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Abstract

We study numerical approximations of solutions of a heat equation with nonlinear boundary conditions which produce
blow-up of the solutions. By a semidiscretization using a finite difference scheme in the space variable we get a system of
ordinary differential equations which is an approximation of the original problem. We obtain sufficient conditions which
guarantee the blow-up solution of this system in a finite time. We also show that this blow-up time converges to the
theoretical one when the mesh size goes to zero. We present some numerical results to illustrate certain point of our work.

Keywords: numerical blow-up, heat equation, nonlinear boundary, finite difference, arc length transformation, Aitken
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1. Introduction

In this paper, we study the behavior of a semidiscrete approximation of the following heat equation involving nonlinear
boundary flux conditions :

u,(0,1) = uP(0,1), u.(1,t) =ui(l,1), t€(0,7T), (1)
u(x,0) = up(x), x € [0, 1],

where p, g are positive constants. The initial function ug is a non-negative smooth function satisfying the compatibility
conditions u;(0) = ug(O), ug(1) = ug(l). Here (0, T') is the maximum time interval on which the solution u of (1) exists.
The time 7" may be finite or infinite. When 7 is infinite, we affirm that the solution u exists globally. When 7 is finite, the
solution u develops a singularity in a finite time, no matter how smooth u is. Namely, we have

{ w = xx, x€(0,1), 1€(0,7),

lim [lu(-, )|l = +00,
t—>T

where |[u(-, f)||lc = maxo<x<i |u(x,?)|. In this previous case, we affirm that the solution u blows up in a finite time and this
time is called the blow-up time of the solution u.

The theoretical study of blow-up of solutions for heat equations with nonlinear boundary conditions has been the subject
of investigations of many authors (Gomez, Marquez & Wolanski, 1991; Hu & Yin, 1994; Levine & Payne, 1974; Ozalp
& Selcusk, 2015; Wang & Wu, 2001; Yang & Zhou, 2016; and the references cited therein). In (Ozalp & Selcusk, 2015)
Ozalp and Selcuk show that under certain conditions, any positive solution of the problem (1) must blow up in a finite
time and the blow-up point occurs only at the boundary x = 1. In this paper, we are interested in the numerical study
using a semidiscrete scheme of (1). For previous study on numerical approximations of parabolic system with non-linear
boundary conditions we refer to (Abia, Lopez-Marcos & Martinez, 1996; Taha, Toure & Mensah, 2012; Toure, N’Guessan
& Diabate, 2015; Ushijima, 2000). In (Ushijima, 2000) Ushijima presents rather simple but general sufficient conditions
which guarantee that the blow-up time for the original equation is well approximated by that for approximate equations.
By using a theorem of Ushijima (Ushijima, 2000) and under certain conditions we show that any positive solution of
semidiscrete scheme of (1) blows up in a finite time and the semidiscrete blow-up time converges to the theoretical one
when the mesh size goes to zero.

The rest of the paper is organized as follows : in the next section, we present a semidiscrete scheme of the problem (1).
In Section 3, we give some properties concerning our semidiscrete scheme. In Section 4, under some conditions, we
prove that the solution of the semidiscrete scheme of (1) blows up in a finite time and this blow-up time converges to the
theoretical one when the mesh size goes to zero. Finally, in the last section, we give some numerical results to illustrate
our analysis.
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2. The Semidiscrete Problem

We introduce the following uniform mesh on the interval [0, 1]
xi=@G@-Dh,i=1,....1, h=1/U-1).

We denote Uy, = Up(t) = (U(2),...,U;(®) the values of the numerical approximation at the nodes x; at time ¢. For
semidiscretization of problem (1) we use a finite difference method and obtain the following system of ODE:s :

dU;(t) Ui (1) = 2Ui(0) + U1 (1)

i =2,...,1—-1 2
d & i=2..,0-1,1>0, @)
2 -2 20°(t
dU\@) _ 20 - 2@ 2000 N
dt 2 h
- 204t
dU(1) _ 2U-1(t) = 2U(2) . 1 ( )’ ‘>0, @
dt h? h
U(0)=¢; 20, i=1,...,1, (5)

where ¢;11 > ¢;, 1 <i<Tand

Uin1(t) = 2U() + U1 (0)

82U(1) = " ,2<i<I-1,1€(0,Ty),
2U,(f) = 2U 20%(¢
fup = 0200 20061,
2 h
2U,_(H) = 2U, () 22Ut
sU) = =L ‘(22 o, ;l( ), 1€ (0,Ty).

