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Abstract 

Based on computational fluid dynamics, the debris flow is considered as a one-dimensional, laminar, unsteady 
flow down a steep slope with Herschel-Bulkley rheological model, and the conservation of mass and momentum 
are integrated along the depth of plug zone and shear zone, respectively. In addition, the mathematical model is 
improved by analyzing the mainly influencing factors of debris flow and adding the drag force and earth pressure 
coefficient into the depth-averaged equations. The Lagrange difference method is used to solve the partial 
differential equations in this paper. the model can reproduce the motion of debris flow with a level of accuracy 
by comparing the results of two simple cases. 
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1. Introduction  

In mountain regions of western China, landslide, debris avalanche, and debris flow frequently occur and cause 
serious damages, especially after May 12, Wenchuan earthquake. The forecasting, warning and risk management 
of debris flow hazards are especially important for disaster prevention and reduction, and the related studies are 
mainly focused on empirical method, lump method, continuum method, and distinct element method.  

For the empirical method, it is influenced by the external factors such as grain composition of debris flow and 
topography and cannot obtain the velocity and deposition of debris flow with the change of time. The continuum 
method and distinct element method are all built in the mathematical equations of the motion of debris flow with 
different assumptions. The continuum method is based on computational fluid dynamics and mainly divided into 
two approaches. 

For the first approach, because the length of debris flow is significantly larger than its height, the 
three-dimensional Navier-Stokes equations can be simplified to a set of two-dimensional equations by 
considering vertically averaged quantities (Gessese et al., 2012), and the depth-integrated method is widely used 
to simulate the motion of landslide, flow slide and debris flow (Hungr, 1995; Hungr et al., 2008; 2009; Iverson, 
1997; Savege & Hutter, 1989). The other approach is based on the full Navier-Stokes equations (incompressible 
flow), the interface tracking method will be used to describe the interface distribution and motion characteristics. 
Different numerical models are conducted to simulate the dam-break problem (Biscarini et al., 2010), landslide 
runout (Vassilevski et al., 2012), landslide generated water waves (Biscarini, 2010) and snow avalanche 
impacting barriers (Dutykh et al., 2011). The second approach is similar to the shallow water equation, which is 
widely used to simulate the dam break and flood disasters and many achievements have been obtained in the 
numerical simulations and experiments (Xu et al., 2012; 2013; Maleewong, 2011). 

Debris flow is considered as a two two-dimensional, laminar, non- hydroplaning muddy flows resulting from 
submarine slides that occur in deep waters, and can be approximated as Bingham fluids (Huang et al., 1997; 
1999; Balmforth et al., 1999). Jiang et al. (1993) present a numerical model that simulates the coupling of a 
Bingham plastic mudslide on a gentle uniform slope with the surface waves which it generates. An asymptotic 
solution for the flow of a Bingham fluid along a two-dimensional channel of slowly varying width is developed 
by Frigaard and Ryan (2004). 
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The Bingham model cannot exhibit the non-linear property of debris flow, the Herschel-Bulkley model is studied, 
which is a generalized non-Newtonian fluid. The 1D numerical model of the down slope flow and deposition of 
muddy subaqueous debris flow is presented by incorporating the Herschel-Bulkley and bilinear model (Imran et 
al., 2001). A matched-asymptotic perturbation method is implemented analytically told get asymptotic solution 
for both the outer region away from, and the inner region near, the wave front by applying von Karman 
momentum integral method (Huang & Garcia, 1998). 

The present models mentioned above cannot express the friction property and earth pressure coefficient of debris 
flow that is important for simulating its motion. In this paper, based on the boundary layer approximation 
method, combined the Herschel-Bulkley rheological model, the mathematical equations are shown in section 2; 
the BVP model is introduced, and an improved mathematical model is provided in section 3; the solution method 
and results analysis are made in section 4 and section 5, respectively. 

2. Mathematical Model  
The debris flow is considered as a two-dimensional, unsteady, laminar flow down a relatively steep slope at an 
angle , and a coordinate system is defined as the x-axis down slope and the y-axis upward normal to the bed. 
Based on the boundary layer approximation, the governing equation of debris flow can be written as, 

  (1) 

  (2) 

  (3) 

Where  are the x ; yx ; y  directional velocities, respectively.  are the pressure and shear stress, 
respectively.  is the density, and  is the angle of slope. 

From Equations (1-3), the pressure can be obtained as hydrostatic, 

  (4) 

If the height y equal zero, the bed can be considered as fixed boundary condition, the velocities of x and y 
direction are zero. , at . While the free surface condition is considered when the height y equal h, 
the pressure and shear stress can be set as zero. , at .  

