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Abstract

In this paper we introduce a method for solving the nonlinear equation f (x) = 0 where x, f (x) are two vectors. This
method uses the theory of distributions, and it’s a non-iterative method, indeed it creates a sequence of vectors with an
explicit formula and this sequence will converge to the solution of the nonlinear equation.
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1. Introduction

In general, iterative methods are used for solving nonlinear equations ( f (x) = 0), thus a starting point of the iterative
sequence is required for these methods. The starting point must be in a neighborhood and close enough to the solution of
the nonlinear equation so that the sequence converges to the solution, which is a disadvantage for these methods.

This paper is a generalization of (Houssein, 2018) in order to treat the case where x and f (x) are two vectors. therefore
the method in this paper will produce a sequence of vectors with an explicit formula, where the solution of the nonlinear
equation is the limit of this sequence. In the following we will study a sequence of distributions in order to present the
algorithm responsible of the creation of this sequence which converges to the solution, in addition two examples are
presented to illustrate the method.

The explicit formula of the sequence and the requirement of only few conditions for the function f in a neighborhood of
the solution are the advantages of this method.

1.1 Distributions and Test Functions (Houssein, 2018), (Schwartz, 1963), (Schwartz, 1966)

Let Ω ⊆ Rd be an open set with d ∈ N∗, and let f a locally integrable function on Ω, f : Ω → R, then the considered
distribution T is the following:

< T, ϕ >= T (ϕ) =
∫
Ω

fϕ dλ ∀ϕ ∈ D(Ω)

Where λ is the Lebesgue measure, D(Ω) the space of the test functions on Ω. T is also noted by f , in other words
< f , ϕ >=< T, ϕ >.

An example of a test function belonging toD(Rd) is the following:

ϕ(x) =
 e

−1
1−∥x∥2 i f ∥x∥ < 1

0 otherwise

2. Building a Sequence of Distributions That Converges to a Dirac

In the following we consider a function g : Ω̄ → R where Ω ⊂ Rd is a non-empty, bounded and open set with d ∈ N∗.
The function g is supposed to be a positive function g(x) ≥ 0 ∀x ∈ Ω̄. Using the theorem 1 we will be able to create a
sequence of distributions which converges to the Dirac distribution.

Theorem 1 We suppose that the function g has only one zero x∗ in Ω̄ and x∗ ∈ Ω such that g is C2 in a neighborhood
of x∗ and the Hessian matrix at x∗: Hessx∗ (g) is positive definite, in addition we suppose that exists a neighborhood
of x∗ which contains a finite number of critical points of g , if we consider the sequence of functions gn defined by:
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gn(x) = 1Ω(x)
(
n
√

1
2π

)d
e−n2g(x) then:

gn −→
n→+∞

1
√

c
δx∗ In the sense of distributions

Where c = det(Hessx∗ (g)) , δx∗ the Dirac distribution at x∗. The convergence in the sense of distributions means that:

< gn, ϕ >=

∫
Rd

gn(x)ϕ(x) dλ(x) −→
n→+∞

1
√

c
ϕ(x∗) ∀ϕ ∈ D(Rd)

Proof. At first because g ≥ 0, the function g reaches its minimum at x∗, thus:

Jacx∗ (g) =
(
∂g
∂x1
, . . . ,

∂g
∂xd

) ∣∣∣∣
x=x∗
= 0

Where x = (x1, . . . , xd).

Using the Taylor’s theorem g can be expressed by:

g(x) = g(x∗) + Jacx∗ (g).(x − x∗) +
1
2

t(x − x∗).Hessx∗ (g).(x − x∗) + ∥x − x∗∥2ϵ(x − x∗)

⇒ g(x) =
1
2

t(x − x∗).Hessx∗ (g).(x − x∗) + ∥x − x∗∥2ϵ(x − x∗)

Where ϵ is a function ϵ : Rd → R such that: ϵ(x) −→
x→0

0 and where:

Hessx∗ (g) =


∂2g
∂x2

1
(x∗) . . . ∂2g

∂x1∂xd
(x∗)

...
. . .

...
∂2g
∂x1∂xd

(x∗) . . . ∂2g
∂x2

d
(x∗)


The Hessian matrix at x∗: Hessx∗ (g) is symmetric and positive definite therefore:

Hessx∗ (g) = tODO

Where O is a d × d orthogonal matrix and D a d × d diagonal matrix:

D =


c1 0 . . . 0
0 c2 . . . 0
...
. . .

. . .
...

0 0 . . . cd


Where c1, . . . , cd > 0.
We obtain that:

g(x) =
1
2

t(O.(x − x∗)).D.(O.(x − x∗)) + ∥x − x∗∥2ϵ(x − x∗)

For a ϕ ∈ D(Rd) we consider the distribution sequence:

< gn, ϕ >=

∫
Rd

gn(x)ϕ(x) dλ(x)

⇒< gn, ϕ >=

∫
Rd

1Ω(x)

n √
1

2π

d

e−n2g(x)ϕ(x) dλ(x)

⇒< gn, ϕ >=

∫
Rd

1Ω(x)

n √
1

2π

d

e−n2( 1
2

t(O.(x−x∗)).D.(O.(x−x∗))+∥x−x∗∥2ϵ(x−x∗))ϕ(x) dλ(x)
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If we make a substitution y = x − x∗ we obtain:

< gn, ϕ >=

∫
Rd

1Ω∗ (y)

n √
1

2π

d

e−n2( 1
2

t(O.y).D.(O.y)+∥y∥2ϵ(y))ϕ(y + x∗) dλ(y)

