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Abstract 

This study seeks to demystify the claim that the ‘atmospheric chaos’ imposes a two-week limit on reliable 
weather forecasts. ‘Deterministic chaos’ indeed occurs due to the use of nonlinear numerical models for these 
forecasts. This ‘deterministic chaos’ does impose time limits on valid predictions, but it also facilitates, through 
the ensemble forecasting technique, the use of interesting statistical indicators that define regions and the 
duration these predictions are more or less reliable. Recently published articles show that the ‘uncertainties’ in 
the initial conditions are an inherent difficulty in meteorological observations and have nothing to do with the 
atmospheric behavior. These studies demonstrate two important aspects regarding ‘uncertainties’ in data used to 
initialize models. First, to achieve improvements in numerical weather forecasts, these ‘uncertainties’ must be 
skillfully introduced in the large scale and not in the small scale. Secondly, the numerical models must include 
equations or parameterizations that reproduce nature’s ways that let different scales ‘interact’, that is, the models 
should reproduce how the energy of different atmospheric modes ‘travels’. 
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1. Introduction 

Since dynamic models were first used for numerical weather forecasting, it was known that those predictions 
were limited due to the inadequate observations of the atmospheric physical processes. Nevertheless, the 
predictability theme is always relevant when considering the high demand for weather forecasts and for 
increasingly extended periods. Therefore, weather forecasting research is primarily focused not only on 
increased reliability but also on longer validity. 

In the 1960s and 1970s the academic meteorology community debated if more degrees of freedom could reduce 
the system instabilities in forecast model equations. With this line of reasoning the articles of Charney (1963) 
and Lorenz (1963) should be highlighted. Charney thought that with more degrees of freedom, the system of 
equations could stabilize, and thus extend the effective forecast limits. However, at that time, Lorenz, using a 
very simple convection model based on an approximate system of nonlinear ordinary differential equations, 
discovered that two runs of the model starting from slightly different initial conditions gave surprisingly 
divergent responses after a non-long period of integrations. Lorenz called this unexpected result ‘deterministic 
chaos’. Reinforcing the Lorenz results, Kalnay (2003) stated that nothing could be done to ameliorate the models 
because, as the atmosphere was ‘chaotic’, the fourteen-day predictability limit could not be surpassed.  

Nowadays, nonlinear models are used instead of linear to forecast weather, because nonlinear models produce 
more ‘realistic’ or substantiated results. This is probably because nonlinear models take into account the 
disturbance products in the advection and others nonlinear terms, which are important to simulate the real 
atmosphere and which have aperiodic solutions, contrary to linear models. This study revisits the question of 
atmospheric predictability, suggesting the research community should invest its effort in two approaches. The 
first should endeavor to find modeling strategies that better reproduce the realistic ways large-scale interact with 
the small-scale in geophysical fluid systems, especially the atmosphere, in what are here named ‘better models’. 
The second approach, more evident to the meteorological community, is to strongly invest to obtain more and 
‘better information’ about the actual atmospheric state and also in more effective forms to assimilate this 
information in models, in what here is called ‘better observational data’. 
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2. Chaos and Atmospheric Predictability 

There is a common belief that weather prediction model output is unreliable after two weeks due to the ‘chaotic’ 
atmospheric condition. However, this problem is related to the nonlinear model equations, in which slightly 
different initial conditions produce uncontrolled divergence in the solutions after some time steps. It is unsuited 
suppose that atmosphere should work like models, but instead, good models should behave like the atmosphere. 
In other words, the ‘chaotic’ response of the atmospheric models used today should not impede the search for 
better ways to simulate atmospheric behavior. Nonlinear meteorological models have their own inherent 
difficulties, from the physical-mathematical point of view, and these difficulties have no connection with the 
atmospheric ‘behavior’. The allegation that weather predictions have only two-week validity should not be 
imputed to the atmosphere, because this limitation is a problem generated by the non-linear models employed. 

According to Lorenz (1987) the vast majority of atmospheric phenomena have not a single cause. Therefore, to 
explain physically the existence of a given phenomenon, it is needed to associate it with various multiple 
physical factors as causes acting simultaneously. In his 1987 article, Lorenz studied ‘deterministic chaos’ in 
association with a nonlinear ordinary differential equation system in which solutions were aperiodic and 
sensitive to ‘uncertainties’ in the initial conditions. Then Lorenz compared these with the solutions of a 
‘non-chaotic’ linear ordinary differential equation system, where solutions were periodic or quasi-periodic. In 
this second case, were included stochastic terms and prescribed forcing, and both solutions show no dependence 
on initial value influences.  

Kalnay (2003) asserts that “even with perfect models and perfect observations, the ‘chaotic’ nature of the 
atmosphere would impose a finite limit of about two weeks to the predictability of the weather”, and she 
attributes this statement to four articles published by Lorenz between 1963 and 1968. Santos & Buchmann (2013) 
associate the “finite limit of about two weeks to the predictability of the weather” with the ‘deterministic chaos’, 
which should be considered an attribute of the models, not of the atmosphere being simulated. All arguments 
related to ‘deterministic chaos’ refer to non-linear models that rely on equations to represent the atmospheric 
behavior. It is ‘obvious’ that these models are ‘chaotic’. 

Santos & Buchmann (2013) disagree with the term ’atmospheric chaos’ which was considered different from 
‘deterministic chaos’. This in turn is a problem related with the initial value ‘inconsistencies’, the nonlinear 
models, and the iterative methods to integrate the equations. The weather prediction by nonlinear numerical 
models used today should be considered a ‘deficient way’ to accomplish this purpose, although they are the best 
tool available to do this. ‘Deterministic chaos’ is not an atmospheric defect but a model limitation to predict the 
atmospheric behavior and thus, with better initial conditions and ‘better models’ one could extend the weather 
forecasts beyond two weeks. 

