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Abstract 

This study was conducted to assess dietary exposure to pesticide residues and pesticide application practices 

leading to the presence of these residues among vegetable farmers in Arusha, Tanzania. Face-to-face interviews 

using semi-structured questionnaires (including 24-hour recall and food frequency questionnaire techniques) 

were conducted to collect information on pesticide application practices and vegetable consumption, from 76 

farmers. A sample of ready-to-eat vegetables was collected from each farmer's household to determine the level 

of pesticide residues. Pesticide residues were analyzed by gas chromatography-mass spectroscopy 

A deterministic approach was used to assess dietary exposure to pesticide residues. Among the analyzed samples, 

31.4% contained detectable levels of organophosphate residues. The detected organophosphates were dimethoate 

(mean, 8.56 mg kg-1), acephate (mean, 2.9 mg kg-1), profenofos (mean, 8.44 mg kg-1), dichlorvos (mean, 20.8 mg 

kg-1) and malathion (mean, 5.47 mg kg-1). The mean exposure for dimethoate (0.0021 mg kg-1 body weight (wt) 

day-1 was higher than its corresponding acceptable daily intakes of 0.002 mg kg-1bwd-1 resulting in hazard 

quotient of 1.044 with a consequent hazard index of 1.19 for organophosphates. Pyrethroid pesticides 

(permethrin, cypermethrin, and lambda-cyhalothrin) were also detected but at a lower frequency (17.1%) and 

hazard index (0.029). The exposure to pesticide residues was significantly associated with limited access to 

expert advice on pesticide application (p=0.031, adjusted odds ratio=6.56) and over-dosage (p=0.038, adjusted 

odds ratio=3.751).The risk may be minimized by increasing access to support by extension service providing 

guidance on good practices and ensuring application of appropriate doses for pesticides. 

Keywords; pesticide residue, exposure, ready-to-eat, application practices, vegetable farmers, organophosphates, 

pyrethroids, agricultural extension officers, over-dosage  

1. Introduction 

Malpractices in pesticides application result to unacceptable levels of pesticide residues in foods, and 

consequently increase the risk of unsafe dietary pesticide exposures in humans. Dietary exposure to unacceptable 

levels of pesticide residues has been associated with risks of developing cancer, genetic and immune system 

defects and neurological system disorders (Hashmi, Imran, & Dilshad, 2004; Keifer., 2008; Thatheyus & Gnana 

Selvam, 2013). Parkinson’s and Alzheimer’s diseases are the most common neurodegenerative disorders which 

are associated with exposure to pesticides (Campdelacreu, 2012; Sanchez-Santed, 2015). Pesticides possess 

estrogenic activity and therefore are associated with breast cancers in women and low sperm count in males 

(Laffin, Chavez, & Pine, 2010; Toft, Hagmar, Giwercman, & Peter, 2004). To ensure the pesticide safety of 

vegetables and other foods, Codex Alimentarius Commission in collaboration with Environmental Protection 

Agency (EPA) has set maximum tolerable residual levels (MRLs) for particular pesticides in food including 

vegetables (European Food Safety Agency [EFSA], 2012; Food and Agriculture Organization [FAO]/World 

Health Organization [WHO], 1997).  
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Vegetables form an important part of human diet, however, are food crops with a very high likelihood of 

containing pesticides. Surveys in developing countries indicate that in vegetables there is an indiscriminate use 

of pesticides for pest and disease control, combined with non adherence to pesticides’ pre-harvest intervals, and 

lack of knowledge of the correct use of pesticides, all of which could likely result in excessive levels of pesticide 

residues in vegetables (Amera & Abate, 2008; Banjo, Aina, & Rije, 2010; Lozowicka et al., 2015; Zyoud et al., 

2010). A study done in Chile revealed that 27% of 118 leafy vegetable samples analyzed were contaminated with 

pesticide residues above MRLs and 65% of them had multiple pesticide residues (Elgueta, Moyano, Sepúlveda, 

