p < k, assuming q

k ≥
⌊√

N
⌋

results in a contradiction of
⌊√

N
⌋
≤ q

k < p. �

Proposition 3. Let N and k be positive integers with k > 2; then it holds⌊√
N
⌋ ∧
=

⌊
k + 1

2

⌋
− 1⇒

 √N
2

 ∧= ⌊k + 1
2

⌋
− 2

⌊√
N
⌋ ∧
=

⌊
k + 1

2

⌋
− 1⇒ (

⌊
3
4

√
N
⌋
∧
=

⌊
k + 1

2

⌋
− 1) ⊕ (

⌊
3
4

√
N
⌋
∧
=

⌊
k + 1

2

⌋
− 2)

and ⌊√
N
⌋ ∧
=

⌊
k + 1

2

⌋
− 1⇒ (

(1 − √2 − 1
2

)
√

N

 ∧= ⌊k + 1
2

⌋
− 1) ⊕ (

(1 − √2 − 1
2

)
√

N

 ∧= ⌊k + 1
2

⌋
− 2)

In general, for arbitrary positive integer M and k > 0 it holds

M ∧
= k ⇒


⌊

M
2

⌋ ∧
= k − 1

2M ∧
= k + 1
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Proof. k > 2 is mandatory because k ≤ 2 yields
⌊

k+1
2

⌋
− 2 < 0 losses its meaning. By definition,

⌊√
N
⌋ ∧
=

⌊
k + 1

2

⌋
− 1⇒ 2⌊ k+1

2 ⌋ ≤
⌊√

N
⌋
≤ 2⌊ k+1

2 ⌋+1 − 1 < 2⌊ k+1
2 ⌋+1 (8)

Then simple deduction with the help of the inequality (8) yields⌊√
N
⌋ ∧
=
⌊

k+1
2

⌋
− 1⇒ 2⌊ k+1

2 ⌋ ≤
⌊√

N
⌋
< 2⌊ k+1

2 ⌋+1

⇒ 2⌊ k+1
2 ⌋−1 ≤

⌊√
N
⌋

2 < 2⌊ k+1
2 ⌋ ⇒ 2⌊ k+1

2 ⌋−1 ≤
⌊ ⌊√

N
⌋

2

⌋
< 2⌊ k+1

2 ⌋

M ∧
= k ⇒ 2k+1 ≤ M < 2k+2 ⇒ 2k ≤ M

2
< 2k+1 ⇒ 2k ≤

⌊M
2

⌋
< 2k+1

and
M ∧
= k ⇒ 2k+1 ≤ M < 2k+2 ⇒ 2k+2 ≤ 2M < 2k+3 ⇒ 2k+2 ≤ 2M < 2k+3

By Lemma 2(P15),
⌊ ⌊√

N
⌋

2

⌋
=

⌊ √
N

2

⌋
and thus

⌊√
N
⌋ ∧
=
⌊

k+1
2

⌋
− 1⇒

⌊ √
N

2

⌋
∧
=
⌊

k+1
2

⌋
− 2, M ∧

= k ⇒

⌊

M
2

⌋ ∧
= k − 1

2M ∧
= k + 1

.

By Lemma 4, it knows ⌊
3
4

√
N
⌋
<

3
4

(
⌊√

N
⌋
+ 1) =

⌊√
N
⌋
− 1

4

⌊√
N
⌋
+

3
4

and ⌊
3
4

√
N
⌋
>

3
4

⌊√
N
⌋
− 1 =

1
2

⌊√
N
⌋
+

1
4

⌊√
N
⌋
− 1

Thus
⌊√

N
⌋
≥ 3 yields

⌊
3
4

√
N
⌋
<
⌊√

N
⌋
, and

⌊√
N
⌋
≥ 4 yields

⌊
3
4

√
N
⌋
> 1

2

⌊√
N
⌋
≥
⌊ √

N
2

⌋
. Note that, the conditions k > 2

and
⌊√

N
⌋ ∧
=
⌊

k+1
2

⌋
− 1 indicate

⌊√
N
⌋
≥ 4, accordingly √N

2

 < ⌊34 √N
⌋
<
⌊√

N
⌋

Similarly, it can show  √N
2

 < (1 − √2 − 1
2

)
√

N

 < ⌊√N
⌋

Since
⌊√

N
⌋ ∧
=
⌊

k+1
2

⌋
− 1⇒

⌊ √
N

2

⌋
∧
=
⌊

k+1
2

⌋
− 2, it surely holds

⌊√
N
⌋ ∧
=

⌊
k + 1

2

⌋
− 1⇒ (

⌊
3
4

√
N
⌋
∧
=

⌊
k + 1

2

⌋
− 1) ⊕ (

⌊
3
4

√
N
⌋
∧
=

⌊
k + 1

2

⌋
− 2)

and ⌊√
N
⌋ ∧
=

⌊
k + 1

2

⌋
− 1⇒ (

(1 − √2 − 1
2

)
√

N

 ∧= ⌊k + 1
2

⌋
− 1) ⊕ (

(1 − √2 − 1
2

)
√

N

 ∧= ⌊k + 1
2

⌋
− 2)

�

Proposition 4. Let N = pq be a node of T3 with 1 < p < q and 1 < q
p < 2; then

(1) p and q lie on the same level or on two adjacent levels.
(2) At least one of p and q lies on the same level as where

⌊√
N
⌋

is clamped.

18



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 10, No. 6; 2018

Proof. Without loss of generality, let p = N(m,∗) and q = N(n,∗) with n ≥ m ≥ 0. Use proof by contradiction.

To prove the assertion (1), assume n−m ≥ 2. Then p and q satisfy p ≤ 2m+2 − 1 ≤ 2n − 1 and q ≥ 2n+1 + 1. Consequently

q
p
>

2n+1 + 1
2n − 1

=
2n+1 − 2 + 3

2n − 1
= 2 +

3
2n − 1

> 2

This is contradictory to the condition 1 < q
p < 2. Hence it must hold 0 ≤ n − m < 2, which says the assertion (1) holds.