Dr. Isidoro Orlansky working at NOAA (Personal Communication, 2014) read the article of Santos & Buchmann 
(2013) and agreed with some conclusions. He agrees that models themselves reproduce a ‘chaotic’ system, but 
even in those systems there is a large external force that maintains some periodicity that could be predicted for 
longer periods. According to Orlansky the ‘chaos’ of nonlinear model is not linked with the atmosphere. Even 
the atmosphere being ‘chaotic’, climate studies for long periods can be obtained beyond two weeks and the 
‘deterministic chaos’ should not impede further research, spite the inherent nonlinearity of the models and the 
initial value ‘uncertainties’. The ensemble forecast provides the basic tool to extend forecasts beyond Lorenz’s 
limit of two weeks for the weather predictability. 

3. Linear and Nonlinear Models 

The issue of atmospheric model instability was studied by Charney (1963) while trying to discover effective 
prediction limits. He thought models with greater degrees of freedom would be less unstable or could stabilize 
‘quickly’. However, after the Lorenz (1963) discovery of the ‘deterministic chaos’, Charney’s ideas, have been 
put aside or even abandoned, with an end to investigations. The Lorenz model was made up of an approximate 
system of three nonlinear ordinary differential equations, involving three variables related to the hydrodynamic 
nonlinear equations used to describe the convection phenomenon; when using initial values with little 
differences, the model integration answers ‘quickly’ diverge. This result was extended to more complex models, 
but was not proved for each separate model, taking into account different initial conditions (observational errors) 
and thus verifying the limits of the predictability. In 1956, in a meeting in Wisconsin, Lorenz decided abandon 
the linear models because the present wave-type solutions were considered less ‘realistic’ when compared with 
the results of nonlinear models. However, at this time probably Lorenz had no knowledge of the problem of 
‘deterministic chaos’ related to ‘inconsistencies’ in the initial value (Lewis, 2005).  

A linear equation system is obtained by applying the perturbation method to nonlinear hydrodynamic equations, 
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which are linearized with respect to a basic state at rest. Then, using the variables separation method, a set of 
linear equations is produced consisting of the horizontal and vertical structure functions, the latter of which, with 
convenient boundary conditions, constitutes a Sturm-Liouville problem. The horizontal structure can be 
constituted of a non-homogeneous or homogeneous equations system, being that the last system has the same 
form as the linearized equations of the shallow-water model (Matsuno, 1966) which are often referred to as 
Laplace’s tidal equations discussed by Longuet-Higgins (1968), which admit wave-type solutions (Kasahara, 
1977 and 1978; Kasahara & Puri, 1981 and Kasahara, 1984). The linearized equations of the shallow-water 
model are used to partition the nonlinear model response into two kinds of waves, gravity-inertia and Rossby 
modes, obtained by dynamical, physical and mathematical associations and filtered one from the other at each 
stage (Matsuno, 1966). Actually the output of the linear models to simulate the atmosphere is expressed 
mathematically through wave-type solutions. On the other hand, instead of waves, the actual atmosphere 
‘transfers’ energy physically, and then the wave frequencies can be associated with the energy that propagates in 
a ‘similar way’ with those theoretical waves.  

The general solution of these linear equations system is obtained by a combination of the horizontal and vertical 
solutions, which can be a wave-type transient (periodic or quasi periodic), which neither amplifies, nor diverge, 
nor iterates (Kasahara & Puri, 1981; Kasahara, 1984). Thus ‘deterministic chaos’ only emerges in the nonlinear 
models and doesn’t result from an atmospheric ‘chaotic’ behavior. The linear equations system can be used for 
weather simulations, but care must be taken in using this kind of model, instead of nonlinear, bearing in mind it 
does not take into account advection and other nonlinear physical terms, dropped by the linearization.  The 
horizontal and vertical structure equations are linear and analytical and thus have solutions independent of the 
initial value ‘uncertainties’. Some of these models can be integrated analytically, or the solution can be specified 
or estimated if they lack known analytical solutions.  

Lorenz (1987) proposed using nonlinear analytical (non-meteorological) equations to represent the ‘deterministic 
chaos’, and small errors are introduced as initial state. Due the iterative scheme to solve these equations, after 
some steps the predictions begin to diverge due to the growth of the error. Using the formula of Lorenz (1987) 
and also the first-order quadratic differential equation [13.71] by Holton (2004), the Appendix was constructed 
with Tables I, II and III. In each table, the first and second columns refer to the temporal solutions of the 
indicated formula, and the third column shows the difference between these solutions at each ‘time step’. Two 
different analytical expressions were used in each table. In Table I the error in the initial data is 0.00001, in Table 
II the error is 0.0001, and in Table III the error is 0.001. As can be seen in these three tables, the suggested 
equations become unstable soon after the iterative process starts. In the Table I with the first formula, the 
significant divergence (>+1 or <-1) occurs at step 37; with the second formula, the significant divergence occurs 
at step 17. In the Table II, with the first formula, the significant divergence occurs at step 28 and with the second 
formula at step 14. In Table III with the first formula significant divergence occurs at step 16 and with the second 
formula at step 10. These examples indicate that the discrepancy begins at different steps depending on the 
equation and the error in the initial condition. 

Nowadays it is well accepted that the actual models used to predict the weather are ‘chaotic’ with only a finite 
predictability and it is believed that the source of chaos in those atmospheric models is their nonlinearities. Since 
high-resolution global modeling approaches have become a current trend for weather prediction and climate 
projection, Shen (2014) propose numerical experiments with the objective to understand the role of the increased 
resolutions in the predictability of the models, as one might expect that solutions to the equations with more 
nonlinear modes would become more chaotic. This rationale is equivalent to stating that the appearance of 
small-scale features and their nonlinear effects, resolved by additional modes, should make the system less 
predictable. Numerical tests are proposed by Shen (2014) with different Lorenz models leading to conclude that 
the inclusion of new modes introduces terms that have collective impact on the increase of solution stability. The 
additional nonlinear terms are mainly associated with the improved vertical advection of temperature. While 
Lorenz demonstrated the association of the nonlinearity with the existence of the nontrivial critical points and 
strange attractors, Shen (2014) emphasizes the importance of the nonlinearity in enabling subsequent negative 
feedback to improve solution stability. He concluded that the chaotic responses that appear in the Lorenz's 
models could be suppressed by the inclusion of additional modes, producing stable solutions. A macroscopic 
view of these results suggests that in some way the additional modes enable the transfer of domain-averaged 
potential energy at different scales. 