Where Ω∗ = {x − x∗ | x ∈ Ω}. Ω∗ is a neighborhood of 0.
Another substitution is made x = Oy thus we obtain:

1Ω∗ (y) = 1Ω∗ (O−1x) = 1OΩ∗ (x)

Where OΩ∗ = {O.y | y ∈ Ω∗}, OΩ∗ is also a neighborhood of 0, indeed because Ω∗ is a a neighborhood of 0 then there
exist a ball B(0, r) = {x ∈ Rd | ∥x∥ < r} such that B(0, r) ⊂ Ω∗. O(B(0, r)) ⊂ OΩ∗ because O is bijective and:

O(B(0, r)) = {O.x | x ∈ Rd & ∥x∥ < r}

In addition we have
∥Ox∥2 = t(O.x).(Ox) = t x(tO.O).x = t x.Id.x = t x.x = ∥x∥2

Then ∥Ox∥ = ∥x∥ and

⇒ O(B(0, r)) = {O.x | x ∈ Rd & ∥x∥ < r} ⊂ B(0, r) = {y ∈ Rd | ∥y∥ < r}

In the other sens let y ∈ Rd such that ∥y∥ < r then y = O.(O−1.y) thus y ∈ O(B(0, r)) and B(0, r) ⊂ O(B(0, r)).
We deduce that B(0, r) = O(B(0, r)) ⊂ OΩ∗ therefore OΩ∗ is a neighborhood of 0.
Back to the substitution x = Oy , the Jacobian matrix of this transforamtion is equal to Jac = O−1, therefore |det(Jac)| = 1.
We know also that O−1(Rd) = Rd because O−1 is bijective. Therefore:

< gn, ϕ >=

∫
Rd

1OΩ∗ (x)

n √
1

2π

d

e−n2( 1
2

t x.D.x+∥x∥2ϵ(O−1.x))ϕ(O−1.x + x∗) dλ(x)

Let the sequence En be defined by:

< En, ϕ >=

∫
Rd

n √
1

2π

d

e−
1
2 n2( t x.D.x)ϕ(O−1.x + x∗) dλ(x)

we will prove next that:

< En, ϕ > −→
n→+∞

1√
det(Hessx∗ (g))

ϕ(x∗)

Indeed

t x.D.x = (x1, . . . , xd).


c1 0 . . . 0
0 c2 . . . 0
...
. . .

. . .
...

0 0 . . . cd

 .

x1
...

xd


⇒ t x.D.x = c1x2

1 + . . . + cd x2
d

Let In =
∫
Rd

(
n
√

1
2π

)d
e−

1
2 n2( t x.D.x) dλ(x) then:

In =

∫
Rd

n √
1

2π

d

e−
1
2 n2(c1 x2

1+...+cd x2
d) dλ(x)

Let the substitution be y = nx ⇐⇒ (y1, . . . , yd) = n(x1, . . . , xd) then the Jacobian matrix of this transformation is equal
to Jac = 1

n Id and |det(Jac)| = ( 1
n )d. We will obtain:

In =

√ 1
2π

d ∫
Rd

e−
1
2 (c1y2

1+...+cdy2
d) dλ(y)
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Using Fubini’s theorem:

In =

√ 1
2π

 ∫
Rd

e−
1
2 c1y2

1 dλ(y1) × . . . ×
√ 1

2π

 ∫
Rd

e−
1
2 cdy2

d dλ(yd)

⇒ In =
1

√
c1 × . . . × cd

=
1√

det(Hessx∗ (g))

Using the substitution y = nx for En:

< En, ϕ >=

√ 1
2π

d ∫
Rd

e−
1
2 (c1y2

1+...+cdy2
d)ϕ(O−1.

y
n
+ x∗) dλ(y)

Otherwise we have:
∀y ∈ Rd, ∀n ∈ N∗, |ϕ(O−1.

y
n
+ x∗)| ≤ sup

y∈Rd
(|ϕ(y)|) = M < ∞

⇒ ∀y ∈ Rd, ∀n ∈ N∗, |e− 1
2 (c1y2

1+...+cdy2
d).ϕ(O−1.

y
n
+ x∗)| ≤ M.e−

1
2 (c1y2

1+...+cdy2
d)

The application e−
1
2 (c1y2

1+...+cdy2
d).ϕ(O−1. yn + x∗) is measurable and the application e−

1
2 (c1y2

1+...+cdy2
d) is integrable, therefore

using the Dominated Convergence theorem we deduce that:

< En, ϕ > −→
n→+∞

√ 1
2π

d ∫
Rd

e−
1
2 (c1y2

1+...+cdy2
d) dλ(y).ϕ(x∗)

⇒< En, ϕ > −→
n→+∞

1√
det(Hessx∗ (g))

ϕ(x∗)

Let Gn and Fn be two sequence of functions defined on Rd by: Gn(x) = 1OΩ∗ (x)
(
n
√

1
2π

)d
e−n2( 1

2
t x.D.x+∥x∥2ϵ(O−1.x)) and

Fn(x) =
(
n
√

1
2π

)d
e−

1
2 n2( t x.D.x).

We will prove next that:
∥Gn − Fn∥L1(Rd) −→n→+∞

0

First we will study it on the ball B(0, 1√
n ).