To prove the assertion (2), let k =
⌊
log2N

⌋ − 1. By Lemma 2,
⌊√

N
⌋ ∧
=
⌊

k−1
2

⌋
=
⌊

k+1
2

⌋
− 1. Assume the neither of p and q

is clamped on level
⌊

k+1
2

⌋
− 1 ; then p < 2⌊ k+1

2 ⌋−1 ⊗ q < 2⌊ k+1
2 ⌋−1 holds or p > 2⌊ k+1

2 ⌋+1 ⊗ q > 2⌊ k+1
2 ⌋+1 holds. By Lemma

3(P31), 2
⌊

k+1
2

⌋
− 2 ≤ k − 1 and 2

⌊
k+1

2

⌋
+ 2 ≥ k + 2, it knows

p < 2⌊ k+1
2 ⌋−1 ⊗ q < 2⌊ k+1

2 ⌋−1 ⇒ N = pq < 22⌊ k+1
2 ⌋−2 ≤ 2k−1

and
p > 2⌊ k+1

2 ⌋+1 ⊗ q > 2⌊ k+1
2 ⌋+1 ⇒ N = pq > 22⌊ k+1

2 ⌋+2 ≥ 2k+2

Either case is contradictory to 2k+1 < N < 2k+2. �

Corollary 1. Let N = pq be a node of T3 and (k =
⌊
log2N

⌋ − 1) > 2, where 1 < p < q and 1 < q
p < 2. Then

(
⌊√

N
⌋
< 2⌊ k+1

2 ⌋ + 1) ⊕ ((
⌊√

N
⌋
= 2⌊ k+1

2 ⌋ + 1) ⊗ (
⌊√

N
⌋
- N))

⇒ p ∆=
⌊

k+1
2

⌋
− 2 ⊗ q ∆=

⌊
k+1

2

⌋
− 1

(9)

(
⌊√

N
⌋
= 2⌊ k+1

2 ⌋ + 1) ⊗ (
⌊√

N
⌋
|N)

⇒ (p = 2⌊ k+1
2 ⌋ + 1) ⊗ ((q = 2⌊ k+1

2 ⌋ + 1) ⊕ (q = 2⌊ k+1
2 ⌋ + 3)) ∆=

⌊
k+1

2

⌋
− 1

(10)

(
⌊√

N
⌋
= 2⌊ k+1

2 ⌋+1 − 1) ⊗ (
⌊√

N
⌋
|N)

⇒ (p = 2⌊ k+1
2 ⌋+1 − 1) ∆=

⌊
k+1

2

⌋
− 1) ⊗ ((q = 2⌊ k+1

2 ⌋+1 − 1) ⊕ (q = 2⌊ k+1
2 ⌋+1 + 1)) ∆=

⌊
k+1

2

⌋ (11)

(2⌊ k+1
2 ⌋+1 − 1 <

⌊√
N
⌋
) ⊕ ((

⌊√
N
⌋
= 2⌊ k+1

2 ⌋+1 − 1) ⊗ (
⌊√

N
⌋
- N))

⇒ q ∆=
⌊

k+1
2

⌋
⊗ p ∆=

⌊
k+1

2

⌋
− 1

(12)

Proof. Since p ≤
⌊√

N
⌋
≤
√

N ≤ q, it knows
⌊√

N
⌋
< 2⌊ k+1

2 ⌋ + 1⇒ p ≤ 2⌊ k+1
2 ⌋. Considering that p is odd and 2⌊ k+1

2 ⌋ + 1 is

the smallest node on level
⌊

k+1
2

⌋
−1, p ≤ 2⌊ k+1

2 ⌋ means that p is on level
⌊

k+1
2

⌋
−2 or higher. By Lemma 2 ,

⌊√
N
⌋ ∧
=
⌊

k+1
2

⌋
−1.

This fact and Proposition 4 indicate that q and
⌊√

N
⌋

are clamped on level
⌊

k+1
2

⌋
− 1, and it must fit p ∆=

⌊
k+1

2

⌋
− 2.

Now consider the case (
⌊√

N
⌋
= 2⌊ k+1

2 ⌋ + 1) ⊗ (
⌊√

N
⌋
- N). Obviously, the following deduction (13) is surely valid.

(p|N) ⊗ (p ≤
⌊√

N
⌋
) ⊗ (
⌊√

N
⌋
- N)

⇒ p <
⌊√

N
⌋
⇒ p ∆=

⌊
k+1

2

⌋
− 2

(13)

For the case
⌊√

N
⌋
= 2⌊ k+1

2 ⌋ + 1) ⊗ (
⌊√

N
⌋
|N), it immediately knows by Lemma 4

((q = 2⌊ k+1
2 ⌋ + 1) ∆=

⌊
k + 1

2

⌋
− 1) ⊕ ((q = 2⌊ k+1

2 ⌋ + 3) ∆=
⌊
k + 1

2

⌋
− 1)

Likewise, by Lemma 4 , the case (
⌊√

N
⌋
= 2⌊ k+1

2 ⌋+1 − 1) ⊗ (
⌊√

N
⌋
|N) yields

((p = 2⌊ k+1
2 ⌋+1 − 1) ∆=

⌊
k + 1

2

⌋
− 1) ⊕ ((q = 2⌊ k+1

2 ⌋+1 + 1) ∆=
⌊
k + 1

2

⌋
)
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For the case
⌊√

N
⌋
> 2⌊ k+1

2 ⌋+1 − 1, it knows q ≥
⌊√

N
⌋
≥ 2⌊ k+1

2 ⌋+1 that means q is clamped on level
⌊

k+1
2

⌋
or lower. This

time, by Proposition 4 it knows that p and
⌊√

N
⌋

are clamped on level
⌊

k+1
2

⌋
− 1 , and thus q ∆=

⌊
k+1

2

⌋
.

For the case (
⌊√

N
⌋
= 2⌊ k+1

2 ⌋+1 − 1) ⊗ (
⌊√

N
⌋
- N), the following deduction (14) is surely valid.

(q|N) ⊗ (p ≥
⌊√

N
⌋
) ⊗ (
⌊√

N
⌋
- N)⇒ q >

⌊√
N
⌋
⇒ q ∆=

⌊
k + 1

2

⌋
(14)

�

Example 1. Let N = 4331; then k =
⌊
log2N

⌋−1 =
⌊
log2(4331)

⌋−1 = 11,
⌊√

N
⌋
=
⌊√

4331
⌋
= 65 and 2⌊ k+1

2 ⌋+1 = 26+1 =

65. Since
⌊√

N
⌋
= 2⌊ k+1

2 ⌋+1 and
⌊√

N
⌋
- (N = 4331), it yields p ∆=

⌊
k+1

2

⌋
−2 = 4. Actually, p = 61 = 25+2×14+1 = N(4,14)

is a divisor of N = 4331.

Example 2. Let N = 4087; then k =
⌊
log2N

⌋−1 =
⌊
log2(4087)

⌋−1 = 10,
⌊√

N
⌋
=
⌊√

4087
⌋
= 63 and 2⌊ k+1

2 ⌋+1 = 26−1 =

63. Since
⌊√

N
⌋
= 2⌊ k+1

2 ⌋ + 1 and
⌊√

N
⌋
- (N = 4087), it yields q ∆=

⌊
k+1

2

⌋
= 5. Actually, p = 67 = 26 + 2 × 1 + 1 = N(5,1)

is a divisor of N = 4087.

Example 3. Let N = 16637; then k =
⌊
log2N

⌋ − 1 =
⌊
log2(16637)

⌋ − 1 = 13,
⌊√

N
⌋
=
⌊√

16637
⌋
= 128 and

2⌊ k+1
2 ⌋ + 1 = 27 + 1 = 129. Since

⌊√
N
⌋
= 2⌊ k+1

2 ⌋ + 1 and
⌊√

N
⌋
- (N = 16637), it yields p ∆

=
⌊

k+1
2

⌋
− 2 = 5. Actually,

p = 127 = 26 + 2 × 31 + 1 = N(5,31) is a divisor of N = 16637.