Here (0, T},) is the maximum time interval on which ||Uj(?)||« is finite. When T}, is finite, we affirm that the solution U,
blows up in a finite time and the time 7, is called the blow-up time of the solution Uy,.

3. Properties of the Semidiscrete Scheme
In this section, we give some auxiliary results for the problem (1).

Definition 1 A function V;, € C'((0, T), RY) is a lower solution of (2)-(5) if

Vi) V=2V +Vi® _ o o

dt h?
dVi()  2Va() = 2Vi() | 2V
A0 _ = < 0, t>0,
_ 2Vt
avi®) 2V -2Vi@0) 1 <0, t>0,

dt h? h
Vi) <U(0), i=1,...,1,

where Uy, = (Uy, ..., UpT is solution of (2)-(5). On the other hand, we say that V), € C'((0, T;), R') is an upper solution
of (2)-(5) if these inequalities are reversed.

lemma?2 Let Wy, V, € C'((0, 1), RY) be lower and upper solutions of (2)-(5) respectively, then

Wi(t) < Vi(0), Yt € (0,T).

Proof Let us define the vector Z,() = (V,(£) — Wy(£))e! with A a real. We have

dzi(t)  Zin() = 2Z(t) + Zi1 (1)

" o —AZi(H) >0, i=2,....,1—-1,1€(0,Ty), (6)
dz(1)  2Z(t) - 2Z,(1) 2peP ()
cgt _& = 2y (—,1 + T)zl(r) >0, 1€ (0,T)), Q)
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dt h? h
Z0)>0, i=1,...,1, 9)
where {(f), £(7) lie, respectively, between V(7) and W(¢), and between V;(r) and W;(¢).

92 220 - 240 (—/1 - —ZW_I(”)ZI(» >0, 1€(0,T)) ®)

Denote m = min; << sefo,7,) Zi(t) where Ty € (0, T}). Since for i € {1,..., 1}, Zi(¢) is a continuous function in the compact
[0, Ty], there exists iy € {1, ..., I} such that m = Z; (¢;,). Assume m < 0.

Taking A negative such that

2 p-1 t; 2 q-1 t;
pg—(o)_/l>0and_q§—(o)_/l>0'
h h
If t;, = 0, then Z; (0) < 0, which contradicts (9), hence ;, # 0 ;
if 1 <ip < I, we have
dz;,(t;,) _ lim Z;(tiy) = Ziy(t;, — k) <o,
dt k—0 k

Zio—l(tio) - 2Zio(tio) + Zi0+l(ti0)

>0if2<ig<I-1,

2
2Ziy11(t;,) — 2Z;, (1) .

0+ th o\t >0ifip=1,
2Z;,-1(tiy) — 2Z;, (1, L

o1 o) O(O)ZOZfzozl.

2
Moreover by a straightforward computation we get

dZio(ti()) _ Zi()—l(ti()) - 2Zi[)(ti[)) + Zi()+l(ti())
dt h?

- /lZio(ti(,) < 0,

dz\(t,)  22(t,) = 2Z,(t,) N (2175”_1(%)

i 2 h - /l)Zl(tio) <0,

dZi\(tiy)  2Z;1(4,) = 2Z,(;)) N _2615‘1_1(%) _2
dt h?

but these inequalities contradict (6)-(8) and the proof is complete.

Z(;,) <0,

The results of the next lemma are analogue to those of continuous problem.

lemma 3 Let Uj, € C'((0, Ty), RY) be solution of (2)-(5) with ¢; > 0 such that 6>¢; > 0 and i1 > @i, fori=1,...,1 - 1.
Then we have

) Ui z0and Uit) 2z ¢;, i=1,...,1, t€(0,T});
Gi) Ui > Uit), i=1,....,01—1, t€(0,T));
dU;(t
i) YO o i1 L te.T))
dt
Proof

d
@) Etpi - 5290,- <0,i=1,...,1, hence ¢, is a lower solution of (2)-(5). According to the lemma 2 we have