There ∃N1 ∈ N∗ such that B(0, 1√
n ) ⊂ OΩ∗ ∀n ≥ N1 because OΩ∗ is a neighborhood of 0Rd . Therefore:

∫
B(0, 1√

n )
|Gn − Fn| dλ =

n √
1

2π

d ∫
B(0, 1√

n )
e−

1
2 n2( t x.D.x)|1 − e−n2∥x∥2ϵ(O−1 x)| dλ(x)

By making the substitution y = nx:

∫
B(0, 1√

n )
|Gn − Fn| dλ =

√ 1
2π

d ∫
B(0,
√

n)
e−

1
2 (c1y2

1+...+cdy2
d)|1 − e−∥y∥

2ϵ(O−1 y
n )| dλ(y)

Besides we have ϵ(y) −→
y→0

0 and:

∥O−1 y
n
∥2 = t

(
O−1 y

n

)
.
(
O−1 y

n

)
= t

( y
n

)
.O.O−1.

y
n
=

1
n2 ∥y∥

2

Because O−1 = tO.
Let 0 < η < 1

2 Min(c1, . . . , cd) then:

∃A > 0,∀y ∈ Rd such that ∥y∥ ≤ A,⇒ |ϵ(y)| < η

4
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We have ∥y∥ <
√

n⇒ 1
n ∥y∥ ≤

1√
n .

There ∃N2 ∈ N∗,∀n ≥ N2 ⇒ 1√
n < A thus:

∥O−1 y
n
∥ < A ∀n ≥ N3 = Max(N1,N2)

⇒ |ϵ(O−1 y
n

)| < η ∀n ≥ N3

For n ≥ N3 we have two cases to treat:

1. If 0 ≤ ϵ(O−1 y
n ) ≤ η⇒ 1 − e−∥y∥

2ϵ(O−1 y
n ) ≤ 1 − e−∥y∥

2η, and because ∥y∥2ϵ(O−1 y
n ) ≥ 0:

|1 − e−∥y∥
2ϵ(O−1 y

n )| = 1 − e−∥y∥
2ϵ(O−1 y

n ) ≤ 1 − e−∥y∥
2η

2. If −η ≤ ϵ(O−1 y
n ) ≤ 0⇒ e−∥y∥

2ϵ(O−1 y
n ) − 1 ≤ e∥y∥

2η − 1, and because −∥y∥2ϵ(O−1 y
n ) ≥ 0:

|1 − e−∥y∥
2ϵ(O−1 y

n )| = e−∥y∥
2ϵ(O−1 y

n ) − 1 ≤ e∥y∥
2η − 1

We conclude that:

∀n ≥ N3 ⇒ |1 − e−∥y∥
2ϵ(O−1 y

n )| ≤ Max(1 − e−∥y∥
2η, e∥y∥

2η − 1) ≤ (1 − e−∥y∥
2η) + (e∥y∥

2η − 1)

⇒ ∀n ≥ N3 |1 − e−∥y∥
2ϵ(O−1 y

n )| ≤ eη∥y∥
2 − e−η∥y∥

2

We deduce that ∀n ≥ N3:∫
B(0, 1√

n )
|Gn − Fn| dλ ≤

√ 1
2π

d ∫
Rd

e−
1
2 (c1y2

1+...+cdy2
d).(eη∥y∥

2 − e−η∥y∥
2
) dλ(y)

e−
1
2 (c1y2

1+...+cdy2
d).(eη∥y∥

2 − e−η∥y∥
2
) = e−

1
2 ((c1−2η)y2

1+...+(cd−2η)y2
d) − e−

1
2 ((c1+2η)y2

1+...+(cd+2η)y2
d)

By supposition η < 1
2 Min(c1, . . . , cd) then:

ci − 2η > 0 ci + 2η > 0 ∀1 ≤ i ≤ d

Therefore: ∫
Rd

e−
1
2 ((c1−2η)y2

1+...+(cd−2η)y2
d) dλ(y) < ∞ and

∫
Rd

e−
1
2 ((c1+2η)y2

1+...+(cd+2η)y2
d) dλ(y) < ∞

In the other hand for y fixed:
1B(0,

√
n)(y)e−

1
2 (c1y2

1+...+cdy2
d)|1 − e−∥y∥

2ϵ(O−1 y
n )| −→

n→+∞
0

Using the Dominated Convergence theorem, we deduce that:∫
B(0, 1√

n )
|Gn − Fn| dλ −→

n→+∞
0

The second part of the proof will use the lemma 1 presented after the proof. The lemma 1 says that there exists a R > 0
where

∀0 < r < R,∃ζ ∈ C(x∗, r) such that g(ζ) ≤ g(x)∀x ∈ Rd & r < ∥x − x∗∥ ≤ R

Where C(x∗, r) = {x ∈ Rd | ∥x − x∗∥ = r}, R is chosen such that B̄(x∗,R) ⊂ Ω.
Besides ∃N4 > N3 such that ∀n ∈ N and n > N4 ⇒ 1√

n < R thus:

∀n > N4,∃ζn ∈ C(x∗,
1
√

n
) such that g(ζn) ≤ g(x) ∀x ∈ C(x∗,

1
√

n
,R)

Where C(x∗, 1√
n ,R) = {x ∈ Rd | 1√

n < ∥x − x∗∥ ≤ R}
By making two substitutions y = x − x∗ and then x = O.y we obtain:∫

C(x∗, 1√
n ,R)

gn dλ =
∫

C(0, 1√
n ,R)

Gn dλ

5
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Thus ∫
C(0, 1√

n ,R)
Gn dλ ≤ λ(B(x∗,R)).

n √
1

2π

d

e−n2g(ζn)

Where λ(B(x∗,R)) < ∞ and ζn ∈ C(x∗, 1√
n ).

e−n2g(ζn) = e−n2( 1
2

tyn.D.yn+∥O−1.yn∥2ϵ(O−1.yn))

Where yn = O.(ζn − x∗)

∥O−1.yn∥ = ∥ζn − x∗∥ = 1
√

n

And
tyn.D.yn = c1y2

n1 + . . . + cdy2
nd

Let k = min
1≤i≤d

(ci) then:

tyn.D.yn ≥ k(y2
n1 + . . . + y2

nd) = k∥yn∥2 = k
1
n

Therefore
e−n2g(ζn) ≤ e−

1
2 nk−nϵ(O−1.yn) = e−

1
2 nk.e−nϵ(O−1.yn)

Otherwise let 0 < η < 1
2 k then:

∃A > 0,∀y ∈ Rd such that ∥y∥ ≤ A,⇒ |ϵ(y)| < η
We have ∥O−1.yn∥ ≤ 1√

n .