Example 4. Let N = 66049; then k =
⌊
log2N

⌋ − 1 =
⌊
log2(66049)

⌋ − 1 = 15,
⌊√

N
⌋
=
⌊√

66049
⌋
= 257 and

2⌊ k+1
2 ⌋ + 1 = 28 + 1 = 257. Since

⌊√
N
⌋
= 2⌊ k+1

2 ⌋ + 1 and
⌊√

N
⌋
|(N = 66049), it yields p = 257 and q = 257.

Example 5. Let N = 66563; then k =
⌊
log2N

⌋ − 1 =
⌊
log2(66563)

⌋ − 1 = 15,
⌊√

N
⌋
=
⌊√

66563
⌋
= 257 and

2⌊ k+1
2 ⌋ + 1 = 28 + 1 = 257. Since

⌊√
N
⌋
= 2⌊ k+1

2 ⌋ + 1 and
⌊√

N
⌋
|(N = 66563), it yields p = 257 and q = 259.

Corollary 2. Let N = pq be an odd integer and k =
⌊
log2N

⌋−1, where divisors p and q satisfy 1 < p < q and 1 < q
p < 2;

then there are 3 possible cases in term of the levels on which p and q lie, which are given by (15)
(p ∆=

⌊
k+1

2

⌋
− 2) ⊗ (q ∆=

⌊
k+1

2

⌋
− 1)

(p ∆=
⌊

k+1
2

⌋
− 1) ⊗ (q ∆=

⌊
k+1

2

⌋
− 1)

(p ∆=
⌊

k+1
2

⌋
− 1) ⊗ (q ∆=

⌊
k+1

2

⌋
)

(15)

Proof. (omit) �

Proposition 5. Let N = pq be an odd integer and k =
⌊
log2N

⌋ − 1, where divisors p and q satisfy 1 < p < q and
1 < q

p <
√

2; then p and q lie on at most 2 levels of T3, as shown in (15). Subdivide the interval [2⌊ k+1
2 ⌋−1 + 1, 2⌊ k+1

2 ⌋+2 − 1]
into 6 subintervals by

I1 = [2⌊ k+1
2 ⌋−1 + 1,

⌊
2⌊ k+1

2 ⌋−1
√

2
⌋
+ 1)

I2 = [
⌊
2⌊ k+1

2 ⌋−1
√

2
⌋
+ 1, 2⌊ k+1

2 ⌋ − 1]
I3 = [2⌊ k+1

2 ⌋ + 1,
⌊
2⌊ k+1

2 ⌋ √2
⌋
+ 1)

I4 = [
⌊
2⌊ k+1

2 ⌋
√

2
⌋
+ 1, 2⌊ k+1

2 ⌋+1 − 1]
I5 = [2⌊ k+1

2 ⌋+1 + 1,
⌊
2⌊ k+1

2 ⌋+1
√

2
⌋
+ 1)

I6 = [
⌊
2⌊ k+1

2 ⌋+1
√

2
⌋
+ 1, 2⌊ k+1

2 ⌋+2 − 1]

(16)

then p ∧
= I2 ⊗ (q ∧

= I3 ⊕ q ∧
= I4) in the case (p ∧

=
⌊

k+1
2

⌋
− 2) ⊗ (q ∧

=
⌊

k+1
2

⌋
− 1), (p < q) ∆=

⌊
k+1

2

⌋
− 1 in the case

(p ∆=
⌊

k+1
2

⌋
− 1) ⊗ (q ∆=

⌊
k+1

2

⌋
− 1) and p ∧= I4 ⊗ (q ∧= I5 ⊕ q ∧= I6) in the case (p ∧=

⌊
k+1

2

⌋
− 1) ⊗ (q ∧=

⌊
k+1

2

⌋
).

Proof. Since 1 < q
p <

√
2 < 2, the first conclusion is directly derived from Corollary 2 . Next is to prove the second

conclusion. By Lemma 1(P3), it is sure that (p < q) ∆=
⌊

k+1
2

⌋
− 1 in the case (p ∆=

⌊
k+1

2

⌋
− 1) ⊗ (q ∆=

⌊
k+1

2

⌋
− 1), thus next is

for the other two conditions.
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(1). If (p ∆=
⌊

k+1
2

⌋
− 2) ⊗ (q ∆=

⌊
k+1

2

⌋
− 1), it possibly yields p ∈ I1 ⊕ p ∈ I2 and q ∈ I3 ⊕ q ∈ I4. The cases p ∈ I1 ⊗ q ∈ I3,

p ∈ I1 ⊗ q ∈ I4, p ∈ I2 ⊗ q ∈ I3 and p ∈ I2 ⊗ q ∈ I4 are to be checked.

For the case p ∈ I1 ⊗ q ∈ I3, 2⌊ k+1
2 ⌋−1 < p ≤

⌊
2⌊ k+1

2 ⌋−1
√

2
⌋

and 2⌊ k+1
2 ⌋ < q ≤

⌊
2⌊ k+1

2 ⌋ √2
⌋

lead to

q
p
>

2⌊ k+1
2 ⌋⌊

2⌊ k+1
2 ⌋−1

√
2
⌋ ≥ 2⌊ k+1

2 ⌋

2⌊ k+1
2 ⌋−1

√
2
=
√

2

which is contradictory to 1 < q
p <
√

2.

For the case p ∈ I1 ⊗ q ∈ I4, 2⌊ k+1
2 ⌋−1 < p ≤

⌊
2⌊ k+1

2 ⌋−1
√

2
⌋

and
⌊
2⌊ k+1

2 ⌋ √2
⌋
< q < 2⌊ k+1

2 ⌋+1 lead to a contradiction to

1 < q
p <
√

2 by

q
p
>

⌊
2⌊ k+1

2 ⌋ √2
⌋⌊

2⌊ k+1
2 ⌋−1

√
2
⌋ ≥  2⌊ k+1

2 ⌋ √2

2⌊ k+1
2 ⌋−1

√
2

 = 2

For the case p ∈ I2 ⊗ q ∈ I3,
⌊
2⌊ k+1

2 ⌋−1
√

2
⌋
< p ≤ 2⌊ k+1

2 ⌋ and 2⌊ k+1
2 ⌋ < q ≤

⌊
2⌊ k+1

2 ⌋
√

2
⌋
+ 1 lead to

q
p
>

2⌊ k+1
2 ⌋

2⌊ k+1
2 ⌋
= 1

and
q
p
<

⌊
2⌊ k+1

2 ⌋ √2
⌋
+ 1⌊

2⌊ k+1
2 ⌋−1

√
2
⌋ ≤ 2⌊ k+1

2 ⌋(
⌊√

2
⌋
+ 1)

2⌊ k+1
2 ⌋−1

⌊√
2
⌋ = 4

For the case p ∈ I2 ⊗ q ∈ I4,
⌊
2⌊ k−1

2 ⌋ √2
⌋
< p ≤ 2⌊ k−1

2 ⌋+1 and
⌊
2⌊ k+1

2 ⌋ √2
⌋
< q < 2⌊ k+1

2 ⌋+1 yield

q
p
>

⌊
2⌊ k+1

2 ⌋ √2
⌋

2⌊ k+1
2 ⌋

>
2⌊ k+1

2 ⌋
⌊√

2
⌋

2⌊ k+1
2 ⌋

= 1

and
q
p
<

2⌊ k+1
2 ⌋+1⌊

2⌊ k+1
2 ⌋−1

√
2
⌋ ≤ 2⌊ k+1

2 ⌋+1

2⌊ k+1
2 ⌋−1

⌊√
2
⌋ = 4

(2). If (p ∧
=
⌊

k+1
2

⌋
− 1) ⊗ (q ∧

=
⌊

k+1
2

⌋
), it possibly yields p ∈ I3 ⊕ p ∈ I4 and q ∈ I5 ⊕ q ∈ I6. The cases p ∈ I3 ⊗ q ∈ I5,

p ∈ I3 ⊗ q ∈ I6, p ∈ I4 ⊗ q ∈ I5 and p ∈ I4 ⊗ q ∈ I6 are to be checked.