Although chaos may appear in the presence of nonlinearity as well as a heating term in Lorenz’s models, the 
increased degree of nonlinearity with additional dissipative terms in Shen’s experiments could reduce chaotic 
responses, that is, the appearance of small-scale processes that involve the nonlinear interactions may help 
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stabilize solutions. The butterfly effect exists in the numerical solutions in Shen’s experiments as they display 
sensitive dependence on initial conditions after some time steps. However, the appearance of this chaotic 
behavior should not directly lead to the conclusion that small perturbations can alter large-scale structure, 
namely the butterfly effect associated to the imperfect initial conditions. Therefore, Shen’s results demonstrate 
that stable solutions can be obtained in “sufficiently high-resolution” approach with additional modes in 
atmospheric models. 

4. Initial Value Problem 

The problem of ‘deterministic chaos’ is due to the inherent nonlinearity of the atmospheric models, and also 
arises from the large number of iterative operations performed during the process of model integration. As 
regards the initial value problem, the ‘uncertainty’ is ours as users and does not come from the atmosphere, that 
is, it comes from the doubt of knowing exactly what data should be used to initiate the model integration process. 

During the atmospheric parameters measurement phase, small differences associated to user ‘uncertainty’ 
produces ‘deterministic chaos’ because the models are sensitive to small errors in the initial conditions, as 
Lorenz (1963) discovered. The measurement instruments are liable to errors, as with human interference on the 
data communication system, and these errors result in ‘uncertainties’ during the construction of the model’s 
initial input. The ‘deterministic chaos’ produced by those errors is a mathematical problem due to the sensitivity 
of nonlinear models to variations at the integration starting point. The ‘deterministic chaos’ has nothing to do 
with the atmospheric behavior, but comes from the ‘uncertainties’ in the input data. 

Two atmospheric parameter measurements cannot be taken in one determinate instant and one determinate point, 
even with a minimal difference. This could be possible only if there was a ‘parallel universe’. In other words, 
atmospheric ‘uncertainties’ cannot be detected. Thus, it must be assumed that the real atmosphere will follow its 
own course and behave as a hydrodynamic ‘continuous’ system, running differently from the model in time and 
direction. The doubts result from the choices made after imprecise observations and then the 'deterministic chaos' 
of the model appears.  

Lorenz (1969) said that as small errors generally require about five days to double, it should be possible to 
increase the range of predictability by five days simply by reducing by half the initial field errors, although this 
would be difficult to achieve. Lorenz (1969) considers the energy spectra under power-law behavior (k(–p), where 
k is wave number magnitude) for high wave numbers and discusses results for p = 5/3, 7/3 and 3. Using the 
vorticity equation which governs two-dimensional incompressible flow and integrating it numerically starting 
from two states differing as little as the “observational errors”, Lorenz (1969) showed that, for different scales of 
motion, the range of predictability changes about one hour for “cumulus-scale”, a few days for “synoptic-scale” 
and a few weeks in advance for motions in the largest scales. He found that each motion scale possesses an 
‘intrinsic’ finite predictability range. These results application to real physical systems, including the earth’s 
atmosphere, is considered. 

Nonlinear models can be initiated by normal modes decomposition, providing one or more kind of waves of 
interest and filtering out the others. When the integration process begins, ‘intrinsically’ interactions will occur 
between the diverse motion scales, generating thereby new and different modes in response, as opposed to what 
happens with linear models (Buchmann et al., 1995). In more realistic numerical experiments as in numerical 
weather prediction, the energy of the atmospheric waves should follow ‘trajectories’ apparently established, such 
as the ‘ray-path’ explained by Hoskins & Ambrizzi (1993).  

To better understand how different atmospheric motion scales should ‘interact’, reproducing in the models what 
nature probably does, Rotunno & Snyder (2008) have generalized the Lorenz model using a two-dimensional 
vorticity equation (with a “-3” energy spectrum) and equations of quasi-geostrophic dynamics at the surface 
(with a “-5/3” energy spectrum). They produced flows with unlimited and limited predictability, respectively. 
Later the Rotunno & Snyder (2008) model was modified by Durran & Gingrich (2014) using a smoother 
nonlinear saturation approach to investigate the error growth from different initial error distributions. Consistent 
with the Lorenz findings, the predictability loss generated by initial errors of small but fixed absolute magnitude 
is essentially independent of their spatial scale when the kinetic energy spectrum background is proportional to 
the “-5/3” wave number power. Thus, as the background kinetic energy increases with the scale, very small 
relative errors at long wavelengths have similar impacts on the perturbation error growth as do large relative 
errors at short wavelengths. To the extent this model applies to practical meteorological forecasts, the influence 
of initial perturbations generated by ‘butterflies’ would be swamped by unavoidable tiny relative errors in the 
large scales. 
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5. Improving the Atmospheric Predictability 

Santos & Buchmann (2013) suggest that the term of the atmospheric predictability is not necessarily limited to 
two weeks. It is more reasonable to think that, in view of all the advances in weather and climate numerical 
prediction obtained in the last decades, ‘better models’ and ‘better observational data’ should lead to more 
accurate predictions, instead of worrying if a ‘butterfly’ beating its wings in Brazil could or not form a ‘tornado’ 
in Texas. The ‘butterflies’ cannot randomly form ‘tornadoes’ in the atmosphere, since the energy propagates 
through some preferential ‘trajectories’ or ‘ray path’, that suffer refraction, reflection or even is absorbed in some 
region, as Hoskins & Ambrizzi (1993) explain with great clarity. An example of these preferential trajectories is 
the ‘critical latitude’ proposed by Dickinson (1971). The ‘butterfly’ can be ‘symbolically’ understood as a cloud, 
in which the energy contained is distributed or dispersed, or even spread in the form of waves that are known and 
identified in the meteorological literature as the modes of gravity, Rossby and acoustic. The sound waves are not 
considered as having meteorological significance, although Kasahara & Qian (2000) consider its importance, 
mentioning they could be taken into account in future global numerical prediction models with high-resolution. 
The modes of Matsuno (1966) and the acoustic mode, associated with the energy, propagate at the group velocity, 
which is controlled by the large scale. 