There ∃N5 > N4 ∈ N∗,∀n ≥ N5 ⇒ 1√
n < A thus:

∥O−1.yn∥ < A ∀n ≥ N5

⇒ |ϵ(O−1.yn)| < η ∀n ≥ N5

For n ≥ N5 we have two cases to treat:

1. If 0 ≤ ϵ(O−1.yn) ≤ η⇒ e−nϵ(O−1.yn) ≤ 1

2. If −η ≤ ϵ(O−1.yn) ≤ 0⇒ e−nϵ(O−1.yn) ≤ enη

Thus e−nϵ(O−1.yn) ≤ 1 + enη and
e−n2g(ζn) ≤ e−

1
2 nk + e−n( 1

2 k−η)

By supposition 1
2 k − η > 0 Therefore ∫

C(0, 1√
n ,R)

Gn dλ −→
n→+∞

0

In the other hand Fn(x) =
(
n
√

1
2π

)d
e−

1
2 n2( t x.D.x)

Fn(x) ≤
n √

1
2π

d

e−
1
2 n2(k∥x∥2)

⇒
∫

C(0, 1√
n ,R)

Fn dλ ≤ λ(B(0,R)).

n √
1

2π

d

e−
1
2 n2(k 1

n ) −→
n→+∞

0

Therefore ∫
C(0, 1√

n ,R)
|Gn − Fn| dλ ≤

∫
C(0, 1√

n ,R)
Gn dλ +

∫
C(0, 1√

n ,R)
Fn dλ −→

n→+∞
0

We deduce that: ∫
B(0,R)

|Gn − Fn| dλ −→
n→+∞

0

6
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Finally on Ω̄\B(x∗,R) the application g is strictly positive g > 0 then g reaches its minimum at σ ∈ Ω̄ where g(σ) > 0.

Besides we have: ∫
Rd

Gn dλ =
∫
Rd

gn dλ and
∫

B(0,R)
Gn dλ =

∫
B(x∗,R)

gn dλ

Therefore ∫
Rd\B(0,R)

Gn dλ =
∫
Rd\B(x∗,R)

gn dλ =

n √
1

2π

d ∫
Ω\B(x∗,R)

e−n2g(x) dλ(x)

And ∫
Rd\B(0,R)

Gn dλ ≤
n √

1
2π

d

.λ(Ω\B(x∗,R)).e−n2g(σ) −→
n→+∞

0

Otherwise ∫
Rd\B(0,R)

Fn dλ =
∫
Rd

1{∥x∥≥R}(x)

n √
1

2π

d

e−
1
2 n2( t x.D.x) dλ(x)

Using the substitution y = nx: ∫
Rd\B(0,R)

Fn dλ =
∫
Rd

1{∥y∥≥nR}(y)

√ 1
2π

d

e−
1
2 ( ty.D.y) dλ(y)

As

1{∥y∥≥nR}(y)

√ 1
2π

d

e−
1
2 ( ty.D.y) −→

n→+∞
0 almost everywhere

Then ∫
Rd\B(0,R)

Fn dλ −→
n→+∞

0

And ∫
Rd\B(0,R)

|Gn − Fn| dλ −→
n→+∞

0

We conclude that:
∥Gn − Fn∥L1(Rd) =

∫
Rd
|Gn − Fn| dλ −→

n→+∞
0

Finally ∀ϕ ∈ D(Rd)

< gn, ϕ >=

∫
Rd

(Gn(x) − Fn(x))ϕ(O−1x + x∗) dλ(x) +
∫
Rd

Fn(x)ϕ(O−1x + x∗) dλ(x)

As ϕ is bounded then :

< gn, ϕ > −→
n→+∞

1√
det(Hessx∗ (g))

ϕ(x∗)

The following lemma is used in the proof of the theorem 1.

Lemma 1 Let g be a positive application g : Rd → R+, we suppose that there exists x∗ ∈ Rd such that g(x∗) = 0, and that
exists a neighborhood Ω of x∗ such that g ∈ C1(Ω) and such that the number of critical points of g in Ω is finite. Then

∃R > 0,∀ 0 < r < R,∃ζ ∈ C(x∗, r) such that g(ζ) ≤ g(x)∀x ∈ Rd & r < ∥x − x∗∥ ≤ R

Where C(x∗, r) = {x ∈ Rd | ∥x − x∗∥ = r}
Proof. We will proceed by contradiction, we will suppose that it’s not true thus we have:

∀R > 0,∃ 0 < r < R,∀ζ ∈ C(x∗, r), ∃x ∈ Rd such that r < ∥x − x∗∥ ≤ R & g(ζ) > g(x)

we will construct a sequence, indeed let Rn > 0 for n ∈ N thus:

∃ 0 < rn < Rn,∀ζ ∈ C(x∗, rn), ∃x ∈ Rd such that

7
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rn < ∥x − x∗∥ ≤ Rn & g(ζ) > g(x)

First let R∗n > 0 such that B(x∗,R∗n) ⊂ Ω and Mn = in f
x∈C(x∗,R∗n)