& Quiroz, 2017). A study by Sheikh, Nizamani, Panhwar & Miran (2013) in Pakistan which analyzed pesticide 

residues in vegetable samples from markets found that okra, bitter gourd, brinjal, tomato, onion, cauliflower, and 

chilies were highly contaminated with chlorpyrifos, profenofos, endosulfan, imidacloprid, benzoate, lufenuron, 

bifenthrin, diafenthiuron, and cypermethrin. Another study analyzed dichlorvos residue levels in vegetables sold 

in Lusaka, Zambia and found that the average dichlorvos residue levels were significantly higher than the 

country's set maximum limits (1 mg kg-1) (Sinyangwe, Mbewe, and Sijumbila, 2016). High pesticide residue 

levels in vegetables imply that those consuming vegetables might be at risk of exposure to unacceptable levels of 

pesticides. In order to ensure that dietary exposures to pesticide residues are within safe limits, the FAO/WHO 

Joint Meeting of Pesticide Residues (JMPR) establishes acceptable daily intakes (ADI) of pesticides (FAO/WHO, 

1997). For instance, the ADI for dimethoate is 0.002 mg kg-1 body weight and that of dichlorvos is 0.004 mg kg-1 

body weight. Malathion which is relatively less toxic has an ADI of 0.3 mg kg-1 body weight.  

Tanzania as a developing country is affected by the problem of malpractices in pesticide application. Evidence 

from surveys conducted in Southern highlands (Iringa), Central (Morogoro) and Northern zones (Arumeru and 

Karatu) confirms this (Lekei, Ngowi, and London, 2014a; Manyilizu & Mdegela, 2015; Ngowi,  Mbise, Ijani, 

London & Ajayi, 2007; Nonga, Mdagela, Sandvik & Skaare, 2011). These studies suggest that vegetables from 

these areas may be highly contaminated with pesticide residues, posing a risk of exposure to pesticide residues. 

However, only limited studies have been done in Tanzania to estimate pesticide residues or exposure in 

vegetables. A study by Ndengario-Ndossi and Cram, (2005) which analysed 33 samples of spinach found that 

72.7% of the samples were contaminated with gamma-hexachlorocyclohexane (g-HCH) (0.08 µg kg-1), 

1,1-dichloro-2,2-bis (p-chlorophenyl) ethylene (pp-DDE) (0.74 µg kg-1), dichlorodiphenyltrichloroethane 

(pp-DDT) (2.15 µg kg-1) and chlorpyrifos (0.02µg kg-1). Mahugija, Khamis & Lugwisha (2017) analyzed 72 

samples of cabbage, onion, and spinach for pesticide residues in which 72.2% of the vegetables were found to be 

contaminated with DDT and its metabolites, endosulfan, and cypermethrin. However, these two studies were 

done in Dar es Salaam, which is not a major vegetable producing area in Tanzania. In this country, vegetables are 

mainly produced in highlands of Morogoro, Iringa, and Arusha (Putter & Koesveld, 2007; Small & Medium 

Enterprise Competitiveness Facility [SCF], 2008), of which Arusha leads in pesticide trading and use (Agenda, 

2006). The reported levels of pesticide residues in the vegetables sampled in markets in Dar es Salaam indicate 

that farmers in major vegetable producing areas such as Arusha might be exposed to high levels of pesticide 

residues. A study in Arumeru district in Arusha analyzed 50 tomato samples for pesticide residues and 12% of 

the samples contained permethrin and chlorpyrifos at mean concentrations of 5.2899 mg kg-1 and 7.5281 mg kg-1, 

respectively (Kariathi, Kassim, & Kimanya, 2016). However, the results from this work are not adequate for 

drawing a conclusion on the dietary exposures through vegetables in Arusha as there are more varieties of 

vegetables consumed in the region. Furthermore, in Tanzania and other developing countries, there is no 

documented information on specific pesticide application practices that can be attributed to pesticide residues. 

