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Abstract 

In this particular paper we firstly deal with Samuelson’s model of national economy. We create a difference equation 

which reflects Samuelson’s model for the national income of a country taking into consideration the expenditure and the 

investments of the two previous years and not only the immediately previous one. Later we find the saddle-point and deal 

with its stability giving conditions concerning the coefficient of the difference equation and which are able (sufficient) and 

necessary in order for the saddle-point to be stable. 

1. Introduction 

First we present Samuelson’s model of the national income of a country. 

We make the following assumptions: 

Assumption 1: The national income kT  at time step κ is the composition of three elements: consumer expenditure kC , 

investments kI  and government expenditure kG  . 

The total national income kT  is the sum of these three components, that is: 

k k k kT C I G     
Assumption 2: The expenditure (according to Samuelson’s usual model) is equivalent to the national income kT . This 

income is consumed just after the acquisition time which means that the expenditure 1kC   of time period κ + 1 is 

equivalent to the national income kT of time period κ. In this particular paper we assume that expenditure depends on the 

national income of the previous two years. 

Assumption 3: Investments depend on the change in consumption as follows: During time period κ + 1 an investor 

compares the consumer expenditures 1kC   of that time period with the expenditure kC  of the previous time period 

using the difference 1k kC C   . 

If the consumption increases, more industries are needed for the production of consumer goods; thus, investments take 

place. The bigger the rise in consumer expenditure the more investments will take place. On the other hand if consumption 

decreases, investors block funds which had been invested; therefore, investments are reduced. 

In this particular paper we considered that the investments depend on the change in consumption of the last two years. 

Assumption 4: We assume that government expenditure kG  is stable. 

Using the above assumptions we are led to a difference equation which reflects Samuelson’s model. 

2. Main Results 

2.1 Finding a Difference Equation Which Reflects Samuelson’s Model 

As we mentioned in the introduction, national income kT  of time period κ is the combination of two elements: 

expenditure kC  and investments kI . The total national income kT  is the sum of these two elements, that is 

k k kT C I   (1). 

We consider that the expenditures depend on the national income of the previous two periods of time. We also assume that 

there is stable government spending P on both previous periods of time. The reason we expanded the Samuelson’s model 

from one to two years is the assumption that a country’s national income does not depend solely on factors of the previous 

year but for many year. The former assumption is expressed mathematically by the equation: 
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Ck =c1   Tk-1+c2   Tk-2+P ,0<c1+c2<1 and c1>o,c2>0                            (2) 

We also consider that the investments depend on the change in consumption of both previous periods of time as following: 

During the time period κ an investor compares the expenditure Cκ of that period with the expenditure Ck-1 of the previous 

period taking the difference Cκ – Ck-1. He also compares the expenditure Ck-1  with the expenditure Ck-2 of the time period 

k-2 using the difference Ck-1-Ck-2. 

All the above are expressed mathematically by the relationship: 

            Ik=b1   (Ck – Ck-1)+b2   (Ck-1-Ck-2) when b1>0 and b2>0                          (3) 

We continue combining the above equations (1), (2), (3) in order to create an equation which expresses Samuelson’s 

model.  

Specifically, in equation (2) we use κ – 1 instead of κ. Then we have: 

               Ck-1=c1   Tk-2+c2   Tk-3+P                                      (4) 

Also, in equation (2) we use κ – 2 instead of κ. Then we have: 

               Ck-2=c1   Tk-3+c2   Tk-4+P                                      (5) 

From equations (1) and (3) we have:  

Tk=Ck+b1   Ck-b1   Ck-1+b2   Ck-1-b2   Ck-2=(1+b1)   Ck+(b2-b1)   Ck-1-b2   Ck-2  when b1>0 and b2>0 

We replace Cκ, Cκ-1 and Cκ-2 from (2), (4), (5) and we have: 

Tk=(b1+1)   (c1Tk-1+c2Tk-2+P)+(b2-b1)   (c1Tk-2+c2Tk-3+P)-b2   (c1Tk-3+c2tk-4+P)= 

c1   (b1+1)   Tk-1+(c2   b1+c2+b2   c1-b1   c1)   Tk-2+(b2   c2-b1   c2-b2   c1)   Tk-3-b2   c2   Tk-4+P  

Tk+(-c1   b1-c1)   Tk-1+(b1   c1-c2   b1-c2-b2   c1)   Tk-2+(b2   c1+b1   c2-b2   c2)   Tk-3+ 