(g(x)) > 0

The application g is continuous at x∗:

∀ ϵ > 0 ∃r > 0, ∀ x ∈ B(x∗, r)⇒ |g(x) − g(x∗)| < ϵ

g ≥ 0 and g(x∗) = 0 then
∀ ϵ > 0 ∃r > 0, ∀ x ∈ B(x∗, r)⇒ g(x) < ϵ

Let ϵn = M∗n < Mn then ∃ r∗n > 0, ∀ x ∈ B(x∗, r∗n)⇒ g(x) < M∗n < Mn, we choose r∗n such that r∗n < R∗n.
Let Rn < r∗n then

∃ 0 < rn < Rn,∀ζ ∈ C(x∗, rn), ∃x ∈ Rd such that

rn < ∥x − x∗∥ ≤ Rn & g(ζ) > g(x)

Let ζn such that g(ζn) = in f
x∈C(x∗,rn)

(g(x)) therefore ∃ xn such that rn < ∥xn − x∗∥ ≤ Rn and

g(xn) < g(ζn) ≤ g(ζ) ∀ζ ∈ C(x∗, rn)

Therefore we conclude that there exists xn ∈ B(x∗,R∗n)\B̄(x∗, rn) such that:{
g(xn) < g(ζ) ∀ζ ∈ C(x∗, rn)
g(xn) < M∗n < g(y) ∀y ∈ C(x∗,R∗n)

x*

xn

 

B(x*,rn)

B(x*,Rn)

B(x*,Rn
*)

Figure 1. The neighborhood Ω

Otherwise the set On = {x ∈ Rd | rn ≤ ∥x − x∗∥ ≤ R∗n} is closed and bounded thus On is a compact set.
The application g is continuous on On thus the minimum of g is reached on On, let x∗n denotes the vector where g
reaches its minimum on On. x∗n does not belong to ∂On because as we saw above, ∃ xn belongs to the interior of On and
g(xn) < g(y)∀y ∈ ∂On. Therefore we deduce that x∗n is a critical point.

Second we will repeat the process for the step n + 1 by taking R∗n+1 such that R∗n+1 < ∥x∗n − x∗∥, therefore we will ob-
tain an infinity of critical points in Ω, which leads to a contradiction.

In general we have the following theorem if g has several zeros in Ω:

Theorem 2 If we suppose that the function g has only k zeros x∗1, . . . , x
∗
k in Ω̄ and x∗1, . . . , x

∗
k ∈ Ω such that g satis-

fies the hypotheses of the theorem 1 at each x∗i , then by considering the sequence of functions gn defined by: gn(x) =

8
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1Ω(x)
(
n
√

1
2π

)d
e−n2g(x) we have:

gn −→
n→+∞

k∑
i=1

1√
det(Hessx∗i (g))

δx∗i In the sense of distributions

Proof. It’s enough to say that Ω =
k∪

i=1
Ωi and gn(x) =

∑k
i=1 1Ωi (x)

(
n
√

1
2π

)d
e−n2g(x) where Ωi are disjoints and x∗i ∈

◦
Ωi.

3. Application

Let (S ) be a system of equations defined by:

(S ) :


f1(x1, . . . , xd) = 0

...
fd(x1, . . . , xd) = 0

Where ∀i = 1, . . . , d the application fi : Ω̄ → R is a function defined on Ω̄ where Ω ⊂ Rd an open and bounded set with
d ∈ N∗. In addition we suppose that there exists only one zero x∗ of the system of equations in Ω̄ and x∗ ∈ Ω, we suppose
also that ∀i = 1, . . . , d the application fi is C2 in a neighborhood of x∗.
Let g the application g : Ω̄ → R defined by g(x) = f 2

1 (x) + . . . + f 2
d (x) ∀x ∈ Ω̄, we suppose that exists a neigh-

borhood of x∗ which contains a finite number of critical points of g, let gn be a sequence of functions defined by

gn(x) = 1Ω(x)
(
n
√

1
2π

)d
e−n2g(x) and let

K = det
(
2[ t Jacx∗ ( f1).Jacx∗ ( f1) + . . . + t Jacx∗ ( fd).Jacx∗ ( fd)]

)
Where Jacx∗ ( fi) denotes the Jacobian matrix of the application fi.

Let Jacx∗ (S ) be the Jacobian of the system (S ) at x∗ in other words:

Jacx∗ (S ) =


∂ f1
∂x1

(x∗) . . . ∂ f1
∂xd

(x∗)
...

. . .
...

∂ fd
∂x1

(x∗) . . . ∂ fd
∂xd

(x∗)


If Jacx∗ (S ) is invertible then:

gn −→
n→+∞

1
√

K
δx∗ In the sense of distributions

Proof. It results from the theorem 1. In fact

Hessx∗ (g) =


∂2g
∂x2

1
(x∗) . . . ∂2g

∂x1∂xd
(x∗)

...
. . .