The current study assessed pesticide residue exposures through vegetable consumption among vegetable farmers 

in Arusha and determined pesticide application practices attributable to the exposures.  

2. Materials and Methods 

2.1 Study Area 

The study was conducted in one district of the Arusha region. The Arusha district in Arusha region was selected 

due to its high production of vegetables and known pesticide use (Agenda, 2006). The district covers an area of 

1446.692 km2 with a population of 290,041. It is characterized by two agricultural zones (green and low land belt 

zones). The main vegetable producing areas of the Arusha district are in the green belt (highlands), which covers 

the wards of Ilkiding'a, Kimnyaki, Kiranyi, Sambasha, and Olmotonyi. The main vegetable crop cultivated in 

Arusha is cabbage. Due to its high vulnerability to pest infestation, the crop requires frequent application of 

pesticides (Ngowi et al., 2007; United Republic of Tanzania [URT], 2012). 

2.1.1 Study Design and Sample Size 

A cross-sectional study design was adopted to survey pesticide residues, exposure, and application by 76 farmers 
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selected by simple random technique, from seven villages in four wards of the green belt zone of the Arusha 

district. At ward level, village(s) leading in vegetable farming were purposively selected as follows: Ilkiding’a 

(Ilkiding’a), Olimring’aring’a and Olevolous (Kimnyaki), Siwandeti (Kiranyi), Timbolo and Shiboro (Sambasha) 

and Emaoi (Olmotonyi). The wards were purposively identified, with the assistance of district agricultural 

extension officers, based on their potential for vegetable production. 

The sample size was estimated at 90% confidence level, following the formula for calculating sample size for 

cross sectional studies (Charan & Biswas, 2013). Farmers participating in this study were selected using a set of 

criteria. Of the criteria used was the willingness of a farmer to participate in the research during the field survey 

and his/her availability during both the first and the second vegetable consumption surveys. Farmers were 

pre-informed of the objectives of the research and those who consented to participate in the study were recruited. 

2.1.2 Data Collection 

Data collection was done from June to November 2015 (a period that covers dry and rainy seasons) during face 

to face interviews. Semi-structured questionnaires were used in the interviews to obtain information on 

socio-demographic characteristics of the participants, the vegetable cropping system used, pesticide application 

practices and vegetable consumption. Detailed information on vegetable consumption was further collected 

using two-time point 24-hour dietary recall and food frequency questionnaires. Prior to actual data collection, the 

questionnaires were pre-tested in Seela village of Sing’isi ward which is in a similar geographical location and of 

the same socio-cultural characteristics to those of the study area. 

2.2 Sampling and Quantification of Ready-to-eat Vegetables 

Repeated 24 hours dietary recall and food frequency techniques were employed to estimate the amount of 

vegetables consumed by the farmers (Kimanya et al., 2009). Two home visits were conducted, on 

non-consecutive days. The respondent farmer was requested to recall what she/he ate during the past 24 hours. If 

vegetables were among what she/he consumed, she/he was requested to mention the type of vegetables 

consumed. The respondent was also requested to mention the source of the consumed vegetables, whether from 

her/his own farm, a neighbour’s farm or a market. The respondent was further asked to mention the number of 

days in the previous week during which she/he ate the same type of vegetables.  

The respondent was requested to explain how the vegetable was prepared and mention all ingredients in the 

vegetable recipe. She/he was also requested to estimate the amount of ready-to eat-vegetable consumed during 

the previous day, by using a bowl or any other utensil that is usually used for serving vegetables. Grains or 

pulses were used to aid in estimating the vegetable volumes of the bowl by filling into the bowl up to the usual 

level of the share per single serving. The left-over or shared amounts were deducted from the volume served per 

single serving and the actual estimate obtained and noted. The respondent was requested to prepare vegetables 

and provide a duplicate portion (per serving) of the ready-to-eat vegetables as reported in the interview. 