For the case p ∈ I3⊗q ∈ I5, 2⌊ k+1
2 ⌋ < p ≤

⌊
2⌊ k+1

2 ⌋ √2
⌋

and 2⌊ k+1
2 ⌋+1 < q ≤

⌊
2⌊ k+1

2 ⌋+1
√

2
⌋

yield a contradiction to 1 < q
p <
√

2
by

q
p
>

2⌊ k+1
2 ⌋+1⌊

2⌊ k+1
2 ⌋
√

2
⌋ ≥ 2⌊ k+1

2 ⌋+1

2⌊ k+1
2 ⌋
√

2
=
√

2

For the case p ∈ I3 ⊗ q ∈ I6, 2⌊ k+1
2 ⌋ < p ≤

⌊
2⌊ k+1

2 ⌋ √2
⌋

and
⌊
2⌊ k+1

2 ⌋+1
√

2
⌋
< q < 2⌊ k+1

2 ⌋+2 also yield a contradiction to

1 < q
p <
√

2 by

q
p
>

⌊
2⌊ k+1

2 ⌋+1
√

2
⌋⌊

2⌊ k+1
2 ⌋
√

2
⌋ ≥ 2⌊ k+1

2 ⌋+1
√

2

2⌊ k+1
2 ⌋
√

2

 = 2

For the case p ∈ I4 ⊗ q ∈ I5,
⌊
2⌊ k+1

2 ⌋
√

2
⌋
< p < 2⌊ k+1

2 ⌋+1 and 2⌊ k+1
2 ⌋+1 < q ≤

⌊
2⌊ k+1

2 ⌋+1
√

2
⌋

yield

q
p
>

2⌊ k+1
2 ⌋+1

2⌊ k+1
2 ⌋+1

= 1

and
q
p
<

⌊
2⌊ k+1

2 ⌋+1
√

2
⌋⌊

2⌊ k+1
2 ⌋
√

2
⌋ ≤ 2⌊ k+1

2 ⌋+1
√

2

2⌊ k+1
2 ⌋
⌊√

2
⌋ = 2

√
2
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For the case p ∈ I4 ⊗ q ∈ I6,
⌊
2⌊ k+1

2 ⌋ √2
⌋
+ 1 ≤ p < 2⌊ k+1

2 ⌋+1 and
⌊
2⌊ k+1

2 ⌋+1
√

2
⌋
< q ≤ 2⌊ k+1

2 ⌋+2 − 1 yield

q
p
>

⌊
2⌊ k+1

2 ⌋+1
√

2
⌋

2⌊ k+1
2 ⌋+1

≥ 1

and
q
p
<

2⌊ k+1
2 ⌋+2⌊

2⌊ k+1
2 ⌋
√

2
⌋
+ 1
≤ 2⌊ k+1

2 ⌋+2

2⌊ k+1
2 ⌋
√

2
= 2
√

2

Consequently, p ∧= I2 ⊗ (q ∈ I3 ⊕ q ∈ I4) fits the condition (p ∧=
⌊

k+1
2

⌋
− 2) ⊗ (q ∧=

⌊
k+1

2

⌋
− 1) and p ∧= I4 ⊗ (q ∧= I5 ⊕ q ∧= I6)

fits the condition (p ∧=
⌊

k+1
2

⌋
− 1) ⊗ (q ∧=

⌊
k+1

2

⌋
).

�

Example 7. Let N = 4331, then k =
⌊
log2N

⌋ − 1 =
⌊
log2(4331)

⌋ − 1 = 11. Subdivision (16) is instanced by

I1 = [33, 45], I2 = [46, 63],
I3 = [65, 90], I4 = [91, 127],
I5 = [129, 181], I6 = [182, 255]

By Example 1 it knows p = 61 ∈ I2 and q = 71 ∈ I3.

Example 8. Let N = 16637, then k =
⌊
log2N

⌋ − 1 =
⌊
log2(16637)

⌋ − 1 = 13. Subdivision (16) is instanced by

I1 = [65, 90], I2 = [91, 127],
I3 = [129, 181], I4 = [182, 255],
I5 = [257, 362], I6 = [363, 511]

By Example 3 it knows p = 127 ∈ I2 and q = 131 ∈ I3.

Remark 1. With the help of Mathematica, the subdivision is easily implemented by the following program. When running
in Mathematica, changing the parameter k immediately obtains the expected subdivision.

I1l[k ] := 2Floor[ k+1
2 ]−1 + 1;

I1r[k ] := Floor[
√

2 × 2Floor[ k+1
2 ]−1];

I2r[k ] := Floor[
√

2 × 2Floor[ k+1
2 ]−1] + 1;

I2r[k ] := 2Floor[ k+1
2 ] − 1;

I3r[k ] := 2Floor[ k+1
2 ] + 1;

I3r[k ] := Floor[
√

2 × 2Floor[ k+1
2 ]];

I4r[k ] := Floor[
√

2 × 2Floor[ k+1
2 ]] + 1;

I4r[k ] := 2Floor[ k+1
2 ]+1 − 1;

I5l[k ] := 2Floor[ k+1
2 ]+1 + 1;

I5r[k ] := Floor[
√

2 × 2Floor[ k+1
2 ]+1];

I6r[k ] := Floor[
√

2 × 2Floor[ k+1
2 ]+1] + 1;

I6r[k ] := 2Floor[ k+1
2 ]+2 − 1;

/ ∗ the − number − 13 − in − bracket − [] − is − the − k ∗ /
l1 = {I1l[13], I1r[13]};
l2 = {I2l[13], I2r[13]};
l3 = {I3l[13], I3r[13]};
l4 = {I4l[13], I4r[13]};
l5 = {I5l[13], I5r[13]};
l6 = {I6l[13], I6r[13]};
T = {l1, l2, l3, l4, l5, l6}//MatrixForm

Proposition 6. Let (N = pq) > 64 be an odd integer and k =
⌊
log2N

⌋ − 1, where divisors p and q satisfy 1 < p < q and
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1 < q
p <