+b2   c2   Tk-4=P 

We define:                                A = -c1   b1-c1 

 B = b1   c1-c2   b1-c2-b2   c1 

                                               C = b2   c1+b1   c2-b2   c2 

                                               D = b2   c2 

Therefore the equation becomes: 

Tκ + Α   Τκ-1 + Β   Τκ-2 + C   Τκ-3 + D   Tκ-4 = Ρ 

We replace κ with κ + 4. So the previous equation becomes: 

Tκ+4 + Α   Τκ+3 + Β   Τκ+2 + C   Τκ+1 + D   Tκ = Ρ  (6) 

which is a difference equation and which expresses Samuelson’s model for the national income of a country. 

2.2 Specifying the Saddle-Points of Samuelson’s Equation (6) 

Let’s assume that we have the difference equation: 

gκ+n = f(κ, gκ+n-1, gκ+n-2, …, gκ)  (7) 

Definition 2.2.1 

A real number α is called saddle-point of equation (7) if assuming that g0 = α it also applies that gκ+i = α where κ = 1, 2, … 

and i = 0, 1, …, n. This means that gκ+i = α is a stable solution of the equations set. 

According to definition 2.1.1 we put Tκ = Tκ+1 = Tκ+2 = Tκ+3 = Tκ+4 = S in equation (6) 

Then from (6) results  

S + A   S + B   S + C   S + D   S = P  S   (1 + A + B + C + D) = P 

1 + A + B + C + D = 1 – c1   b1-c1 + b1   c1 – c2   b1 – c2 – b2   c1 + b2   c1 + b1   c2 – b2   c2 + +c2   b2 = 1 – c1 – c2 

Therefore S   (1-c1-c2)=P  S=
1 21

P

c c 
 because we have assumed that 0 < c1 + c2 < 1. 

Thus the saddle-point of (6) is S = 
1 21

P

c c 
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2.3 Definition of the Conditions That Make Stable the Saddle-Point 

Equation (6) is a 4th order non homogeneous difference equation. 

The equivalent homogeneous equation of this one is: 

Tκ+4 + A   Tκ+3 + B   Tκ+2 + C   Tκ+1 + D   Tκ = 0                       (8) 

which has a characteristic equation: 

r4 + A   r3 + B   r2 + C   r + D = 0                              (9) 

According to the methods of solving difference equations (see “Discrete Dynamic Systems” Gr. H. Kalogeropoulos, “An 

Introduction to Difference Equations” S. N. Elaydi and “Introduction to Difference Equations” S. Coldberg)  

the saddle-point  

S = 
1 21

P

c c 
 will be asymptotically stable if ir  <1 i=1,2,3,4 ,where r1, r2, r3, r4 are the roots of equation (9) not 

necessarily discrete  

From the above results we have the deduction: 

For a saddle-point to be asymptotically stable all the roots of the characteristic equation must have magnitude less than 

one. 

Definition 2.3.1 

Let V be a vector space over a field F (= R or C). 

A function  :V→R+ : x x   is called a norm if it satisfies the following conditions:  

1) x   ≥ 0 for all ,x V x o   and 0 0   

2) For all ,a F x V     we have a x a x      

3) For all ,x y V    we have x y x y      

There are a lot of vector norms but we will use here the maximum norm or infinity norm (   -norm) on Rn (or Cn). 

We consider a function : Rn R


   

For all  1 2, ,..........x : maxt n

nx x x R x


     { 1 2, ..... nx x x  }  

We now consider a set of n x n matrices which, expressed as Mn, n N   with elements from C or R. (N is the set of not 

negative integer) 

That is if A   Mn, then A is a n x n matrix and Mn =Rnxn (or Cnxn ) 

Definition 2.3.2 

A function :Rnxn (or Cnxn)→R+ is a matrix norm  

if for all A, B ∈Rnxn(or Cnxn) satisfies the following four conditions: 

1) 0A   and 0A   if and only if A = 0 

2) cA c A  c∈R (or c∈C) 

3) A B A B    (triangle inequality) 

4) A B A B    (submultiplicative) 

In this particular paper we will use 


 row sum norm which has the following form: ,
1

1

max
n

i j
i n

j

A a
  



    

Now we will prove the next statement which we will need for the proof of the theorem 2.3.1. 
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Lemma 2.3.1 

Let A ∈Rnxn(or Cnxn) be a n x n matrix and x  ∈Rn (or Cn), x = 1 2, ,.......
t

nx x x           A= , , 1,2,.....i j i j n
a


     ,i ja R  

(or C) then A x A x
 

    is true.  