Arrangements were made for those who had no vegetables in their home at the time of survey so that the samples 

were collected on the next day. The sample of the ready-to-eat vegetables was then collected in a glass container 

and kept in a cool box with ice blocks and transported to the Tropical Pesticide Research Institute (TPRI) 

laboratory where its weight was measured using an electronic kitchen scale (CAMRY, model EK3131) and 

recorded before it was stored at -20ᵒC in a freezer until analysed for pesticide residues. The average weight of 

vegetable consumed by each respondent as collected during the two home visits was calculated and recorded.  

Respondents who reported that they had not consumed vegetables on the previous day were requested to 

estimate the amount that they usually consume, and the duplicate sample was measured based on this amount. In 

order to be able to estimate per capita vegetable consumption per kg body weight per day, the weight of the 

respondent was taken using a weighing scale (Ashton Meyers’ model 7757; maximum scale 130 kg) and 

recorded.  

2.3 Analysis of Pesticide Residues in Ready-to-eat Vegetables 

2.3.1 Chemicals and Reagents 

All chemicals and reagents were of analytical grade. Pesticide standards (96% or more purity) were obtained 

from various suppliers, namely Ciba-Geigy Ltd. for profenofos and cypermethrin, Calliope rural Traders, 

Australia for lambda-cyhalothrin, Sapa chemicals industries Ltd Tanzania for malathion, Dow AgroSciences 

France for dimethoate, Baytrade Tanzania Ltd for acephate, Novartis S.A. for dichlorvos, Zeneca Agrochemicals 

for permethrin and Twiga Chemicals Ind. Ltd. Tanzania for heptachlor. Solvents (acetonitrile, acetic acid, and 

acetone), salts (sodium acetate, magnesium sulphate and sodium sulphate ) Primary Secondary Amine (PSA), 

glassware, centrifuge tubes and GC-MS vials were obtained from a local dealer Smacco-Flo General Supplies, 
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Arusha. All glassware was washed with a detergent dissolved in water and rinsed with distilled water followed 

by acetone, before and after each use. Centrifuge tubes and GC-MS vials were non-recyclable.   

2.3.2 Pesticide Residue Extraction and Analysis 

Pesticide extraction and clean-up were done following the QuEChERS Protocol (AOAC, 2007) . Briefly, 

samples were removed from the freezer and brought to room temperature before homogenization. After 

homogenization using a motor and pestle, 15 g of a sample was weighed into a 50 ml polypropylene centrifuge 

tube and extracted using acetonitrile with 1% acetic acid (1:10 v/v ml). 15 ml of the solvent followed by 100 µl 

or 200 µl of 1 mg ml-1 or 0.1 mg ml-1 heptachlor as an internal standard were added to the sample followed by 6g 

of anhydrous magnesium sulphate and 1.5 g sodium acetate. The mixture was then centrifuged in a Universal 

320 centrifuge from Andreas Hettick GmbH Co KG, Tuttlingen Germany, at 536.64 xg for 5 minutes. Three 

millilitres of the supernatant was transferred to a 15 ml polypropylene centrifuge tube containing 600 mg 

anhydrous magnesium sulphate, 150 mg primary secondary amine (PSA) and 150 mg graphitized carbon and 

homogenized on a vortex mixer (Vortex Genie-2 from Bohemia, USA). The mixture was centrifuged at 536.64 

xg for 5 minutes, and 2 ml of the supernatant transferred to the GC-MS vial for analysis of pesticide residues.  

Pesticide residues were analyzed by GC-MS (Agilent 7890A equipped with 7693 auto-sampler coupled to 7000B 

triple quadruple MS system). The column was a fused silica DB35 capillary column 30 mm long with a 0.25 mm 

internal diameter and a 0.25 µm film capable of operating at a range of 50 ᵒC to 360 ᵒC. The temperature was set 

at 50 ᵒC for 1 minute, then raised to 150 ᵒC at a rate of 50 ᵒC per minute for 1 minute, followed by 280 ᵒC at a 

heating rate of 5 ᵒC per minute and held for four minutes. The injector temperature was 250 ᵒC. The carrier gas 

was helium at a flow rate of 1.2 ml min-1 splitless injection. The injection volume was 1µl at a pressure of 43.193 

Psi. The MS ion source temperature was 250 ᵒC operated in full scan mode at a scan range of 50-550 ᵒC atomic 

mass unit.  