3
2 ; Subdivide the interval [2⌊ k+1

2 ⌋−1 + 1, 2⌊ k+1
2 ⌋+2 − 1] into 6 subintervals by

I1 = [2⌊ k+1
2 ⌋−1 + 1, 2⌊ k+1

2 ⌋ − 3 × 2⌊ k+1
2 ⌋−3 + 1)

I2 = [2⌊ k+1
2 ⌋ − 3 × 2⌊ k+1

2 ⌋−3 + 1, 2⌊ k+1
2 ⌋ − 1]

I3 = [2⌊ k+1
2 ⌋ + 1, 2⌊ k+1

2 ⌋+1 − 3 × 2⌊ k+1
2 ⌋−2 + 1)

I4 = [2⌊ k+1
2 ⌋+1 − 3 × 2⌊ k+1

2 ⌋−2 + 1, 2⌊ k+1
2 ⌋+1 − 1]

I5 = [2⌊ k+1
2 ⌋+1 + 1, 2⌊ k+1

2 ⌋+2 − 3 × 2⌊ k+1
2 ⌋−1 + 1)

I6 = [2⌊ k+1
2 ⌋+3 − 3 × 2⌊ k+1

2 ⌋−1 + 1, 2⌊ k+1
2 ⌋+2 − 1]

(17)

then p ∧
= I2 ⊗ (q ∧

= I3 ⊕ q ∧
= I4) in the case (p ∧

=
⌊

k+1
2

⌋
− 2) ⊗ (q ∧

=
⌊

k+1
2

⌋
− 1), (p < q) ∆=

⌊
k+1

2

⌋
− 1 in the case

(p ∆=
⌊

k+1
2

⌋
− 1) ⊗ (q ∆=

⌊
k+1

2

⌋
− 1) and p ∧= I4 ⊗ (q ∧= I5 ⊕ q ∧= I6) in the case (p ∧=

⌊
k+1

2

⌋
− 1) ⊗ (q ∧=

⌊
k+1

2

⌋
).

Proof. N > 64 yields k > 5 and
⌊

k+1
2

⌋
− 3 ≥ 0, which is meaningful. Like the proof of Proposition 5 , here merely prove

the case (p ∧=
⌊

k+1
2

⌋
− 2) ⊗ (q ∧=

⌊
k+1

2

⌋
− 1) and case (p ∧=

⌊
k+1

2

⌋
− 1) ⊗ (q ∧=

⌊
k+1

2

⌋
).

(1). If (p ∆=
⌊

k+1
2

⌋
− 2) ⊗ (q ∆=

⌊
k+1

2

⌋
− 1), it possibly yields p ∈ I1 ⊕ p ∈ I2 and q ∈ I3 ⊕ q ∈ I4. The cases p ∈ I1 ⊗ q ∈ I3,

p ∈ I1 ⊗ q ∈ I4, p ∈ I2 ⊗ q ∈ I3 and p ∈ I2 ⊗ q ∈ I4 are to be checked.

For the case p ∈ I1 ⊗ q ∈ I3, 2⌊ k+1
2 ⌋−1 < p ≤ 2⌊ k+1

2 ⌋ − 3 × 2⌊ k+1
2 ⌋−3 and 2⌊ k+1

2 ⌋ ≤ q < 2⌊ k+1
2 ⌋+1 − 3 × 2⌊ k+1

2 ⌋−2 lead to

q
p
>

2⌊ k+1
2 ⌋

2⌊ k+1
2 ⌋ − 3 × 2⌊ k+1

2 ⌋−3
=

1
1 − 3

8

=
8
5
>

3
2

which is contradictory to 1 < q
p <

3
2 .

For the case p ∈ I1 ⊗ q ∈ I4, 2⌊ k+1
2 ⌋−1 < p ≤ 2⌊ k+1

2 ⌋ − 3 × 2⌊ k+1
2 ⌋−3 and 2⌊ k+1

2 ⌋+1 − 3 × 2⌊ k+1
2 ⌋−2 < q < 2⌊ k+1

2 ⌋+1 lead to

q
p
>

2⌊ k+1
2 ⌋+1 − 3 × 2⌊ k+1

2 ⌋−2

2⌊ k+1
2 ⌋ − 3 × 2⌊ k+1

2 ⌋−3
= 2

which is contradictory to 1 < q
p <

3
2 , either.

For the case p ∈ I2 ⊗ q ∈ I3, 2⌊ k+1
2 ⌋ − 3 × 2⌊ k+1

2 ⌋−3 < p < 2⌊ k+1
2 ⌋ and 2⌊ k+1

2 ⌋ < q ≤ 2⌊ k+1
2 ⌋+1 − 3 × 2⌊ k+1

2 ⌋−2 lead to

q
p
>

2⌊ k+1
2 ⌋

2⌊ k+1
2 ⌋
= 1

and
q
p
<

2⌊ k+1
2 ⌋+1 − 3 × 2⌊ k+1

2 ⌋−2

2⌊ k+1
2 ⌋ − 3 × 2⌊ k+1

2 ⌋−3
= 2

For the case p ∈ I2 ⊗ q ∈ I4, 2⌊ k+1
2 ⌋ − 3 × 2⌊ k+1

2 ⌋−3 < p < 2⌊ k+1
2 ⌋ and 2⌊ k+1

2 ⌋+1 − 3 × 2⌊ k+1
2 ⌋−2 < q ≤ 2⌊ k+1

2 ⌋+1 lead to

q
p
>

2⌊ k+1
2 ⌋+1 − 3 × 2⌊ k+1

2 ⌋−2

2⌊ k+1
2 ⌋

= 2 − 3 × 1
4
=

5
4
> 1

and
q
p
<

2⌊ k+1
2 ⌋+1

2⌊ k+1
2 ⌋ − 3 × 2⌊ k+1

2 ⌋−3
=

2
1 − 3

8

=
16
5
= 3.2

(2). If (p ∧
=
⌊

k+1
2

⌋
− 1) ⊗ (q ∧

=
⌊

k+1
2

⌋
), it possibly yields p ∈ I3 ⊕ p ∈ I4 and q ∈ I5 ⊕ q ∈ I6. The cases p ∈ I3 ⊗ q ∈ I5,

p ∈ I3 ⊗ q ∈ I6, p ∈ I4 ⊗ q ∈ I5 and p ∈ I4 ⊗ q ∈ I6 are to be checked.

For the case p ∈ I3 ⊗ q ∈ I5, 2⌊ k+1
2 ⌋ < p ≤ 2⌊ k+1

2 ⌋+1 − 3 × 2⌊ k+1
2 ⌋−2 and 2⌊ k+1

2 ⌋+1 < q ≤ 2⌊ k+1
2 ⌋+2 − 3 × 2⌊ k+1

2 ⌋−1 lead to

q
p
>

2⌊ k+1
2 ⌋+1

2⌊ k+1
2 ⌋+1 − 3 × 2⌊ k+1

2 ⌋−2
=

2
2 − 3

4

=
8
5
>

3
2
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which is contradictory to 1 < q
p <

3
2 .