Durran & Gingrich (2014) point out this issue, saying that “initial small-scale errors, including those at length 
scales far larger than the size of ‘butterflies’ do not matter when minor relative errors are present in the largest 
scales.” The basic explanation for the difference between the experiments they present (initial errors for k < 400 
km and initial errors for k > 400 km) is that downscale error propagation in turbulence is very fast, and therefore 
downscale error propagation is much faster than upscale propagation. The relative non-importance of small scale 
errors was actually included in Lorenz (1969) but seems to have been largely overlooked both in his conclusions 
and in some subsequent research. 

In the more famous Lorenz numerical experiment, the initial error was placed only at the shortest retained 
wavelength. Actually Lorenz placed the initial error at the second-to-shortest wavelength, and because he 
extended his model to much smaller scales, the initial error appears at a much shorter wavelength. In a less 
well-known Lorenz second experiment, the same absolute initial error was placed at the longest retained 
wavelength. Lorenz found that predictability was lost just as rapidly in both experiments and commented: 
“Evidently, when the initial error is small enough, its spectrum has little effect upon the range of predictability”. 
Durran & Gingrich (2014) comment that although the Lorenz model modified by Rotunno & Snyder (2008) is a 
very simplified representation of the actual dynamic atmospheric flows, and being not as theoretically advanced 
as more recent turbulence models, it proved capable of estimating the ensemble error growth evolution in the 
simulations of two East Coast snow storms with surprising fidelity. 

The impact of large-scale initial errors in the ensembles implemented by Durran & Gingrich (2014) suggests a 
need to revisit the idea that mesoscale motions typically inherit extended predictability from the large-scale flow. 
Mesoscale motions are indeed generated when large-scale circulations create fronts or ‘interact’ with small scale 
features such as topography, but there is no guarantee the large scales can be specified with sufficiently small 
relative errors to ensure the correct mesoscale response. Previous research has identified instances where very 
small differences in the large-scale flow rapidly produce significant differences in the mesoscale response on 
flow over topography and on the rain-snow line position. Thus more extensive use of well-calibrated ensemble 
forecasts may provide one way of addressing the ‘uncertainty’ associated with initial errors at all scales. 

It is well known the large-scale flow presents some different kinds of wave motions, basically the low-frequency 
Rossby waves, which are characterized by a near geostrophic behavior, and the high-frequency inertio-gravity 
waves, apart from the mixed Rossby-gravity and Kelvin waves. Because in middle and high latitudes most part 
of the energy of the large-scale motions is in quasi-geostrophic modes, many initialization methods used in 
global models of primitive equations filter out inertio-gravity oscillations, and other schemes attempt to separate 
the solutions into slow and fast modes. An important point to be considered in any filtering procedure is whether 
vital information is lost on the system's dynamics with the filtering processes.  

Raupp & Silva Dias (2010) made several studies to understand how Rossby slow waves can ‘interact’ with fast 
waves and also if these slow modes can be significantly affected by the propagating fast modes. Based on 
arguments from the fluid dynamic resonance theory, they demonstrate that the only way for a Rossby mode to 
‘interact’ with fast waves is by entering in resonance with two inertio-gravity waves with nearly equal or 
opposite temporal frequencies. They also show in this sort of resonant ‘interaction’ that the Rossby mode 
essentially acts as a catalyst for the energy exchanges between the two high-frequency modes, in the sense that it 
enables the resonance conditions to be satisfied and controls the ‘interaction’ period through its amplitude, 
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although the slow waves energy (amplitude) is not significantly affected by the fast propagating waves. This 
property inclusively explains the non-linear Rossby adjustment observed in mid-latitudes even for unbalanced 
initial data under strong rotation. 

Branstator (2014) presents modeling evidences supporting the notion that when considering the influence of 
tropical rainfall anomalies on the extratropical conditions, this influence on midlatitudes overcomes the 
two-week limit. He found that for typical pulses of tropical heating of transient events, the effect on midlatitudes 
is strong for more than a week after the heating occurrence. When the pulse has amplitude similar to the 
amplitude of the commonly observed equatorial rainfall anomalies, on average its effect persists for at least two 
weeks and is even longer in certain regions. A consequence of this remote, delayed impact is that the adequate 
assimilation of the tropical heating produced by observed rainfall can lead to enhanced predictability in 
midlatitudes upper-tropospheric and surface conditions. Branstator (2014) results also indicate that it is not 
necessary to successfully predict the tropical heating for a week or longer in order to benefit extratropical 
predictions at ranges longer than a week. If one accurately predicts heating for a day or two, that will affect the 
mid-latitude prediction for perhaps two weeks. Therefore, an implication of the delayed impact of tropical 
heating is that if one took observed tropical precipitation in account during data assimilation, the initial 
conditions would be better and the predictions in extratropics would improve.  

As can be gathered from the examples presented here, improvements in weather and climate prediction using 
nonlinear numerical models could be obtained by including algorithms that simulate the ways the real 
atmosphere connects the different scales and also how some regions, like the tropics, affect other regions like the 
extra-tropics. 

6. The Ensemble Prediction 

Determinism was the basic fundamental of physics since the time of Newton (late 1600s until the late 1800s). 
The science postulate was: the future state of a system is completely determined by the present system state, and 
the state evolution is governed by causal relationships such as the Newtonian equations of motion. The test bed 
for determinism was orbital mechanics, especially its application in predicting the heavenly body’s motions. The 
numerical weather prediction initially followed the path of determinism. The theoretical treatment of the motion 
scales in the atmosphere proposed by Jule Charney was the foundation for the first successful weather prediction 
by numerical methods. After the success of Princeton’s prediction reached by Charney and his team, the 
numerical weather prediction ‘quickly’ spread worldwide, but the meteorological community soon began to deal 
with the crucial question of temporal limits for deterministic predictions. 