(Notice that A x


  is a vector norm while A


 is a matrix norm.) 

Proof  

, , ,
1,2,.... 1,2,.... 1,2,...

1 1 1

max max max
n n n

i j j i j j i j
i n i n i n

j j j

A x a x a x a x A x
    

  

            . 

We are going now to theorem 3.2.1 which will play an important role. 

Theorem 2.3.1 

Let P(x) = αnx
n +……….+ α1x + α0 be a polynomial, αi ∈C ∀ i=1,2,….n an≠0 n∈N 

The n roots of the polynomial are in a circular disk of center (0, 0) and radius 

p = max{1,

1

0

n
i

i n

a

a





 } (| | = absolute value of a complex number) 

Proof 

Let x1, x2, …, xn be the roots of the polynomial P(x) not necessarily different among them. Let x be one solution of: 

P(x) = 0  αnx
n +……….+ α1x + α0 =0  αnx

n =
1

0 1 1...... n

na a x a x 

         

10 11 ..........n nn

n n n

a aa
x x x

a a a

          

Let A = 

0 11

0 1 0 0

0 0 1 0

0 0 1

n

nn n

a aa

aa a



 
 
 
 
 
 
 

  
 

 be a n x n matrix  

and vector u  =
2

1

1

n

x

x

x 

 
 
 
 
 
 
  

  , u ≠ 0      
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A u  =    

0 11

0 1 0 0

0 0 1 0

0 0 1

n

nn n

a aa

aa a



 
 
 
 
 
 
 

  
 

  
2

1

1

n

x

x

x 

 
 
 
 
 
 
  

 = 

=

2

1

10 11

n

nn

n n n

x

x

x

a aa
x x

a a a





 
 
 
 
 
 
 
 
    
  

 =

2

1 2

1

1

n n

n n

x

x x

x x u

x x

x x

 



   
   
   
      
   
   
     

 

Therefore we have A u x u     

We use the infinity norm 


 for vectors. Then from 

A u x u A u x u x u
  

         . 

From the statement(2.3.1) we have A u A u
 

     

Therefore x u A u
 

    , 0u   thus 0u

  thus x A


   

We have 
1

0

max{1, }
n

i

i n

a
A

a






    because all rows of matrix A contain only the value 1, except for the last one row 

where the sum of its elements is
1 1

0 0

n n
i i

i in n

a a

a a

 

 

     

So the solution of equation P(x) = 0 is in the interior and in the disk of center (0, 0) and radius P = A


  

That is x ∈ (0, )S A


={y∈C: }y A


   

We now return to the check of the stability of the saddle-point. 

We have the polynomial (9): 

r4 + Ar3 + Br2 + Cr + D = 0 

According to theorem 2.3.1 the roots of the polynomial will be in disk of center (0, 0) and radius p = max {1, |A| + |B| + |C| 

+ |D|}. 

Lemma 2.3.2 

If |A| + |B| + |C| + |D| < 1, then the roots of the polynomial equation r4 + Ar3 + Br2 + Cr + D = 0 have absolute value less 

than one. 

Proof 

If |A| + |B| + |C| + |D| < 1, then p = max {1, |A| + |B| + |C| + |D|} = 1. 

Therefore, according to theorem 2.3.1, if r is the root of (9), then |r| ≤ 1. 

We will prove that |r| ≠ 1. 

Let f(r) = r4 + Ar3 + Br2 + Cr + D and let there be z ∈ C with |z| = 1 and f(z) = 0. 

The F(r) is a 4th degree polynomial with real coefficients A, B, C, D and |A| < 1, 
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|B| < 1, |C| < 1, |D| < 1, because we assumed that |A| + |B| + |C| + |D| < 1. 

(| | is the absolute value of a real number). 

We notice that z = 1 is not a solution of f(r) = 0 because if 

f(1) = 0  1 1 1 1 1 2 1 2 2 1 2 1 1 2 2 2 2 21 1A B C D c b c b c c b c b c b c b c b c b c                         

=1-c1-c2>0 

as it arises from equation (2). 