U =2¢; =20, for i=1,...,1, te(0,Ty).
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(ii) Let fy be the first £ > 0, such that K;(t) = U1 (1) = U;(t) > 0,for 1 <i < I-1,but K; (ty) = Ujy+1(to) — Uj,(tp) = 0 for
a certain iy € {1, ...,/ — 1}. Without lost of generality, we can suppose that iy is the smallest integer which satisfies
the above equality. We have

dK,(to) I Ki,(to) — K;,(to — €)
0 = lim

dt e—0 €

K +1(t0) — 2K, (t0) + Kjy—1(20)
h? >

Kiy+1(t0) — 3K (t0)
>

2
=3K;,(to) + Kjy-1(t0)
2

<0,

0 if2<ip<I-2,

0 ifip=1,

>0 ifiQZI—l,

which implies that
dKiy(to)  Kiy+1(to) = 2K;, (o) + Kiy—1(to) -

0 if2<ip<I-2,

dr h?
dKi() _ Kign(to) =3Kiy(tp) 2V i1
dt h? h 0
dKi(t) _ —3Ky () + Kiaw)  2U5a® fi— i1
dr h? h 0T

but these contradict (2)-(4) and we obtain the desired result.

(iii) Denote Z;(t) = U;(t + &) — U;(¢¥), i=1,...,1, using (i) we obtain Z;(0) > 0.

A straightforward calculation yields

dzZi(t)  Zi1(t) = 2Z(t) + Zi1 (1)
e h?

,2<i<I-1,1t€(0,Ty),

dzi(t) _22x() - 2Z\() _ 2pn" ' (DZi(1)

, 1€(0,T)),

ar 2 3
dzi(t)  2Z;(t) = 2Z(1)  2q&7 N0 Zi(1)
= F) t 0? T 9
dr ” * I €O.7w)

Z0)>0, i=1,...,1,

where 7(1), £(¢) lie, respectively, between U, (¢ + €) and U, (¢) and between U,(z + ¢) and U,(f). Below inequality can easily
be proved in a manner similar to that of lemma 2

Z) 20, i=1,...,I,Vt€(0,T).

This fact implies the desired result.

The next theorem establishes that for each fixed time interval [0, 7*] where the solution u of (1) is defined, the solution of
the semidiscrete problem (2)-(5) approximates u, as & — 0. This theorem will be used in the study of the convergence of
the blow-up time of the semidiscrete problem.

Theorem 4 Assume that the problem (1) has a solution u € C*' ([0, 1] x [0, T*]) and the initial condition @y, at (5) verifies

llen = un(O)llee = o(1), h — 0, (10)

where w,(t) = (u(x1,1),...,u(x;,0)7. Then, for h small enough, the semidiscrete problem (2)-(5) has a unique solution
Uy € C'([0.T*1, RY) such that

max, IUAD) = un®lleo = Olign = un(O)lleo + B, as h = 0. Y

Proof. Let o > 0 be such that
lullo <o, t€[0,T].
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Then the problem (2)-(5) has for each &, a unique solution Uj, € C! ([0, T, R! ) Let t(h) < T* be the greatest value of
t > 0 such that

NUR(®) — un(Dlloo < 1. (12)
The relation (10) implies #(7) > O for & small enough. Using the triangle inequality, we obtain
NU(Dlleo < U@ = un(Dlloo + (-, Dlleo, fort € (0,1(h)),

which implies that
lUn(Dlleo < 1+ 0, fort € (0,1(h)).
Let e,(1) = Uy(t) — uy (1), ¥t € [0, T*] be the discretization error and let W), € C! ([0, T, RI) be such that

Wi(r) = (Iltph — u;(0)]leo + Mhz) eM+Dt i =1, I,Vt € [0,T*], with M a positive constant. We can prove by the lemma
2 that
le;(®)] < Wi(t), 1 <i <1, forte(0,th)).

‘We deduce that
U = s @lls < (I = unO)lw + M) ¥ for 1 € (0, 1(h).

Suppose that 7% > #(h) from 12, we obtain
1= 1U(h)) = un(em)llso < (Iln = s (O)llo + M) M1,
Since the term on the right hand side of the above inequality goes to zero as h tends to zero, we deduce that, 1 < 0, which
is impossible. Hence we have #(h) = T*, and the proof is complete.
4. Numerical Blow-Up

In this section, under some assumptions, we show that for each solution of (1) with a nonnegative initial data, there exists
a unique solution of the semidiscrete problem (2)-(5) which blows up in finite time and this time converges to the real one
when the mesh size goes to zero. For this fact, we show that the hypothesis of the Theorem 1.4 in (Ushijima, 2000) are
satisfied.

Step 1 (blow-up of U;). Suppose that there exists a unique local solution u of problem (1) which blow up in finite time T
for an initial data uy. Assume that the hypothesis of the Theorem 4 hold.