In the early 1960s it was evident that initial state generally erroneous and imperfect models should conduct to the 
perception that the essential character of the causal laws – unstable models characterized by non-periodicity – 
places limits on predictability. Actually, the Lorenz entry into atmospheric predictability study was fortuitous. 
When he inadvertently has introduced a truncation error into an atmospheric model, the subsequent forecast was 
surprisingly different only due to changes in the accuracy of the retaining digits in model’s initial data. (Lewis, 
2005). 

Today meteorologists know that, in weather forecasting, as the information flows from the initial conditions to a 
later prediction, any ‘uncertainty’ in the initial conditions implies that such an information flow should be 
quantified with tools from probability theory. Lorenz (1963 and 1965) showed that the forecast skill of the 
atmospheric models depends not only on the initial conditions accuracy and model realism, but also depends on 
the instabilities of the simulated flow. 

From this great discovery by Lorenz, the community of atmospheric predictors realized that the ensemble 
prediction could take advantage of the ‘deterministic chaos’ of the models in benefit of the weather prediction. 
Lorenz demonstrated that any nonlinear dynamical system with instabilities, as with models to simulate 
atmospheric behavior, show errors that grow during the prediction. Today it is known that those errors’ growth is 
due to instabilities associated to small imperfections of the models and to the tiniest initial condition error. 
Lorenz’s discovery made inevitable the realization that in numeric weather prediction one needs to take in 
account the stochastic nature of the atmospheric evolution in the simulation made by models. 

As explained by Kalnay (2003), the first attempt to explicitly acknowledge the ‘uncertainties’ in atmospheric 
models prediction was the introduction of the stochastic-dynamic forecasting concept, where a continuity 
equation of probability density for a model solution is treated. Subsequently researchers proposed several 
stochastic methods that evolved to the present operational methods of ensemble prediction.  In this technique, 
the weather prognostics started employing initial conditions slightly disturbed, in a method named by Kalnay as 
breeding growing perturbations. 
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After some days of predictive model integration, the ‘deterministic chaos’ appears, and the divergence of the 
solutions can be statistically evaluated to indicate “when” and “where” the weather forecast has greater or 
smaller confidence (Zang & Krishnamurti, 1999; Krishnamurti et al., 2014). Although a great number of 
members in the ensemble prediction should lead to greater solution variability, it is important to delineate the 
level of confidence in the atmospheric prognostic, considering the average of the several solutions in each 
location of the model’s domain (“where”) in association to the number of days the prediction is being considered 
acceptable (“when”). 

As can be seen throughout the present discussion, there are atmospheric states that are more predictable than 
others. This is what operational meteorologists see daily, and also some theoretical studies suggest. Actually 
there are situations in which the predictability, at least for the greater scales, goes beyond the fifteen days. 
Obviously if the predictability metric is rain occurrence in a specific location, the predictability will be for a very 
short period of time. From a practical point of view, the indication of the expectation degree related to the 
weather prediction is itself a strong signal of predictability. 

Below Figure 1 shows the temporal evolution of ensemble predictions made operationally by CPTEC (Center for 
Weather Forecasting and Climate Studies), the Brazilian principal weather forecasting institution (Cunningham 
et al., 2014). As an example, spaghetti plots are presented with predictions for 15, 12, 10, 7, 5, and 3-days for 
September 17, 2014 at 12 UTC. 

(a) Ensemble Forecast for 15 days (b) Ensemble Forecast for 12 days 

 

 

(c) Ensemble Forecast for 10 days (d) Ensemble Forecast for 7 days 
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(e) Ensemble Forecast for 5 days (f) Ensemble Forecast for 3 days 

Figure 1. Spaghetti plots of ensemble predictions of 500 hPa geopotential heights of 5800m and 5600m around 
South America, for September 17, 2014 at 12 UTC: (a) 15-day forecast; (b) 12-day forecast; (c) 10-day forecast; 

(d) 7-day forecast; (e) 5-day forecast; (f) 3-day forecast 

Source: CPTEC/INPE 

 

As expected, in Figure 1, the more distant the prediction, the greater the uncertainty indicated by the divergence 
of the geopotential heights of 5800m and 5600m at 500 hPa level, over the Pacific and Atlantic Oceans and over 
the South American continent, at sub-tropical and temperate latitudes respectively. Considering that 500 hPa 
troughs and ridges indicate respectively cold and warm air intrusions below this level, these examples show the 
degree of ‘uncertainties’ in the frontal evolution ensemble prediction expected for 15 days ahead until forecasts 
is as close as 3 days.  

Figure 2 refers to the 500 hPa geopotential height analysis at 12UTC of September 17, 2014. Comparing this 500 
hPa analysis with the predictions shown in Figure 1, it is easy to see the subtropical 5800m geopotential height 
shows a very well predicted trough in the Pacific Ocean and another trough in the Atlantic Ocean, although not 
so well predicted before 5 days. By Figure 3, it can be seen the Atlantic trough is associated with a frontal system 
that puts cold air in its SW sector and warm air in its NE sector. In the case of the Pacific trough shown in Figure 
2, Figure 3 indicates there was a cold advection, which is common in that region, and this cold sector is blocked 
by the Andes. Therefore, the continental warm air advances in the South American interior, coming from the 
Amazon region and going southward until the Argentina sector. This warm advection explains the South 
American 500 hPa continent ridge feature, well predicted with 15 days in advance.  
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Figure 2. Verification of the 500 hPa geopotential height for September 17, 2014 at 12UTC 

Source: CPTEC/INPE  

 

 

Figure 3. Verification of the 850 hPa temperature on September 17, 2014 at 12UTC 

Source: CPTEC/INPE 
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7. Concluding Remarks 

This article’s principal objective was to demystify the confusion between the expressions ‘atmospheric chaos’ 
and ‘deterministic chaos’. The expression ‘atmospheric chaos’ led to the belief nothing could extend predictions 
beyond two weeks, because the ‘atmospheric chaos’ imposes an ‘intrinsic’ physical limitation on predictions. On 
the other hand, actually, the models used today by meteorologists to predict atmospheric behavior produce 
‘deterministic chaos’, as discovered by Lorenz (Lorenz, 1963). This confusion between the two expressions lead 
to an erroneous conclusion: if the atmosphere is ‘chaotic’, nothing could extend the forecasts beyond two weeks, 
because this was a limitation physically imposed by the atmosphere itself. 