...
∂2g
∂x1∂xd

(x∗) . . . ∂2g
∂x2

d
(x∗)


And for two integers i and j less or equal than d

∂2g
∂xi∂x j

(x∗) =
∂

∂xi

(
∂

∂x j

(
f 2
1 + . . . + f 2

d

))
x∗
= 2
∂

∂xi

(
f1
∂ f1
∂x j
+ . . . + fd

∂ fd
∂x j

)
x∗

f1(x∗) = . . . = fd(x∗) = 0 then
∂2g
∂xi∂x j

(x∗) = 2
(
∂ f1
∂xi

∂ f1
∂x j
+ . . . +

∂ fd
∂xi

∂ fd
∂x j

)
x∗

Therefore
Hessx∗ (g) = 2

(
t Jacx∗ ( f1).Jacx∗ ( f1) + . . . + t Jacx∗ ( fd).Jacx∗ ( fd)

)
9
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∀x ∈ Rd and x , 0

t x.Hessx∗ (g).x = 2
d∑

i=1

((Jacx∗ ( fi)) .x)2

As Jacx∗ (S ) is invertible then
( t Jacx∗ ( f1), . . . , t Jacx∗ ( fd)

)
is a basis of Rd, therefore t x.Hessx∗ (g).x > 0 because if

t x.Hessx∗ (g).x = 0 ⇒ (Jacx∗ ( fi)) .x = 0 ∀i = 1, . . . , d then x is orthogonal to all vectors of the basis thus x is the
zero vector. We conclude that Hessx∗ (g) is positive definite.

4. Climbing the Dimensions Algorithm for Finding the Solution

This section will present an algorithm to find the zero x∗ of the function g which satisfies all conditions presented in the
theorem 1.

We take into consideration the sequence of functions gn(x) = 1Ω(x)
(
n
√

1
2π

)d
e−n2g(x). Using theorem 1 we have:

lim
n→+∞

∫
Rd

gn(x)ϕ(x) dλ(x) =
1
√

c
ϕ(x∗) ∀ϕ ∈ D(Rd)

Where c = det(Hessx∗ (g)).

We consider a several test functions for this algorithm, the idea is to trap the solution each time in a sphere to finish
in the intersection of these spheres, where we will have in the end 2 points where one is the solution and the other is
outside the domain.

We will consider the following test function from the spaceD(Rd):

ϕr,a(x) =
 e

−1
r2−∥x−a∥2 i f x ∈ B(a, r)

0 otherwise

For each test function ϕr,a and for each n ∈ N∗ we call S ϕr,a (a, ρn) the sphere of center a and of radius ρn where

ρn =
√

r2 − 1
Ln(yn) and yn =

∫
Rd gnϕr,a dλ∫
Rd gnϕ

2
r,a dλ

.

Besides if we have 2 spheres S (ξ, r) ⊂ Rd and S (η,R) ⊂ Rd of centers respectively ξ and η, of radius respectively
r and R such that ξ , η and S (ξ, r) ∩ S (η,R) , ∅, then S (ξ, r) ∩ S (η,R) is a sphere in Rd−1 with a radius equal to√

r2 −
(

L2+r2−R2

2L

)2
and with a center χ belongs to the line (ξ, η) such that χ = x1

η−ξ
L +ξ, where L = ∥η−ξ∥ and x1 =

L2+r2−R2

2L .

Now we begin the algorithm, let n ∈ N∗ a bit big, let a ∈ Ω and R∗ > 0 such that Ω ⊂ B(a,R∗). Let (e1, . . . , ed) the
orthonormal basis of Rd, we choose η0 such that η0 − a = Ke1 where K > R∗.

We take the test function ϕr0,η0 such that Ω ⊂ B(η0, r0) we obtain then the sphere S ϕr0 ,η0
(η0, ρ0n).

We choose χ0 such that χ0 − η0 = ρ0ne2 ⇒ ∥χ0 − η0∥ = ρ0n ⇒ χ0 ∈ S ϕr0 ,η0
(η0, ρ0n). We take also a test function ϕr1,χ0 such

that Ω ⊂ B(χ0, r1) we obtain then the sphere S ϕr1 ,χ0
(χ0, ρ1n).

Next we consider the intersection of the 2 spheres:

S ϕr0 ,η0
(η0, ρ0n) ∩ S ϕr1 ,χ0

(χ0, ρ1n) = S (η1,R1) ⊂ Rd−1

Where η1 and R1 are easily obtained from before and η1 ∈ (η0, χ0).

Next we choose χ1 such that χ1 − η1 = R1e3 ⇒ ∥χ1 − η1∥ = R1 ⇒ χ1 ∈ S (η1,R1). Then{
∥χ1 − η1∥ = R1
< χ1 − η1|χ0 − η0 >= 0

The symbol < .|. > denotes the scalar product in Rd.
We take also a test function ϕr2,χ1 such that Ω ⊂ B(χ1, r2) we obtain then the sphere S ϕr2 ,χ1

(χ1, ρ2n)

We consider the intersection of the 2 spheres:

S (η1,R1) ∩ S ϕr2 ,χ1
(χ1, ρ2n) = S (η2,R2) ⊂ Rd−2

10
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With η2 ∈ (η1, χ1)

By recurrence for 1 ≤ k ≤ d − 2 we choose χk such that χk − ηk = Rkek+2 ⇒ χk = ηk + Rkek+2 ⇒ χk ∈ S (ηk,Rk).
Then 

∥χk − ηk∥ = Rk

< χk − ηk |χk−1 − ηk−1 >= 0
...

< χk − ηk |χ0 − η0 >= 0

Where Rk and ηk are calculated from the intersection:

S (ηk−1,Rk−1) ∩ S ϕrk ,χk−1
(χk−1, ρkn) = S (ηk,Rk) ⊂ Rd−k

Where S ϕrk ,χk−1
(χk−1, ρkn) corresponds to the test function ϕrk ,χk−1 such that Ω ⊂ B(χk−1, rk).

In conclusion ∀ 0 ≤ k ≤ d − 3 
χk+1 = ηk+1 + Rk+1ek+3

Rk+1 =

√
R2

k −
(

2R2
k−ρ2

(k+1)n

2Rk

)2

ηk+1 =

(
2R2

k−ρ2
(k+1)n

2R2
k

)
(χk − ηk) + ηk

With R0 = ρ0n and where χ0 = η0 + ρ0ne2 and ρ(k+1)n corresponds to the test function ϕrk+1,χk such that Ω ⊂ B(χk, rk+1).