For the case p ∈ I3 ⊗ q ∈ I6, 2⌊ k+1
2 ⌋ < p ≤ 2⌊ k+1

2 ⌋+1 − 3 × 2⌊ k+1
2 ⌋−2 and 2⌊ k+1

2 ⌋+2 − 3 × 2⌊ k+1
2 ⌋−1 < q < 2⌊ k+1

2 ⌋+2 lead to

q
p
>

2⌊ k+1
2 ⌋+2 − 3 × 2⌊ k+1

2 ⌋−1

2⌊ k+1
2 ⌋+1 − 3 × 2⌊ k+1

2 ⌋−2
= 2

contradictory to 1 < q
p <

3
2 .

For the case p ∈ I4 ⊗ q ∈ I5, 2⌊ k+1
2 ⌋+1 − 3 × 2⌊ k+1

2 ⌋−2 < p ≤ 2⌊ k+1
2 ⌋+1 and 2⌊ k+1

2 ⌋+1 < q ≤ 2⌊ k+1
2 ⌋+2 − 3 × 2⌊ k+1

2 ⌋−1 lead to

q
p
>

2⌊ k+1
2 ⌋+1

2⌊ k+1
2 ⌋+1

= 1

and
q
p
<

2⌊ k+1
2 ⌋+2 − 3 × 2⌊ k+1

2 ⌋−1

2⌊ k+1
2 ⌋+1 − 3 × 2⌊ k+1

2 ⌋−2
= 2

For the case p ∈ I4 ⊗ q ∈ I6, 2⌊ k+1
2 ⌋+1 − 3 × 2⌊ k+1

2 ⌋−2 < p ≤ 2⌊ k+1
2 ⌋+1 and 2⌊ k+1

2 ⌋+2 − 3 × 2⌊ k+1
2 ⌋−1 < q < 2⌊ k+1

2 ⌋+2 lead to

q
p
>

2⌊ k+1
2 ⌋+2 − 3 × 2⌊ k+1

2 ⌋−1

2⌊ k+1
2 ⌋+1

=
2 − 3

4

2
=

5
8

and

q
p
<

2⌊ k+1
2 ⌋+2

2⌊ k+1
2 ⌋+2 − 3 × 2⌊ k+1

2 ⌋−1
=

4
4 − 3

2

=
8
5

�

Proposition 7. Let (N = pq) > 64 be an odd integer and k =
⌊
log2N

⌋ − 1, where divisors p and q satisfy 1 < p < q and
1 < q

p < 2; Subdivide the interval [2⌊ k+1
2 ⌋−1 + 1, 2⌊ k+1

2 ⌋+2 − 1] into 6 subintervals by

I1 = [2⌊ k+1
2 ⌋−1 + 1, 2⌊ k+1

2 ⌋ − 5 × 2⌊ k+1
2 ⌋−3 + 1)

I2 = [2⌊ k+1
2 ⌋ − 5 × 2⌊ k+1

2 ⌋−3 + 1, 2⌊ k+1
2 ⌋ − 1]

I3 = [2⌊ k+1
2 ⌋ + 1, 2⌊ k+1

2 ⌋+1 − 5 × 2⌊ k+1
2 ⌋−2 + 1)

I4 = [2⌊ k+1
2 ⌋+1 − 5 × 2⌊ k+1

2 ⌋−2 + 1, 2⌊ k+1
2 ⌋+1 − 1]

I5 = [2⌊ k+1
2 ⌋+1 + 1, 2⌊ k+1

2 ⌋+2 − 5 × 2⌊ k+1
2 ⌋−1 + 1)

I6 = [2⌊ k+1
2 ⌋+2 − 5 × 2⌊ k+1

2 ⌋−1 + 1, 2⌊ k+1
2 ⌋+2 − 1]

(18)

then p ∧
= I2 ⊗ (q ∧

= I3 ⊕ q ∧
= I4) in the case (p ∧

=
⌊

k+1
2

⌋
− 2) ⊗ (q ∧

=
⌊

k+1
2

⌋
− 1), (p < q) ∆=

⌊
k+1

2

⌋
− 1 in the case

(p ∆=
⌊

k+1
2

⌋
− 1) ⊗ (q ∆=

⌊
k+1

2

⌋
− 1) and p ∧= I4 ⊗ (q ∧= I5 ⊕ q ∧= I6) in the case (p ∧=

⌊
k+1

2

⌋
− 1) ⊗ (q ∧=

⌊
k+1

2

⌋
).

Proof. Like the proof of Proposition 6, here merely prove the case (p ∧
=
⌊

k+1
2

⌋
− 2) ⊗ (q ∧

=
⌊

k+1
2

⌋
− 1) and case (p ∧

=⌊
k+1

2

⌋
− 1) ⊗ (q ∧=

⌊
k+1

2

⌋
).

(1). If (p ∆=
⌊

k+1
2

⌋
− 2) ⊗ (q ∆=

⌊
k+1

2

⌋
− 1), it possibly yields p ∈ I1 ⊕ p ∈ I2 and q ∈ I3 ⊕ q ∈ I4. The cases p ∈ I1 ⊗ q ∈ I3,

p ∈ I1 ⊗ q ∈ I4, p ∈ I2 ⊗ q ∈ I3 and p ∈ I2 ⊗ q ∈ I4 are to be checked.

For the case p ∈ I1 ⊗ q ∈ I3, 2⌊ k+1
2 ⌋−1 < p ≤ 2⌊ k+1

2 ⌋ − 5 × 2⌊ k+1
2 ⌋−3 and 2⌊ k+1

2 ⌋ < q ≤ 2⌊ k+1
2 ⌋+1 − 5 × 2⌊ k+1

2 ⌋−2 lead to

q
p
>

2⌊ k+1
2 ⌋

2⌊ k+1
2 ⌋ − 5 × 2⌊ k+1

2 ⌋−3
=

1
1 − 5

8

=
8
3

which is contradictory to 1 < q
p < 2.
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For the case p ∈ I1 ⊗ q ∈ I4, 2⌊ k+1
2 ⌋−1 < p ≤ 2⌊ k+1

2 ⌋ − 5 × 2⌊ k+1
2 ⌋−3 and 2⌊ k+1

2 ⌋+1 − 5 × 2⌊ k+1
2 ⌋−2 < q < 2⌊ k+1

2 ⌋+1 lead to

q
p
>

2⌊ k+1
2 ⌋+1 − 5 × 2⌊ k+1

2 ⌋−2

2⌊ k+1
2 ⌋ − 5 × 2⌊ k+1

2 ⌋−3
= 2

which is contradictory to 1 < q
p < 2, either.