We can think the material derivation is zero at the free surface, 

 , at  (5) 

The Herschel-Bulkley rheological model exhibits a non-linear property and is widely used to simulate the motion 
of mudflow, debris flow, debris avalanche and flow slide. The rheological model can be expressed as, 

  (6) 

Here, γ is the shear strain rate, , where  is the yield stress, K, n are empirical parameters, 
respectively. 

For the Bingham and Herschel-Bulkley fluid, the flowing fluid can be divided into two layer, the plug layer and 
shear layer. For the plug layer, the velocity gradient can be considered as zero. In the interface between plug 
layer and shear layer, the shear stress equal yield stress. 

 , at  (7) 

Where the height of shear zone of debris flow 
s ph h h  , here hphp is the height of plug zone of debris flow. 

Combined the boundary conditions, substituting the rheological model into the governing equation, the velocity 
is integrated, we can obtain, 
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  (8) 

Here, the velocity of plug zone of debris flow . 

The depth-integrated velocity is also written as, 

  (9) 

Differentiating Equation (8) at y=0 and use of u pu p  yields,  

  (10) 

Substituting Equation (10) into Equation (6), we can obtain the shear stress at the base, 

  (11) 

When the n equal 1, the model can be reduced into Bingham model, 

  (12) 

Here, . 

Based on the boundary layer theory, the Von Karman momentum integral method and Leibniz rule are used to 
integrate the Equation (1) from 0 to hshs, we can obtain,  

  (13) 

The similar to Equation (13), the Equations (2) and (3) can be integrated from 0 to hshs and from 0 to hh , we can 
obtain the momentum equations of plug layer and shear layer, 

The momentum equation of plug layer, 

  (14) 

The momentum equation of shear layer, 

   

  (15) 

Where h;hs;u;uph;hs;u;up  are the height, plug layer height, velocity and plug layer velocity, respectively. 

, , where  is the density of upper fluid(air or water). , 

. 

The coefficients in Equations (14) and (15) are, 
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2.1 An Improved Model 

The rheological model is very important for simulating the motion of debris flow, the Herschel-Bulkley model 
cannot consider the pore pressure and Mohr-Coulomb properties, and the parameters are difficult to be measured. 
Wu et al. (2013) propose an improved rheological to simulate the motion of flow slide and debris flow based on 
Herschel-Bulkley model, Mohr-Coulomb criterion, and Bi-viscous model and is written as follow,  

  (16) 

Where a is the apparent friction angle, and can be defined by  n a n utan p tan     ; p is the hydrostatic 

pressure, 0  is the initial viscosity of debris flow. 

To simplify the complexity of formula derivation, the BVP model can be reduced as follows, 

  (17) 

The deformation of Equation (17) become,  

  (18) 

Here . 

From Equations (6) and (18), it can be seen that the difference between the BVP model and the Herschel-Bulkley 
model is the shear stress item; we can substitute the shear stress  into the Equations (13)-(15). 
It is worth noting that the approximation value of pressure is set as .  

For the subaqueous debris flow, the drag force of water cannot be ignored, and for Bingham model, the shear 
stress is depth integrated from 0 to h,  

  (19) 

To simplify the problem, the drag force can be added into the shear stress, and the signs of drag force are 
noteworthy. 

The drag force is written as, 

  (20) 

Where  is set as 2e-3 in this paper for simplifying the problems. 

The similar to drag force, for Bingham model, the earth pressure is depth integrated from 0 to h, 

  (21) 

The right side of Equation (21) can written as follow due to the existence of lateral earth pressure, 

, and the Equation (21) become, 

  (22) 

Where  
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  (23) 

To prevent the mathematical logic error,  is set in the model and its value is very small. 

Combined the BVP model, considering the drag force and earth pressure coefficient, substituting Equations (18), 
(20) and (23) into Equations (1), (2) and (3), the governing equations become, 

Mass equation, 

  (24) 

The momentum equation of plug player, 

   

  (25) 

The momentum equation of shear player, 

   

  (26) 

From Equations (24)–(26), it can be seen that the mass change over time depends on the spatial variation of x 
directional mass fluxes, which is same as shallow water equation. 