Then, for /& small enough, the semidiscrete problem (2)-(5) has a unique solution U, € C! ([0, T*],R? ) with 7% < T. For
the following we define the energy I by

Iul(t) = f qulzdx— ‘1“(1 )+ — ! w10, 1), Yt € [0,T). (13)
p+1

The derivative I[u](t) is given by

dl [” @ _ f (us(x, 1))2dx < 0, ¥t € [0,T). (14)
Introduce a function J as follows 1
J(f) = f (u(x,0)*dx, ¥t € [0,T). (15)
0
Then we have
dJ(t) _ 20q-1) .1 _2p=1
dt 41ul(t) + ———— P ul™ (1,1 —p+1 u?* (0,1, Yt € [0, 7).

As a consequence of (14) we obtain the following inequality

dJ() (¢-1

> —Aug) + 2q wi*(1,1) - w10, 1), Yt € [0, T). (16)

dt
2¢-1
q+1

2 1
v = sup{ (;+ I ) u? ”(0 1 :te|O0, T]}, since u(0, -) is continuous function in [0, 7']. We deduce that

2(p-1)
p+1

Set H(t) = —41[uo] + u™(1,1) -y, Yt € [0, T), where

dJ(1)
o 2 HO:
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VYt € [0,T), and lirg H(t) = oo since the blow-up point of u is x = 1.
—

Hence the condition (&) of (Ushijima, 2000) is checked. Now we denote by

Ly - LU‘”‘( ,

Ihwh](t)-hZ( (Uini (1) - U(r))) . .

1
I =hY U,
i=1

and

Uq+1( )

1
Hyt) = ~L[U](0) + (qq )

+1
numerical approximations of /, J and H, respectively.

By the Theorem 4 it is easy to see that the condition (A2’) of (Ushijima, 2000) holds. Namely, for any € > 0,

lim sup |J(©)—Jy(@®)| =0 and lim sup |H(t)— H(@®)| =0

a7)

(18)

h—=0 4¢[0,T—s] h=0 1¢[0,T-s]
Remark that
20g -1 ! 20g -1
Muqﬂ(l, H=2qg-1) f ul(x, uy(x, £)dx + Luq“(o, 0.
qg+1 0 g+1
According to (16), we obtain
dJ(t 1 2(p -1
YO atlug) + 2 - 1) f (e, 1)y (x, e + 24— D ) w10, 1) = 2P~V oo .
dt q+ p+1
‘When we assume that the initial data satisfies,
Ue(x,0) 2 0,
we have u; > 01in (0,1) x (0, T) (see Ozalp, & Selcusk, 2015), which implies that u, is monotone increasing. Thus, we
obtain
dJ(t ! 20 -1 20p -1
Szt + 20 - D 0.0) [ ey 2D 0. - XD,
dt 0 qg+1 p+1
hence

dJ(t) > ﬁf (u(x,0))ldx+a+T,
where @ = min{—41{ug], —41;[¢n]}, T = min{l'{, 12}, 8 = 2(g — 1) min {u,(0,¢) : t € [0, T]}, with

2q -1 2p -1
= infd 297D o0,y - 222D oo repo.1Y
qg+1 p+1

rzsz{ 20 - )U"”() 2P~ )U{’“(o,t):te[o,T]},
qg+1 p+1

and

1
U O U o

I-1 1 2
Lig =h) (Ew,«“(m - U,»<0)>) +
i=1

By Jensen’s inequality, we have

% >,B(J)2 +a+T,
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with g > 2.
Let G(s) = B(s)? +a +T.

Therefore it exists R such that

G(s)>0, Vs>R

|

—— < +00, VYgq>2.
A straightforward calculation yields us the following inequality

G(s)

dJy(t)
dt

> G(Jp).

We can see that Jj, is a C! function satisfying the inequality (I1) of (Ushijima, 2000).

The hypothesis (b”), (I1) and (A2") guarantee the blow-up of the solution U}, of (2)-(5) in finite time 77,

Step 2 (Convergence of blow-up time). From (17) we have

-1
G =507 =03 (0P = 5 <0
and dH, (1) o dUL(D)
S <2 nuin =L
A simple computation gives
di}’:t) > Hi0).

dH (1)
dt
It is easy to see that the hypothesis (I1”) in (Ushijima, 2000) is satisfies.

> 0, according to Lemma 3.

By virtue of Theorem 1.4 in (Ushijima, 2000), the results are obtained as desired.