Otherwise ηd−1 − ηd−2 is collinear to ed, η0 − a is collinear to e1 and ∀1 ≤ i ≤ d − 2, ηi − ηi−1 is collinear to ei+1.
Therefore ∀1 ≤ k ≤ d − 1

∥ηk − a∥2 = ∥(ηk − ηk−1) + . . . + (η1 − η0) + (η0 − a)∥2

⇒ ∥ηk − a∥2 = ∥ηk − ηk−1∥2 + . . . + ∥η0 − a∥2

∥η0 − a∥ > R∗ ⇒ ∥ηk − a∥ > R∗. Therefore ηk < Ω.

When k = d − 3 then χd−2 − ηd−2 = Rd−2ed ⇒ S (ηd−2,Rd−2) ⊂ R2. ηd−1 and Rd−1 corresponds to the intersection
S (ηd−2,Rd−2) ∩ S ϕrd−1 ,χd−2

(χd−2, ρ(d−1)n) which is a two points H1 and H2. H1 = −Rd−1e1 + ηd−1 and H2 = Rd−1e1 + ηd−1.
Therefore

∥H2 − a∥2 = ∥H2 − ηd−1∥2 + ∥ηd−1 − a∥2 + 2 < H2 − ηd−1|ηd−1 − a >

We have H2 −ηd−1 = Rd−1e1 , ηd−1 −a = (ηd−1 −ηd−2)+ . . .+ (η1 −η0)+ (η0 −a), and η0 −a is collinear to e1, η0 −a = Ke1
thus:

< H2 − ηd−1|ηd−1 − a >=< Rd−1e1|Ke1 >= KRd−1 > 0

Therefore
∥H2 − a∥2 ≥ ∥ηd−1 − a∥2 > (R∗)2

⇒ H2 < Ω

In conclusion we consider the sequence xn = H1 = −Rd−1e1 + ηd−1.

Let r > 0 and c ∈ Rd, let ϕ(x) = e
−1

r2−∥x−c∥2 1B(c,r)(x) , we take two sequences rn > 0 and cn ∈ Rd such that rn −→
n→+∞

r
and cn −→

n→+∞
c therefore:

ϕn(x) = e
−1

r2
n−∥x−cn∥2 1B(cn,rn)(x) −→

n→+∞
ϕ(x) ∀ x ∈ Rd

If we take the same notations as in the proof of the theorem 1. then:

< gn, ϕn >=

∫
Rd

(Gn(x) − Fn(x))ϕn(O−1x + x∗) dλ(x) +
∫
Rd

Fn(x)ϕn(O−1x + x∗) dλ(x)

And
ϕn(O−1x + x∗) = (ϕn(O−1x + x∗) − ϕ(O−1x + x∗)) + ϕ(O−1x + x∗)

As ϕn and ϕ are bounded and by using the Dominated Convergence theorem, we obtain

< gn, ϕn > −→
n→+∞

1√
det(Hessx∗ (g))

ϕ(x∗)

11
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If x∗ ∈ B(c, r) then
< gn, ϕn >

< gn, ϕ2
n >

−→
n→+∞

e
1

r2−∥x∗−c∥2

Let ξn =
<gn,ϕn>

<gn,ϕ
2
n>

and

Hn =

√
r2 − 1

Ln(ξn)

Therefore
lim

n→+∞
Hn = ∥x∗ − c∥

⇒ ∥x∗ − c∥ = lim
n→+∞

Hn = H

Thus x∗ ∈ S (c,H). Back to the algorithm we have: ∀ 0 ≤ k ≤ d − 3
χk+1 = ηk+1 + Rk+1ek+3

Rk+1 =

√
R2

k −
(

2R2
k−ρ2

(k+1)

2Rk

)2

ηk+1 =

(
2R2

k−ρ2
(k+1)

2R2
k

)
(χk − ηk) + ηk

With R0 = ρ0 and χ0 = η0 + ρ0e2. Where

ρ0 = lim
n→+∞

ρ0n

ρk = lim
n→+∞

ρkn ∀ 1 ≤ k ≤ d − 1

Rk = lim
n→+∞

(Rk)n ∀ 1 ≤ k ≤ d − 2

ηk = lim
n→+∞

(ηk)n ∀ 1 ≤ k ≤ d − 2

χk = lim
n→+∞

(χk)n ∀ 1 ≤ k ≤ d − 2

Therefore x∗ ∈ S (η0,R0) and x∗ ∈ S (χ0, ρ1)⇒ x∗ ∈ S (η0,R0) ∩ S (χ0, ρ1) = S (η1,R1). We repeat the procedure to obtain:

x∗ ∈ S (ηd−2,Rd−2) ∩ S (χd−2, ρd−1)

Therefore x∗ = −Rd−1e1 + ηd−1 or x∗ = Rd−1e1 + ηd−1. Otherwise we have (H2)n = (Rd−1e1 + ηd−1)n < Ω thus x∗ =
−Rd−1e1 + ηd−1. We conclude that:

lim
n→+∞

xn = x∗

In other words we can obtain an approximation of the solution x∗ by only computing xn for a big value of n.
Otherwise we can use this approximation for another algorithm for solving nonlinear systems of equations.

4.1 Examples

4.1.1 Example in 2D

Let us take a simple system of equations:

(S ) :
{

ex+y = 1
x − y = 0

The exact solution of this system is: (x, y) = (0, 0).