The arguments presented here took a different line of thought: the models to predict atmospheric behavior are 
‘chaotic’ due the nonlinear character of its equations. Due to this characteristic, very small input changes in 
initial values lead to great divergence in the outputs some days later, and these changes are associated with the 
difficulty to know what is the ‘real atmospheric state’. Since their prior studies, the authors suggest that possibly 
‘better models’ and ‘better observational data’ could lead to atmospheric simulations and predictions more 
accurate, including to extend the limit of useful forecasts to beyond two weeks (Santos & Buchmann, 2013).  

In the beginning of the numerical weather prediction in early 1950s, linear models were used to simulate 
atmospheric behavior, using principally the geostrophic and quasi-geostrophic concepts, but the very important 
advection issue was not considered due the mathematical difficulty to solve the advection (nonlinear) terms. 
Meteorological experience demonstrates that a nonlinear equations system simulates better geophysical fluids 
than a linear system, but the nonlinear models bring ‘deterministic chaos’ as a byproduct. Therefore, minimal 
errors in the initial state makes these errors grow after some steps, that is, the predictions ‘quickly’ begin to 
diverge. Lorenz himself proposed numerical experiments demonstrating it is practically impossible to avoid the 
‘chaos’ emerge in nonlinear equations systems. 

An equivocal conclusion emerged from Lorenz's digressions considering that the predictability of certain 
turbulent systems could not be extended beyond some finite threshold. This leads to the conclusion that weather 
forecasts could be limited by perturbations as trivial as the flapping wings of ‘butterflies’. The question of the 
errors in the initial condition is elucidated in the recent article by Durran & Gingrich (2014), who explain the 
key-factor limiting the predictability of such systems as being the large scale impact of initial errors that 
originate in the small scales and then grow with the process repetition. After more appropriate numerical 
experiments than the Lorenz’s tests, they conclude that in any real-world event, the contributions of the 
‘butterflies’ to the ‘uncertainties’ in the initial conditions would be completely dwarfed by errors in the larger 
scales. The study of Durran & Gingrich (2014) conclude there is a mathematical ‘intrinsic’ problem when 
nonlinear models are affected by differences in the “observational error” related physically with the energy flows 
in many scales of motion. Thus, small relative errors at long wavelengths cause similar impacts on error growth 
as large relative errors at short wavelengths. Therefore, considering the influence of ‘butterflies’ in the initial 
conditions as a means to improve meteorological forecasts would not be important due to relative small errors 
that exist in the larger scales. 

The musing of Lorenz that a ‘butterfly’ beating its wings in Brazil could form a ‘tornado’ in Texas was 
applauded by the academy after its proposal in 1965. However, more recently it has been realized that this 
concern could cause delays in scientific development as it suggests that with the ‘uncertainties’ inherent in 
meteorological observation (these ‘uncertainties’ could be the ‘butterflies’) the predictions become practically 
worthless after 15 days. In fact, more careful studies using numerical simulations have pointed to an interesting 
conclusion: the atmospheric modes, whether fast (high frequency) or slow (low frequency), which are associated 
with energy, propagate at the group velocity, which is controlled by the large scale. Therefore, small-scale initial 
errors, including those at scale-lengths far larger than the ‘butterfly’ size do not matter when minor relative errors 
are present in the larger scales (Durran & Gingrich, 2014). 

Meteorologists’ intuition suggests that even millions ‘butterflies’ would not cause an important effect on weather 
prediction because the energy of small perturbations propagates through preferential trajectories. Actually the 
ability to predict atmospheric behavior will only improve when models can include the ways nature transfers 
energy of different scales. Brazilian researchers have followed this way to address the question of predictability 
by searching how fast atmospheric modes, such as high-frequency inertio-gravity waves, ‘interact’ with Rossby 
slow waves. This search to understand how the energy of different atmospheric modes ‘travels’, can lead to what 
are herein called ‘better models’ (Raupp & Silva Dias, 2010). 

In the beginning of the 1960s, Lorenz discovered that any nonlinear dynamical system with instabilities, like the 
models for weather forecasts, presents errors that grow during the prediction process. This ‘deterministic chaos’ 
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discovered by Lorenz led to the realization that numerical weather predictions should take into account the 
stochastic nature of the error growth that occurs while running the model. While the integration of the predictor 
models happens, the ‘deterministic chaos’ appears as a surprising divergence in the solutions. Fortunately, it is 
possible associate the divergence to the model’s predictability by identifying geographic sectors and also periods 
in which the prediction can be considered more or less accurate. The stochastic treatment of the errors growth 
during the weather prediction is called today ‘ensemble forecast’ and brings to meteorologists a great additional 
tool, because it indicates “where” and “when” the model predicts with greater or smaller confidence future 
atmospheric conditions. 
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Appendix 

 

Table I. Shows two different analytical expressions, with an error of the order of 0,00001. Both formulas are 
unstable with diverge occurring at the steps 37 and 17, respectively 