2.4 Method Performance and Quality Assurance 

The method performance was validated according to the European Commission guidelines (SANCO, 2014) by 

performing analyses to determine recovery, limit of detection (LOD), limit of quantification (LOQ), precision 

and linearity. Recovery was performed by analyzing, in triplicate, a mixture of standard pesticides in blank 

vegetable samples at levels of 0.0050, 0.0100 and 0.0200 mg kg-1. These levels are below or above the MRLs of 

most of the pesticides approved for use in horticultural crops in Tanzania, and therefore could provide 

information on performance of the method at a range of the concentrations below, at, and above the MRLs of the 

pesticide residue in the vegetables. LOD was determined as the lowest concentration of the pesticide that could 

be detected but not quantifiable. LOQ was determined as the lowest concentration that could be quantified at 

acceptable accuracy and linearity. LOD and LOQ were determined as 1:3 and 1:10 signal to noise ratio, 

respectively. Precision was determined by calculating relative standard deviation (rsd) of the lowest 

concentration that could show linearity (n=5) in blank vegetable sample, whereas linearity was assessed by 

analyzing a mixture of pesticide standards at 0.005, 0.0075, 0.01, 0.0125, 0.0150, 0.0175 and 0.0200 mg kg-1. 

The routine quality control was done by adding heptachlor as an internal standard in each analytical sample and 

calculated percentage recovery. Blank reagents were analyzed at the beginning and end of each batch to check 

for interference from chemicals and equipment. The concentration of pesticides analyzed was quantified from 

their corresponding calibration curves. 

2.5 Estimating Dietary Pesticide Residue Exposure 

Dietary exposure [mg kg-1 body weight (bw) per day] of a pesticide residue in an adult vegetable farmer was 

determined following the deterministic approach as guided by WHO and FAO (FAO/WHO, 2009). The exposure 

was estimated by multiplying concentration of the pesticide residue (mg kg-1) in the vegetable sample (from the 

farmer's household) with the estimated amount of vegetable consumption by the individual (kg day-1) and 

dividing by bw (kg) of the individual as shown in equation 1 

)(

)/()/(

kgbw

kgmgxCdaykgQ
EDI                             (1) 

Where EDI is the estimated daily dietary intake of the pesticide residue in milligram per kilogram body weight 

of the consumer, Q is the quantity of vegetable consumed per day (kg per day) and C is the concentration of the 

residue in the vegetable in mg kg-1.  
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2.5.1 Estimating the Risk of Unacceptable Exposures 

Risk of unacceptable exposure to a particular pesticide residue was determined by calculating the hazard quotient 

of such particular pesticide using the equation described by JMPR (2005) and USEPA (2005) (equation 2): 

ADI

EDI
HQ                                        (2) 

Where: HQ is the hazard quotient, EDI is the estimated daily intake (mg kg-1 bw day-1) of a particular pesticide 

and ADI is the corresponding acceptable daily intake (mg kg-1 bw day-1) for the pesticide. 

For multiple exposures to pesticide residues falling under the same chemical group (same mechanism of toxicity) 

such as organophosphates or pyrethroids, the risk of exposure was calculated by adding the HQs of pesticide 

residues of the same chemical group to obtain the hazard index, using equation 3 (EFSA, 2008; FAO/WHO, 

2005; USEPA, 2005). 