5. Numerical Simulation

In this section, we present some numerical approximations to the blow-up time of (2)-(5) for the initial data ¢; = (i — 1)h,
i = 1,...,1, lower solution of (2)-(5) with different values of ¢ and p, where ¢ > 3 and g > p. Here the numerical
results are given by the algorithm proposed by C. Hirota and K. Ozawa (Hirota & Ozawa, 2006), we briefly present this

algorithm. Consider the system of ODEs (2)-(5). We consider the variables ¢ and U; as functions of the
ds? = df* +dU f +---+d UIZ, the variables #(s) and U;(s) satisfy the system of differential equations

ﬁ B 1
dA - )
’ \/1"'2{:1]32
dU; i .
S
\/1 +Zf=1 fi2
1(0)=0, Ui(0)=¢; >0, i=1,...,1,
where 0 < s < o0, and
fi -2 2 0 0 U, vt
. . 7
1 -2 1 0
1 )
=2| 0 0 S
. 0
: : I -2 1 : 207
fi 0 o 2 =2 U, o

It is well known (Hirota & Ozawa, 2006) that

125
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lim #(s) = Ty, and 1im UR(8)||oo = 00.

For the numerical computation, let us define s = s; by 5, = 210.20(1 = 0,1,...,12). For each value of I, we apply
DOP54 (see Hairer, Ngrsett & Wanner, 1993) to system (19) and we get a linearly convergent sequence to the blow-up

time {tgk) }5:;11. We also accelerate the sequence recursively by Aitken method’s :

(k) (k) \2
Ly (t — 1)

1+2 I+1 t(k) _ 2t(k)

l > 2k k = O 1 2 cee
(k)’ = s’ s 1y 4
1+2 I+1 l

As in (Hirota & Ozawa, 2006), for our experiments we set RTOL = ATOL = 1.d-15 and ITOL=0. Where the parameters
RTOL and ATOL are the tolerances of the relative and absolute errors, respectively, and ITOL is used to choose the
manner in which the errors are controlled.

Tables and graphics : ¢; = (i — Dh,i=1,---,1
In the following tables, in rows, we present the numerical blow-up times T}, the numbers of iterations n, orders of the
approximations s corresponding to meshes of 16, 32, 64, 128, 256, 512, 1024. Approximation orders are calculated by

‘o log((Tap, — Ton)/(Ton — Ty))
B log(2)

, wWhereh=1/(I-1).

Remark 5. The various tables of our numerical results show that there is a relationship between the blow-up time and
the flow on the boundary. If we consider the problem (2)-(5) in the case where the initial data ¢(x) = x and q = 3, we
observe from tables 1-3 that the numerical blow-up time is approximately equal to 0.3. When q = 4, we observe from
Tables 4-7 that the numerical blow-up time is approximately equal to 0.2. Thus we can said that when rise g we have an
acceleration of blow-up of the solution. On the other hand, when q is fixed and p is increased, we observe from tables 1-3
and 4-7 that there is a slight diminishes of the blow-up time. Also, from the tables we observe the convergence of blow-up
time Ty, of the solution of (2)-(5), since the rate of convergence is near 2. This result does not surprise us because of the
result established in the previous section.
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1 T n S

16 | 0.264970 | 12527 -
32 | 0.260386 | 15008 -
64 | 0.259024 | 19880 | 1.75
128 | 0.258625 | 31186 | 1.77
256 | 0.258510 | 53933 | 1.79
512 | 0.258477 | 114522 | 1.80
1024 | 0.258468 | 357602 | 1.87

Table 1. Numerical blow-up times,
number of iterations and order of the
approximations obtained for g = 3,

p=3.

1 Th n S

16 | 0.277556 | 12317 -
32 | 0.272857 | 14343 -
64 | 0.271467 | 18685 | 1.76
128 | 0.271061 | 28043 | 1.77
256 | 0.270944 | 50319 | 1.79
512 | 0.270911 | 117269 | 1.82
1024 | 0.270902 | 373244 | 1.87

Table 3. Numerical blow-up times,
number of iterations and order of the
approximations obtained for g = 3,

p=1

1 Ty n S

16 | 0.193469 | 8670 -
32 | 0.189455 | 10563 -
64 | 0.188243 | 14549 | 1.73
128 | 0.187885 | 22704 | 1.76
256 | 0.187781 | 39660 | 1.78
512 | 0.187752 | 84020 | 1.84
1024 | 0.187744 | 260848 | 1.86

Table 5. Numerical blow-up times,
number of iterations and order of the
approximations obtained for g = 4,

p=3.