Therefore, concerning the roots of polynomial f(r), if |r| = 1 our options are: 

a)It has the solution z = -1 with multiplicity of 4. 

b)It has the solution z = -1 with multiplicity of 2 and two complex conjugate roots (let them be 
0 0,z z   having 0z  = 1 

= 0z  ).  

c)It has two complex conjugate roots, each one with multiplicity of 2 (let them be 
0 0,z z  , having | 0z  = 1 = 0z ). 

d)It has 4 complex roots
1 1 2 2, , ,z z z z  z in conjugate pairs, having  

1 1 2 2 1z z z z     

If we have option (a), then 

f(z) =(z+1)4 4 3 2 4 3 24 6 4 1z A z B z C z D z z z z                 z C   . 

Thus, A = 4, B = 6, C = 4 and D = 1 which is a contradiction because  

|A|, |B|, |C|, |D| < 1. 

If we have option (b), then: 

f(z) =
2

0 0( 1) ( ) ( )z z z z z     

4 3 2 2 2

0 0 0 0( 2 1) [ ( ) z z ]z A z B z C z D z z z z z z                    

Then
2

0 0 1oz z z    from the properties of conjugate complex numbers. Therefore we have: 

4 3 2 4 3 2

0 0 0 0 0 0(2 ) (2 2 2 ) (2 ) z 1z A z B z C z D z z z z z z z z z                        z C    

Thus, D = 1 which is a contradiction because |D| < 1. 

If we have option (c), then 

 
2

0 0 0 1
2 2 4 3 2 2 2

0 0 0 0 0 0

4 3 2 4 2 2 3 2

0 0 0 0 0 0

4 3 2 4 3 2 2

0 0 0 0 0 0

( ) ( ) ( ) [ ( ) ]

( ) 1 2 ( ) 2 ( ) z 2

2 ( ) [2 ( ) ] 2 ( )

z z z

f z z z z z z A z B z C z D z z z z z z

z A z B z C z D z z z z z z z z z z

z A z B z C z D z z z z z z z z z

  

                  

                      

                    1,z z C  

 

This means that D = 1, which is a contradiction because |D| < 1.  

 

If we have option (d), then 

1 1 2 2( ) ( ) (z ) ( ) ( )f z z z z z z z z          4 3 2z A z B z C z D      

2 2

1 1 1 1 2 2 2 2

4 3 2 2 2

1 1 2 2

[ ( ) ] [ ( ) ]

[ ( ) 1] [ ( ) 1]

z z z z z z z z z z z z

z A z B z C z D z z z z z z z z

            

                
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Because 
2 2

1 1 1 2 2 2 1z z z z z z        

We have 

4 3 2z A z B z C z D       =

4 3 2

1 1 2 2 1 1 2 2 1 1 2 2( ) [2 ( ) ( )] z ( ) z 1, z Cz z z z z z z z z z z z z z                    

So it has to be D = 1, which is a contradiction because |D| < 1. 

In conclusion, if r is the solution of f(z) = 0, then |r| ≤ 1 and since we have shown that |r| ≠ 1, then |r| < 1. This means that 

all the roots of the characteristic equation (9) have absolute value less than one. 

So far we have seen that the saddle-point given by the equation which expresses Samuelson’s model of national economy 

is asymptotically stable when: 

|A| + |B| + |C| + |D| < 1  (10) 

where:        A = -c1   b1-c1 

  B = b1   c1-c2   b1-c2-b2   c1 

  C = b2   c1+b1   c2-b2   c2 

  D = b2   c2 

1 2 1 2 1 20 1, 0, 0, 0, 0c c c c b b        

More specifically, condition (11) becomes: 

1 1 1 1 1 2 1 2 2 1 2 1 1 2 2 2 2 2c b c b c c b c b c b c b c b c b c                   <1  

1 1 1 1 1 2 1 2 2 1 2 1 1 2 2 2 2 2 1c b c b c c b c b c b c b c b c b c                             (11) 

3. Conclusions 

In this paper we studied Samuelson’s model of national economy taking into account the investments and expenditure of 

the previous two years. We discovered the saddle-point and gave the condition to be asymptotically stable. 

As a future paper we will generalize Samuelson’s model for more than two past years and we will look for conditions that 

make asymptotically stable saddle-point. 

We will also study conditions (11) geometrically in the plane so that we can find sectors consisting of points which if we 

replace its ordinates in Samuelson’s equation, the saddle-point will be asymptotically stable. 
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