Formula:
x(n+1) =3.75*x(n)-(x(n))2 

 
step cond 1    cond 2    difference
0   0.50000   0.50001  -0.00001 
1   1.62500   1.62503  -0.00003 
2   3.45312   3.45314  -0.00001 
3   1.02515   1.02510   0.00004 
4   2.79337   2.79330   0.00008 
5   2.67221   2.67235  -0.00014 
6   2.88007   2.87985   0.00022 
7   2.50545   2.50590  -0.00045 
8   3.11816   3.11759   0.00057 
9   1.97019   1.97159  -0.00140 
10   3.50656   3.50629   0.00027
11   0.85362   0.85450  -0.00088
12   2.47241   2.47421  -0.00179
13   3.15872   3.15657   0.00215
14   1.86769   1.87319  -0.00551
15   3.51557   3.51562  -0.00005
16   0.82415   0.82399   0.00017
17   2.41134   2.41099   0.00035
18   3.22796   3.22834  -0.00037
19   1.68512   1.68410   0.00101
20   3.47957   3.47918   0.00039
21   0.94098   0.94222  -0.00124
22   2.64324   2.64555  -0.00231
23   2.92544   2.92188   0.00356
24   2.41220   2.41966  -0.00746
25   3.22704   3.21897   0.00807
26   1.68761   1.70938  -0.02176
27   3.48051   3.48819  -0.00768
28   0.93796   0.91323   0.02473

Formula:
x(n+1)=(x(n)-2)2 

 
step cond 1    cond 2    difference 
0   0.50000   0.50001  -0.00001 
1   2.25000   2.24997   0.00003 
2   0.06250   0.06248   0.00002 
3   3.75391   3.75396  -0.00006 
4   3.07619   3.07639  -0.00020 
5   1.15818   1.15862  -0.00044 
6   0.70866   0.70792   0.00074 
7   1.66755   1.66946  -0.00191 
8   0.11052   0.10926   0.00127 
9    3.57013   3.57491  -0.00479 
10   2.46530   2.48035  -0.01506 
11   0.21650   0.23074  -0.01424 
12   3.18087   3.13028   0.05059 
13   1.39445   1.27753   0.11692 
14   0.36669   0.52196  -0.15527 
15   2.66769   2.18459   0.48310 
16   0.44580   0.03407   0.41173 
17   2.41552   3.86487  -1.44935 
18   0.17266   3.47774  -3.30508 
19   3.33917   2.18371   1.15546 
20   1.79339   0.03375   1.75964 
21   0.04269   3.86614  -3.82345 
22   3.83107   3.48246   0.34861 
23   3.35282   2.19769   1.15513 
24   1.83013   0.03908   1.79104 
25   0.02886   3.84520  -3.81634 
26   3.88540   3.40475   0.48066 
27   3.55475   1.97331   1.58144 
28   2.41725   0.00071   2.41653 
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29   2.63758   2.59062   0.04695
30   2.93410   3.00351  -0.06941
31   2.39393   2.24209   0.15184
32   3.24634   3.38087  -0.13453
33   1.63506   1.24799   0.38707
34   3.45805   3.12248   0.33557
35   1.00957   1.95942  -0.94985
36   2.76666   3.50850  -0.74184
37   2.72057   0.84731   1.87327
38   2.80063   2.45947   0.34115
39   2.65884   3.17402  -0.51518
40   2.90123   1.82819   1.07304

29   0.17409   3.99715  -3.82306 
30   3.33393   3.98862  -0.65468 
31   1.77938   3.95459  -2.17522 
32   0.04868   3.82043  -3.77175 
33   3.80767   3.31396   0.49371 
34   3.26767   1.72649   1.54117 
35   1.60698   0.07481   1.53217 
36   0.15446   3.70637  -3.55191 
37   3.40600   2.91171   0.49429 
38   1.97684   0.83122   1.14561 
39   0.00054   1.36604  -1.36551 
40   3.99785   0.40190   3.59595 

 
Table II. Shows two different analytical expressions, with an error of the order of 0,0001. Both formulas are 
unstable with diverge occurring at the steps 28 and 14, respectively 

Formula: 
x(n+1)=3.75*x(n)-(x(n))2 
 
step cond 1    cond 2    difference 
  0   0.50000   0.50010  -0.00010
  1   1.62500   1.62528  -0.00028
  2   3.45312   3.45326  -0.00014
  3   1.02515   1.02471   0.00043
  4   2.79337   2.79264   0.00074
  5   2.67221   2.67357  -0.00135
  6   2.88007   2.87791   0.00216
  7   2.50545   2.50979  -0.00434
  8   3.11816   3.11267   0.00549
  9   1.97019   1.98380  -0.01362
 10   3.50656   3.50379   0.00278
 11   0.85362   0.86268  -0.00905
 12   2.47241   2.49083  -0.01841
 13   3.15872   3.13638   0.02234
 14   1.86769   1.92455  -0.05686
 15   3.51557   3.51317   0.00240
 16   0.82415   0.83202  -0.00787
 17   2.41134   2.42783  -0.01648
 18   3.22796   3.21001   0.01795
 19   1.68512   1.73338  -0.04826
 20   3.47957   3.49557  -0.01600
 21   0.94098   0.88939   0.05160
 22   2.64324   2.54419   0.09904
 23   2.92544   3.06781  -0.14237
 24   2.41220   2.09283   0.31937
 25   3.22704   3.46817  -0.24114
 26   1.68761   0.97742   0.71020
 27   3.48051   2.70997   0.77054
 28   0.93796   2.81845  -1.88049
 29   2.63758   2.62554   0.01204
 30   2.93410   2.95232  -0.01822
 31   2.39393   2.35501   0.03892
 32   3.24634   3.28522  -0.03888
 33   1.63506   1.52691   0.10815
 34   3.45805   3.39446   0.06359
 35   1.00957   1.20687  -0.19730
 36   2.76666   3.06923  -0.30257
 37   2.72057   2.08944   0.63113
 38   2.80063   3.46964  -0.66901
 39   2.65884   0.97275   1.68609
 40   2.90123   2.70157   0.19966