For the case p ∈ I2 ⊗ q ∈ I3, 2⌊ k+1
2 ⌋ − 5 × 2⌊ k+1

2 ⌋−3 < p < 2⌊ k+1
2 ⌋ and 2⌊ k+1

2 ⌋ < q ≤ 2⌊ k+1
2 ⌋+1 − 5 × 2⌊ k+1

2 ⌋−2 lead to

q
p
>

2⌊ k+1
2 ⌋

2⌊ k+1
2 ⌋
= 1

and
q
p
<

2⌊ k+1
2 ⌋+1 − 5 × 2⌊ k+1

2 ⌋−2

2⌊ k+1
2 ⌋ − 5 × 2⌊ k+1

2 ⌋−3
= 2

For the case p ∈ I2 ⊗ q ∈ I4, 2⌊ k+1
2 ⌋ − 5 × 2⌊ k+1

2 ⌋−3 < p < 2⌊ k+1
2 ⌋ and 2⌊ k+1

2 ⌋+1 − 5 × 2⌊ k+1
2 ⌋−2 < q < 2⌊ k+1

2 ⌋+1 lead to

q
p
>

2⌊ k+1
2 ⌋+1 − 5 × 2⌊ k+1

2 ⌋−2

2⌊ k+1
2 ⌋

= 2 − 5 × 1
4
=

3
4

and
q
p
<

2⌊ k+1
2 ⌋+1

2⌊ k+1
2 ⌋ − 5 × 2⌊ k+1

2 ⌋−3
=

2
1 − 5 × 1

8

=
16
3

(2). If (p ∧
=
⌊

k+1
2

⌋
− 1) ⊗ (q ∧

=
⌊

k+1
2

⌋
), it possibly yields p ∈ I3 ⊕ p ∈ I4 and q ∈ I5 ⊕ q ∈ I6. The cases p ∈ I3 ⊗ q ∈ I5,

p ∈ I3 ⊗ q ∈ I6, p ∈ I4 ⊗ q ∈ I5 and p ∈ I4 ⊗ q ∈ I6 are to be checked.

For the case p ∈ I3 ⊗ q ∈ I5, 2⌊ k+1
2 ⌋ < p ≤ 2⌊ k+1

2 ⌋+1 − 5 × 2⌊ k+1
2 ⌋−2 and 2⌊ k+1

2 ⌋+1 < q ≤ 2⌊ k+1
2 ⌋+2 − 5 × 2⌊ k+1

2 ⌋−1 lead to

q
p
>

2⌊ k+1
2 ⌋+1

2⌊ k+1
2 ⌋+1 − 5 × 2⌊ k+1

2 ⌋−2
=

2
2 − 5

4

=
8
3

which is contradictory to 1 < q
p < 2.

For the case p ∈ I3 ⊗ q ∈ I6, 2⌊ k+1
2 ⌋ < p ≤ 2⌊ k+1

2 ⌋+1 − 5 × 2⌊ k+1
2 ⌋−2 and 2⌊ k+1

2 ⌋+2 − 5 × 2⌊ k+1
2 ⌋−1 < q < 2⌊ k+1

2 ⌋+2 lead to

q
p
>

2⌊ k+1
2 ⌋+2 − 5 × 2⌊ k+1

2 ⌋−1

2⌊ k+1
2 ⌋+1 − 5 × 2⌊ k+1

2 ⌋−2
= 2

contradictory to 1 < q
p < 2.

For the case p ∈ I4 ⊗ q ∈ I5, 2⌊ k+1
2 ⌋+1 − 5 × 2⌊ k+1

2 ⌋−2 < p ≤ 2⌊ k+1
2 ⌋+1 and 2⌊ k+1

2 ⌋+1 < q ≤ 2⌊ k+1
2 ⌋+2 − 5 × 2⌊ k+1

2 ⌋−1 lead to

q
p
>

2⌊ k+1
2 ⌋+1

2⌊ k+1
2 ⌋+1

= 1

and
q
p
<

2⌊ k+1
2 ⌋+2 − 5 × 2⌊ k+1

2 ⌋−1

2⌊ k+1
2 ⌋+1 − 5 × 2⌊ k+1

2 ⌋−2
= 2

For the case p ∈ I4 ⊗ q ∈ I6, 2⌊ k+1
2 ⌋+1 − 5 × 2⌊ k+1

2 ⌋−2 < p ≤ 2⌊ k+1
2 ⌋+1 and 2⌊ k+1

2 ⌋+2 − 5 × 2⌊ k+1
2 ⌋−1 < q < 2⌊ k+1

2 ⌋+2 lead to

q
p
>

2⌊ k+1
2 ⌋+2 − 5 × 2⌊ k+1

2 ⌋−1

2⌊ k+1
2 ⌋+1

= 2 − 5
4
=

3
4

and
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q
p
<

2⌊ k+1
2 ⌋+2

2⌊ k+1
2 ⌋+1 − 5 × 2⌊ k+1

2 ⌋−2
=

4
2 − 5

4

=
16
3

�

Remark 2. It can prove that the following subdivision (19) is also subordinate to the Proposition 7.

I1 = [2⌊ k+1
2 ⌋−1 + 1, 2⌊ k+1

2 ⌋ − 2⌊ k+1
2 ⌋−2 − 2⌊ k+1

2 ⌋−3 + 1)
I2 = [2⌊ k+1

2 ⌋ − 2⌊ k+1
2 ⌋−2 − 2⌊ k+1

2 ⌋−3 + 1, 2⌊ k+1
2 ⌋ − 1]

I3 = [2⌊ k+1
2 ⌋ + 1, 2⌊ k+1

2 ⌋+1 − 2⌊ k+1
2 ⌋−1 − 2⌊ k+1

2 ⌋−2 + 1)
I4 = [2⌊ k+1

2 ⌋+1 − 2⌊ k+1
2 ⌋−1 − 2⌊ k+1

2 ⌋−2 + 1, 2⌊ k+1
2 ⌋+1 − 1]

I5 = [2⌊ k+1
2 ⌋+1 + 1, 2⌊ k+1

2 ⌋+2 − 2⌊ k+1
2 ⌋ − 2⌊ k+1

2 ⌋−1 + 1)
I6 = [2⌊ k+1

2 ⌋+2 − 2⌊ k+1
2 ⌋ − 2⌊ k+1

2 ⌋−1 + 1, 2⌊ k+1
2 ⌋+2 − 1]

(19)

Proposition 8. Let k > 6, eI
√

2
2 =

⌊
2⌊ k+1

2 ⌋−1
√

2
⌋
+1, eI1.5

2 = 2⌊ k+1
2 ⌋ −3×2⌊ k+1

2 ⌋−3+1, eI2
2 = 2⌊ k+1

2 ⌋+1−5×2⌊ k+1
2 ⌋−3+1,eI

√
2

4 =⌊
2⌊ k+1

2 ⌋ √2
⌋
+ 1, eI1.5

4 = 2⌊ k+1
2 ⌋+1 − 3 × 2⌊ k+1

2 ⌋−2 + 1 and eI2
4 = 2⌊ k+1

2 ⌋+1 − 5 × 2⌊ k+1
2 ⌋−2 + 1; then

eI
√

2
2 ≥ 2⌊ k+1

2 ⌋−1 + 2⌊ k+1
2 ⌋−3 + 1 = N

(⌊ k+1
2 ⌋−2,2⌊ k+1

2 ⌋−4)

eI
√

2
4 ≥ 2⌊ k+1

2 ⌋ + 2⌊ k+1
2 ⌋−2 + 1 = N

(⌊ k+1
2 ⌋−1,2⌊ k+1

2 ⌋−3)