In order to apply our algorithm we consider the function g(x, y) = (ex+y − 1)2 + (x− y)2 and its corresponding sequence of

functions gn(x, y) = 1B((0,0),2)(x, y)
(

n√
2π

)2
e−n2g(x,y).

Let Jac(x,y)(S ) be the Jacobian of the system (S ) at (x, y) thus:

Jac(x,y)(S ) =

 ∂ f1
∂x (x, y) ∂ f1

∂y (x, y)
∂ f2
∂x (x, y) ∂ f2

∂y (x, y)

 = (
ex+y ex+y

1 −1

)
Where f1(x, y) = ex+y − 1 and f2(x, y) = x − y.
The determinant of Jac(x,y)(S ) is equal to: det(Jac(x,y)(S )) = −2ex+y , 0. Thus the function g satisfies all conditions
presented in the theorem 1.

12
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First we take the test function:

ϕr0,η0 (z) =

 e
−1

r2
0−∥z−η0∥

2 i f z ∈ B(η0, r0)
0 otherwise

Where η0 = (3, 0) and r0 = 6.
Therefore by taking n = 7 we obtain the sphere S ϕr0 ,η0

(η0,R0) where R0 = 3.011 , then we choose χ0 = η0 + R0e2 =

(3, 3.011). By choosing the second test function:

ϕr1,χ0 (z) =

 e
−1

r2
1−∥z−χ0∥

2 i f z ∈ B(χ0, r1)
0 otherwise

Where r1 = 7, we obtain then the sphere S ϕr1 ,χ0
(χ0, ρ1) where ρ1 = 4.26. Then the approximate solution z7 is at the

intersection of S ϕr0 ,η0
(η0,R0) ∩ S ϕr1 ,χ0

(χ0, ρ1), thus

z7 = −R1e1 + η1

Where R1 =

√
R2

0 −
(

2R2
0−ρ2

1
2R0

)2
= 3.01 and η1 =

(
2R2

0−ρ2
1

2R2
0

)
(χ0 − η0) + η0 = (3,−0.01)

We conclude that z7 = (−0.01,−0.01).

z7

S( 0,!1)

B((0,0),2)

"
0

 
0

S("0,R0)

Figure 2. The approximate solution z7

4.1.2 Example in 3D

Let us take a simple system of equations:

(S ) :


Ln(x) = Ln(2)
Ln(y) = Ln(2)
Ln(z) = Ln(2)

The exact solution of this system is: (x, y, z) = (2, 2, 2).

In order to apply our algorithm we will search for a solution in Ω = B((3, 3, 3), 2), thus we take the function:

g(x, y, z) = (Ln(x) − Ln(2))2 + (Ln(y) − Ln(2))2 + (Ln(z) − Ln(2))2

and its corresponding sequence of functions gn(x, y, z) = 1B((3,3,3),2)(x, y, z)
(

n√
2π

)3
e−n2g(x,y,z).

Let Jac(x,y,z)(S ) be the Jacobian of the system (S ) at (x, y, z) thus:

Jac(x,y,z)(S ) =


1
x 0 0
0 1

y 0
0 0 1

z


13
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The determinant of Jac(x,y,z)(S ) is equal to: det(Jac(x,y,z)(S )) = 1
xyz , 0 ∀ (x, y, z) ∈ Ω. Thus the function g satisfies all

conditions presented in the theorem 1.

First we take the test function:

ϕr0,η0 (w) =

 e
−1

r2
0−∥w−η0∥

2 i f w ∈ B(η0, r0)
0 otherwise

Where η0 = (6, 3, 3) and r0 = 6.
Therefore by taking n = 9 we obtain the sphere S ϕr0 ,η0

(η0,R0) where R0 = 4.23 , then we choose χ0 = η0 + R0e2 =

(6, 7.23, 3). By choosing the second test function:

ϕr1,χ0 (z) =

 e
−1

r2
1−∥z−χ0∥

2 i f z ∈ B(χ0, r1)
0 otherwise

Where r1 = 8, we obtain then the sphere S ϕr1 ,χ0
(χ0, ρ1) where ρ1 = 6.64. Then we consider the intersection of S ϕr0 ,η0

(η0,R0)∩
S ϕr1 ,χ0

(χ0, ρ1) = S (η1,R1), which is a circle.

Where R1 =

√
R2

0 −
(

2R2
0−ρ2

1
2R0

)2
= 4.11 and η1 =

(
2R2

0−ρ2
1

2R2
0

)
(χ0 − η0) + η0 = (6, 2.01, 3).

We choose χ1 = η1 + R1e3 = (6, 2.01, 7.11). By choosing the third test function:

ϕr2,χ1 (z) =

 e
−1

r2
2−∥z−χ1∥

2 i f z ∈ B(χ1, r2)
0 otherwise

Where r2 = 9, we obtain then the sphere S ϕr2 ,χ1
(χ1, ρ2) where ρ2 = 6.47. Then the approximate solution z9 is at the

intersection of S ϕr2 ,χ1
(χ1, ρ2) ∩ S (η1,R1), thus

z9 = −R2e1 + η2

Where R2 =

√
R2

1 −
(

2R2
1−ρ2

2
2R1

)2
= 3.99 and η2 =

(
2R2

1−ρ2
2

2R2
1

)
(χ1 − η1) + η1 = (6, 2.01, 2.02).

We conclude that z9 = (2.01, 2.01, 2.02).

5. Conclusion

The method presented above is a generalization of (Houssein, 2018) and it demands only to make an integration in order
to find the solution of the nonlinear equation, it presents an advantages compared to some other methods. Otherwise the
approximate solution can be used as a starting point for iterative methods.
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Schwartz, L. (1966). Théorie des distributions. Paris: Hermann.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

14