For the momentum equation, the acceleration of debris flow depends on the following factors, (1) the spatial 
variation of x momentum fluxes; (2) driving gravitational force; (3) dissipative internal friction force; and (4) 
dissipative basal friction force, its direction depends on the velocity of debris flow. For the Herschel-Bulkley 
model, the cohesion and internal friction angle cannot be considered and the yield stress is difficult to be 
measured. The BVP model is introduced for overcome the shortcomings of the Herschel-Bulkley model. For the 
subaqueous debris flow, the drag force is very important, which can be added into the shear stress item. In 
addition, in the plug layer, the velocity gradient of debris flow is zero, the earth pressure coefficient could not be 
considered, which it is not reasonable in shear layer. So, the earth pressure coefficient kact=passkact=pass is added into 
the internal friction force item. 

2.2 Solution Method 

The Lagrange finite difference method is used to solve the governing equations in this paper. The debris flow is 
divided into a number of cells, and the index ii and jj are denoted as the cell centers and cell boundary points, 
respectively. The mass conservation can be written as, 

  (27) 

The difference equations of momentum conservation of plug layer is, 

  (28) 
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and the shear layer is also obtained as, 

   

  (29) 

The velocities of nodes are, 

  (30) 

Here, , where vcvc is artificial viscosity item, and its value could set as 0.01-0.03. 

3. Results Analysis  
The initial shape of debris flow has a thickness , which varies in the shape of a parabola with length L and 
maximum height , the initial shape of debris flow is shown in Figure 1 and is set as follows by Jiang and 
LeBlond (1993). 

  (31) 

The maximum height and length of debris flow are set as 24m and 600m, respectively. The tangent of the plane 
inclined angle is 0.05, and the length of inclined plane is 5000m. In the numerical model, the mesh size of debris 
flow is 1.0m, the density of debris flow and air are 1.5t/m3 and 1kg/m3, respectively. A is the area of element, u 

is the average velocity, the step size of time is . Calculation stops if the velocity of the front 
of debris flow is less than 0.1m/s. 

 

θ

 
Figure 1. Numerical model of debris flow 

 

Two cases are performed to simulate the motion of debris flow, and the numerical model is shown in Figure 3. 
For the first case, the cohesion and apparent friction angle are set as 1000 Pa, and 22 degree, respectively. The 
simulated results are shown in Figures 2–4. Figure 2 is the motion of debris flow, and indicates that the velocity 
of debris flow is increasing due to the gravitational force at the beginning of time, and forms a surge in front. 
While it is decreasing after 4 minutes because the basal friction force and internal friction force are increased, 
and the surge is not obvious. Combined Figure 3, the velocity of debris flow, we can obtain that the velocity of 
debris flow is fast in 1 minute, start falling after 2 minutes, and then the falling speed significantly slow down. 
The velocity of the front of debris flow is shown in Figure 4, from Figure 4, it can be seen that the velocity 
increases rapidly in the beginning, decreases after reaching the peak value, and the falling speed significantly 
slow down, which the law is similar to Figure 3. 
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Figure 2. The motion of debris flow (c = 1000 Pa,  = 22) 

 

Figure 3. The velocities of debris flow (c = 1000 Pa,  = 22) 
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Figure 4. The velocities of the front of debris flow (c = 1000 Pa,  = 22) 

 

For the second case, the cohesion and apparent friction angle are set as 500 Pa, and 15 degree, respectively. The 
motion of debris flow is shown in Figure 5, compared with Figure 4, the velocity of debris flow is more faster 
than the first case; the moving distance of debris flow reaches 5.6 times its length in two minutes, while the first 
cases is 4.6 times; when the velocity of debris flow trends zero, the moving distance of debris flow reaches 14 
times its length, and the first case is 7 times. It worth noting that, the front velocities of debris flow are nearly for 
the two cases, and its value range 0.6-0.7. 

 

 
Figure 5. The motion of debris flow (c = 500 Pa,  = 15) 
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Figure 6. The velocities of debris flow (c = 500 Pa,  = 15) 

 
Figure 7. The velocities of the front of debris flow (c = 500 Pa,  = 15) 

 

4. Conclusions 
Based on the Herschel-Bulkley model, by analyzing the mainly influencing factors of debris flow, the BVP 
rheological model is introduced, the governing equations of debris flow are improved by adding the drag force 
and earth pressure coefficient into the depth-averaged equations, and the Lagrange difference method is used to 
simulate the motion of debris flow on the inclined plane. The simulated results show that the model can 
reproduce the motion of debris flow with a level of accuracy.  

There have many problems in the model proposed in this paper, such as, it cannot consider the lateral spreading 
due to the limit of one dimensional model; the material transfer in the interface between the plug layer and shear 
layer and the turbulence factor have not yet been considered.  
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