(20)

and  eI
√

2
2 > eI1.5

2 > eI2
2

eI
√

2
4 > eI1.5

4 > eI2
4

(21)

Proof. Direct calculations yields

eI
√

2
2 =

⌊
2⌊ k+1

2 ⌋−1
√

2
⌋
+ 1

= 2⌊ k+1
2 ⌋−1 +

⌊
2⌊ k+1

2 ⌋−1(
√

2 − 1)
⌋
+ 1

= 2⌊ k+1
2 ⌋−1 +

⌊
2⌊ k+1

2 ⌋−3 × 4(
√

2 − 1)
⌋
+ 1

≥ 2⌊ k+1
2 ⌋−1 + 2⌊ k+1

2 ⌋−3 ×
⌊
4(
√

2 − 1)
⌋
+ 1

= 2⌊ k+1
2 ⌋−1 + 2⌊ k+1

2 ⌋−3 + 1 = N
(⌊ k+1

2 ⌋−2,2⌊ k+1
2 ⌋−4)

and
eI
√

2
4 =

⌊
2⌊ k+1

2 ⌋ √2
⌋
+ 1

= 2⌊ k+1
2 ⌋ +

⌊
2⌊ k+1

2 ⌋(
√

2 − 1)
⌋
+ 1

= 2⌊ k+1
2 ⌋ +

⌊
2⌊ k+1

2 ⌋−2 × 4(
√

2 − 1)
⌋
+ 1

≥ 2⌊ k+1
2 ⌋ + 2⌊ k+1

2 ⌋−2 ×
⌊
4(
√

2 − 1)
⌋
+ 1

= 2⌊ k+1
2 ⌋ + 2⌊ k+1

2 ⌋−2 + 1 = N
(⌊ k+1

2 ⌋−1,2⌊ k+1
2 ⌋−3)

Hence (20) holds. It is obvious that
{

eI1.5
2 > eI2

2
eI1.5

4 > eI2
4

holds. So the next proof is merely for

 eI
√

2
2 > eI1.5

2

eI
√

2
4 > eI1.5

4

. Direct

calculations yield

eI
√

2
2 − eI1.5

2 =
⌊
2⌊ k+1

2 ⌋−1
√

2
⌋
+ 1 − 2⌊ k+1

2 ⌋ + 3 × 2⌊ k+1
2 ⌋−3 − 1

=
⌊
2⌊ k+1

2 ⌋−1
√

2
⌋
− 2⌊ k+1

2 ⌋ + 3 × 2⌊ k+1
2 ⌋−3

> 2⌊ k+1
2 ⌋−1

√
2 − 1 − 2⌊ k+1

2 ⌋ + 3 × 2⌊ k+1
2 ⌋−3

= 2⌊ k+1
2 ⌋(

√
2

2 − 1 + 3
8 ) − 1

= 2⌊ k+1
2 ⌋−3(4

√
2 − 5) − 1
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Since
√

2 > 1 + 1
2 −

1
4 +

1
8 , it holds

eI
√

2
2 − eI1.5

2 > 2⌊ k+1
2 ⌋−3(4

√
2 − 5) − 1 > 2⌊ k+1

2 ⌋−3(4 × (1 +
1
2
− 1

4
+

1
8

) − 5) − 1 = 2⌊ k+1
2 ⌋−4 − 1

Similarly, when k > 6 it yields

eI
√

2
4 − eI1.5

4 =
⌊
2⌊ k+1

2 ⌋ √2
⌋
+ 1 − 2⌊ k+1

2 ⌋+1 + 3 × 2⌊ k+1
2 ⌋−2 − 1

=
⌊
2⌊ k+1

2 ⌋ √2
⌋
− 2⌊ k+1

2 ⌋+1 + 3 × 2⌊ k+1
2 ⌋−2

> 2⌊ k+1
2 ⌋ √2 − 1 − 2⌊ k+1

2 ⌋+1 + 3 × 2⌊ k+1
2 ⌋−2

= 2⌊ k+1
2 ⌋+1(

√
2

2 − 1 + 3
8 ) − 1

= 2⌊ k+1
2 ⌋−2(4

√
2 − 5) − 1 > 1

�

The relationships described in Proposition 8 can be intuitionally illustrated with figure 1. In the figure, I
√

2
2 ,I1.5

2 and I2
2 are

lengths of the second subintervals subdivided with (16), (17) and (18), respectively.

Figure 1. eI
√

2
2 > eI1.5

2 > eI2
2 vs. I

√
2

2 < I1.5
2 < I2

2 on level
⌊

k+1
2

⌋
− 2

Theorem 1. Let (N = pq) > 128 be an odd integer and k =
⌊
log2N

⌋ − 1, where divisors p and q satisfy 1 < p < q
and 1 < q

p = α < 2; then there always exists a subdivision of the interval [2⌊ k+1
2 ⌋−1 + 1, 2⌊ k+1

2 ⌋+2 − 1] into 6 subintervals
I1, I2, I3, I4, I5 and I6 that satisfy

[2⌊ k+1
2 ⌋−1 + 1, 2⌊ k+1

2 ⌋+2 − 1] = I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5 ∪ I6 (22)

by means of which holds one of the three cases, p ∧= I2⊗(q ∧= I3⊕q ∧= I4), (p < q) ∆=
⌊

k+1
2

⌋
−1 and p ∧= I4⊗(q ∧= I5⊕q ∧= I6).

Proof. The subdivision (16) is applicable if 1 < α <
√

2, the subdivision (17) is applicable if
√

2 < α < 3
2 , and the

subdivision (18) or (19) is applicable if 3
2 < α < 2. �

The three cases mentioned in Theorem 1 can be intuitionally depicted with figure ??. In the figure, (a) is for the case
p ∧= I2 ⊗ (q ∧= I3 ⊕ q ∧= I4) , (b) is for the case (p ≤

√
N ≤ q) ∆=

⌊
k+1

2

⌋
− 1 and (c) is for the case p ∧= I4 ⊗ (q ∧= I5 ⊕ q ∧= I6).
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Figure 2. (a) p ∧= I2 ⊗ (q ∧= I3 ⊕ q ∧= I4); (b) (p ≤
√

N ≤ q) ∆=
⌊

k+1
2

⌋
− 1; (c) (p ≤

√
N ≤ q) ∆=

⌊
k+1

2

⌋
− 1

4. Conclusion

Factorization of the RSA numbers has been a challenge for researchers working in the field of cryptography as well as the
field of number theory. Investigation shows, the two divisors of a RSA number may lie on at most two adjacent levels,
and the smaller their divisor-ratio is the closer they are. This trait indicates a direction for researcher to design algorithm
to factorize the RSA numbers. The Theorem 1 shows that, for a divisor-ratio 1 < q/p < 2 of odd interger N = pq, there
is always a subdivision around level

⌊
k+1

2

⌋
− 1 with which p and q are located. Readers can see that, the subdivisions

presented in this paper are not so refinery, hence a refinery subdivision is still worthy of seeking in the future work. Hope
it is obtained soon.
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