Formula:
x(n+1)=(x(n)-2)2 
 
step cond 1    cond 2    difference 
0   0.50000   0.50010  -0.00010 
1   2.25000   2.24970   0.00030 
2   0.06250   0.06235   0.00015 
3   3.75391   3.75449  -0.00058 
4   3.07619   3.07822  -0.00204 
5   1.15818   1.16257  -0.00439 
6   0.70866   0.70129   0.00737 
7   1.66755   1.68664  -0.01909 
8   0.11052   0.09819   0.01233 
9   3.57013   3.61687  -0.04675 
10  2.46530   2.61428  -0.14898 
11  0.21650   0.37734  -0.16084 
12  3.18087   2.63304   0.54783 
13  1.39445   0.40073   0.99371 
14  0.36669   2.55765  -2.19096 
15  2.66769   0.31098   2.35671 
16  0.44580   2.85280  -2.40699 
17  2.41552   0.72726   1.68826 
18  0.17266   1.61986  -1.44720 
19  3.33917   0.14451   3.19467 
20  1.79339   3.44285  -1.64946 
21  0.04269   2.08182  -2.03913 
22  3.83107   0.00669   3.82438 
23  3.35282   3.97327  -0.62045 
24  1.83013   3.89378  -2.06366 
25  0.02886   3.58641  -3.55756 
26  3.88540   2.51671   1.36870 
27  3.55475   0.26699   3.28776 
28  2.41725   3.00334  -0.58609 
29  0.17409   1.00668  -0.83259 
30  3.33393   0.98668   2.34725 
31  1.77938   1.02682   0.75256 
32  0.04868   0.94709  -0.89841 
33  3.80767   1.10863   2.69904 
34  3.26767   0.79455   2.47312 
35  1.60698   1.45312   0.15386 
36  0.15446   0.29908  -0.14461 
37  3.40600   2.89314   0.51286 
38  1.97684   0.79770   1.17914 
39  0.00054   1.44553  -1.44500 
40  3.99785   0.30743   3.69042 
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Table III. Shows two different analytical expressions, with an error of the order of 0,001. Both formulas are 
unstable with diverge occurring at the steps 16 and 10, respectively 

Formula: 
x(n+1)=3.75*x(n)-(x(n))2 
 
step  cond 1    cond 2    difference
  0   0.50000   0.50100  -0.00100 
  1   1.62500   1.62775  -0.00275 
  2   3.45312   3.45449  -0.00137 
  3   1.02515   1.02083   0.00432
  4   2.79337   2.78602   0.00736
  5   2.67221   2.68567  -0.01346 
  6   2.88007   2.85844   0.02163
  7   2.50545   2.54847  -0.04302 
  8   3.11816   3.06206   0.05609
  9   1.97019   2.10651  -0.13632 
 10   3.50656   3.46203   0.04454
 11   0.85362   0.99697  -0.14334 
 12   2.47241   2.74468  -0.27227 
 13   3.15872   2.75928   0.39945
 14   1.86769   2.73368  -0.86600 
 15   3.51557   2.77829   0.73728
 16   0.82415   2.69969  -1.87554 
 17   2.41134   2.83551  -0.42417 
 18   3.22796   2.59305   0.63492
 19   1.68512   3.00004  -1.31492 
 20   3.47957   2.24992   1.22965
 21   0.94098   3.37506  -2.43408 
 22   2.64324   1.26544   1.37780
 23   2.92544   3.14406  -0.21862 
 24   2.41220   1.90511   0.50709
 25   3.22704   3.51472  -0.28768 
 26   1.68761   0.82695   0.86067 
 27   3.48051   2.41721   1.06330
 28   0.93796   3.22163  -2.28367 
 29   2.63758   1.70221   0.93537
 30   2.93410   3.48577  -0.55167 
 31   2.39393   0.92105   1.47288
 32   3.24634   2.60560   0.64074
 33   1.63506   2.98185  -1.34679 
 34   3.45805   2.29051   1.16754
 35   1.00957   3.34297  -2.33340 
 36   2.76666   1.36068   1.40598
 37   2.72057   3.25110  -0.53052 
 38   2.80063   1.62198   1.17865
 39   2.65884   3.45161  -0.79277 
 40   2.90123   1.02994   1.87129

Formula:
x(n+1)=(x(n)-2)2 
 
step cond 1    cond 2    difference 
  0   0.50000   0.50100  -0.00100 
  1   2.25000   2.24700   0.00300 
  2   0.06250   0.06101   0.00149 
  3   3.75391   3.75968  -0.00578 
  4   3.07619   3.09649  -0.02030 
  5   1.15818   1.20229  -0.04411 
  6   0.70866   0.63635   0.07232 
  7   1.66755   1.85955  -0.19200 
  8   0.11052   0.01973   0.09080 
  9   3.57013   3.92148  -0.35135 
 10   2.46530   3.69209  -1.22679 
 11   0.21650   2.86317  -2.64667 
 12   3.18087   0.74506   2.43581 
 13   1.39445   1.57488  -0.18043 
 14   0.36669   0.18073   0.18597 
 15   2.66769   3.30975  -0.64206 
 16   0.44580   1.71544  -1.26964 
 17   2.41552   0.08097   2.33455 
 18   0.17266   3.68266  -3.51000 
 19   3.33917   2.83134   0.50783 
 20   1.79339   0.69113   1.10226 
 21   0.04269   1.71313  -1.67044 
 22   3.83107   0.08229   3.74878 
 23   3.35282   3.67760  -0.32478 
 24   1.83013   2.81434  -0.98422 
 25   0.02886   0.66316  -0.63430 
 26   3.88540   1.78715   2.09826 
 27   3.55475   0.04531   3.50944 
 28   2.41725   3.82083  -1.40358 
 29   0.17409   3.31542  -3.14133 
 30   3.33393   1.73033   1.60360 
 31   1.77938   0.07272   1.70665 
 32   0.04868   3.71440  -3.66573 
 33   3.80767   2.93918   0.86849 
 34   3.26767   0.88206   2.38561 
 35   1.60698   1.24979   0.35719 
 36   0.15446   0.56282  -0.40835 
 37   3.40600   2.06550   1.34050 
 38   1.97684   0.00429   1.97255 
 39   0.00054   3.98286  -3.98232 

40   3.99785   3.93173   0.06612 
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