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Abstract 
In this study, we elaborated a 2D model that reproduces the thermal structure of the central-northern Adriatic 
offshore and adjacent onshore area of the Italian peninsula. Based on the crustal structure along the trace of the 
CROP-03 deep section, the geotherms offshore Gabicce (northern Marche region) were obtained by an analytical 
procedure taking into account the role of thrusting within the sedimentary cover. Basement involvement at depth 
beneath the neighbouring Mondaino area to the SW, where a crustal thrust ramp dips towards the hinterland, 
required the use of a different analytical procedure. The results obtained in this study allowed us to define a 
satisfactory description of the thermal state of the northern Marche coastal area and adjacent Adriatic offshore. 
These results, integrated with those obtained by previous studies, confirm that the isotherms of 250°C and 400°C 
are placed in the stable Adriatic lithosphere at depths of about 11 km and 22 km, respectively. Furthermore, the 
400°C isotherm is deeper in the onshore area, reaching a depth of about 30 km in the zone comprised between 
Gabicce and Mondaino, whereas the 250°C isotherm deepens towards the SW along the Adriatic Sea sector, to 
reach a maximum depth of 13 km in coastal area, rising again at a depth of 11 km in the innermost sector of the 
studied section. 
Keywords: central Adriatic offshore, northern Marche onshore, surface heat flow, thermal modeling, 
temperature profiles 
1. Introduction 
The deep structure and active tectonic setting of the outer northern Apennines are widely debated, particularly 
concerning two main issues: (i) the degree of basement involvement in shortening (i.e. ‘detachment–dominated’, 
or thin-skinned, vs. ‘crustal-ramp–dominated’, or thick-skinned, styles of thrusting; e.g. Bally et al., 1986; 
Barchi et al., 1998; Coward et al., 1999; Mazzoli et al., 2001, 2005; Speranza & Chiappini, 2002), and (ii) the 
role and extent of thrust activity (i.e. thrusting– vs. strike-slip–dominated active stress field; e.g. Di Bucci et al., 
2003; Vannoli et al., 2004; Basili & Barba, 2007; Santini et al., 2011; Kastelic et al., 2013; Mazzoli et al., 2014, 
2015). Improving our understanding of the rheology of this sector of the Apennine orogen is fundamental in 
order to carry out meaningful seismotectonic analysis and modeling. Taking into account that rheology depends 
on the thermal model that is assumed, this paper aims at defining the thermal structure of the outer northern 
Apennines. To this purpose, geothermal modeling is carried out along a cross-section integrating the interpreted 
CROP 03 deep seismic reflection profile (Barchi et al., 1998) and the structure of the adjacent Adriatic offshore 
sector (Morgante et al., 1998; Coward et al., 1999; Mazzoli et al., 2001). 
2. Geological setting 
2.1 Stratigraphy 
Deep parts of the Apennine stratigraphy are known from deep wells. These, on top of crystalline basement units, 
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