1 T n S

16 | 0.199975 | 8499 -
32 | 0.195868 | 9986 -
64 | 0.194633 | 13108 | 1.73
128 | 0.194270 | 19838 | 1.77
256 | 0.194165 | 36135 | 1.79
512 | 0.194135 | 84981 | 1.81
1024 | 0.194128 | 268863 | 2.10

Table 7. Numerical blow-up times,
number of iterations and order of the
approximations obtained for g = 4,

p=1

1 T n S

16 | 0.267491 | 12557 -
32 | 0.262877 | 15093 -
64 | 0.261506 | 20507 | 1.75
128 | 0.261106 | 31642 | 1.77
256 | 0.260990 | 54892 | 1.78
512 | 0.260957 | 116438 | 1.81
1024 | 0.260948 | 360972 | 1.87

Table 2. Numerical blow-up times,
number of iterations and order of the
approximations obtained for g = 3,

p =2

1 Th n S

16 | 0.193186 | 8599 -
32 | 0.189180 | 10386 -
64 | 0.187970 | 14159 | 1.73
128 | 0.187613 | 21902 | 1.76
256 | 0.187509 | 38129 | 1.78
512 | 0.187479 | 83182 | 1.79
1024 | 0.187471 | 260478 | 1.91

Table 4. Numerical blow-up times,
number of iterations and order of the
approximations obtained for g = 4,
p=4.

1 T n S

16 | 0.194600 | 8702 -
32 | 0.190565 | 10653 -
64 | 0.189347 | 14767 | 1.73
128 | 0.188989 | 23175 | 1.77
256 | 0.188885 | 40621 | 1.78
512 | 0.188855 | 85542 | 1.79
1024 | 0.188847 | 262486 | 1.91

Table 6. Numerical blow-up times,
number of iterations and order of the
approximations obtained for g = 4,

p=2.

In the following, we also give a plot to illustrate our analysis. In the figure below, we can see that the numerical solution
blows up in a finite time at the last node.
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12 .
<10 %102
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numerical solution Uh
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Figure 2. Evolution of the numerical solution for

Figure 1. Evolution of the numerical solution for
1=128, p=3 and q=3

1=128, p=1 and q=3

References

Abia, L. M., Lopez-Marcos, J. C., & Martinez, J. (1996). Blow-up for semidiscretizations of reaction-diffusion equations.
Appl. Num. Math, 20, 145-156.

Gomez, J. L., Marquez, V., & Wolanski, N. (1991). Blow up results and localization of blow up points for the heat
equation with a nonlinear boundary condition. Differential Equations, 92, 384-401.

Hairer, E., Ngrsett, S. P, & Wanner, G. (1993). Solving Ordinary Differential Equations I. Nonstiff Problems. Springer
Series in Comput. Math. (2nd ed.). Springer-Verlag.

Hirota, C., & Ozawa, K. (2006). Numerical method of estimating the blow-up time and rate of the solution of ordinary
differential equations an application to the blow-up problems of partial differential equations. J. Comput. Appl.
Math., 193, 614-637.

Hu, B., & Yin, H. M. (1994). The profile near blow-up time for solution of the heat equation with a nonlinear boundary
condition. Amer. Math. Soc. Transl., 346, 117-134.

Levine, H. A., & Payne, L. E. (1974). Nonexistence theorems for the heat equation with nonlinear boundary conditions
and for the porous medium equation backward in time. Journal of Differential Equations, 16, 319-334.

Ozalp, N., & Selcusk, B. (2015). Blow-up and quenching for a problem with nonlinear boundary conditions. Electronic
Journal of Differential Equations, 1-11.

Taha, M., Toure, K., & Mensah, E. (2012). Numerical approximation of the blow-up time for a semilinear parabolic
equation with nonlinear boundary equation. Far East J. Appl. Math., 60, 125-167.

Toure K. A., N’Guessan K., & Diabate, N. (2015). Blow-up for semidiscretizations of some reaction-diffusion equations
with a nonlinear convection term. Global Journal of Pure and Applied Mathematics, 11, 4273-4296.

Ushijima, T. K. (2000). On the approximation of blow-up time for solutions of nonlinear parabolic equations. Publ.
RIMS, Kyoto Univ., 36, 613-640.

Wang, M., & Wu, Y. (2001). Global existence and blow-up problems for quasilinear parabolic equations with nonlinear
boundary conditions. Appl. Math. Comput., 121, 117-134.

Yang, X., & Zhou, Z. (2016). Blow-up problems for heat equation with nonlinear piecewise neumann boundary condition.
Journal of Differential Equations, 261, 2738-2783.

Copyrights
Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

128