ADIn

EDIn

ADIb

EDIb

ADIa

EDIa
HI ...                               (3) 

Where: HI is the hazard index, a, b…n represent different pesticides of the same mechanism of toxicity, EDI is 

the estimated daily intake of each pesticide and ADI is the corresponding acceptable daily intake. HQ or HI ≤ 1 

indicates that adverse health effect(s) are not likely to occur and thus the amount of pesticide residue consumed 

can be considered tolerable. HQ or HI > 1 denotes that the exposure is greater than ADI and that there might be a 

risk from the residue consumed, a situation which calls for a risk management action to be taken (FAO/WHO, 

2005; United States Environmental Protection Agency [USEPA], 2005). Exposure in farmers who consumed 

vegetables with undetectable pesticide residues was performed by assigning a default value of half the limit of 

detection for each pesticide (middle bound scenario), according to the US-EPA’s Office of Pesticide Programs 

(USEPA, 2000). 

2.6 Data Analysis 

Data entry and clean-up for pesticide application practices were done using Epidata version 3.1, a free 

downloadable software owned by WHO which was obtained from The Tanzania National Institute for Medical 

Research (NIMR). The data were then exported to Microsoft Excel 2007 and SPSS version 21 for analysis. Data 

for pesticide residue content, vegetable consumption and body weight were used to calculate and estimate daily 

intakes and risk of exposure using equations ‘1’ to ‘3’ of this section. Descriptive statistics (frequency and 

percentage) were used to interpret information captured from questionnaires. Logistic regression was used to 

analyze the association between level of education, the source of vegetables (between home-grown and market 

or neighbour sourced), or pesticide application practices and exposures of pesticide residues to farmers. The 

significance level of association was set at p≤0.05. 

3. Results and Discussion 

3.1 Method Performance and Quality Assurance 

Average recoveries of all pesticide standards in sample matrices ranged from 79% to 112% indicating that the 

results obtained are reproducible. Limits of detection ranged from 0.001 to 0.004 mg kg-1 whereas limits of 

quantification ranged from 0.002 to 0.015 mg kg-1 which shows that the sensitivity of the method is good enough 

for detection and quantification of pesticide residues in the vegetable samples below the set MRLs for most of 

the pesticides. The percent rsd ranged from 1.02% to 18.6 % and coefficient of correlation was between 0.955 

and 0.999 (Table1) showing good repeatability of the method. Recovery for heptachlor (added to each analytical 

sample to check for the on-going performance of the method) ranged from 70% to 132% with an average of 95%. 

No corrections made to the concentration of residues in the samples as the recoveries were within the 

recommended range. It is recommended that for on-going method performance verification, recovery should 

range from 60%-140% (SANCO, 2014). No pesticide residues detected in the blank chemical reagents which 

indicate that there was good control of interferences from chemicals and instruments. These results indicate that 

the method was reliable for analysis of the pesticide residues of interest in the ready-to-eat leafy vegetables. For 

a method to be reliable, initial method validation recovery should be between 70 and 120%, percent rsd not 

higher than 20% and coefficient of correlation equal to or higher than 0.95 (Kofi Akomeah, Akuamoa, Frimpong 

& Buah-kwofie, 2016; SANCO, 2014). 
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Table 1. Results of QuEChERS multi-residues method validation in leafy vegetables 

Analyte LOD (mg kg-1) LOQ (mg kg-1) r2 Mean recovery (%) rsd % (n=5) 

Permethrin 0.001 0.005 0.997 88.01 13.9 

Cypermethrin 0.002 0.006 0.999 92.52 9.60 

Cyhalothrin  0.001 0.005 0.992 112.3 13.6 

Dimethoate  0.004 0.015 0.955 89.98 9.93 

Acephate 0.003 0.009 0.960 78.86 18.6 

Profenofos  0.004 0.010 0.992 91.12 1.02 

Malathion 0.001 0.002 0.995 83.15 12.2 

Dichlorvos 0.004 0.010 0.995 100.2 1.70 

Heptachlor 0.001 0.030 0.999 102.0 9.80 

 

3.2 Socio-demographic Characteristics of the Participants 

The results on socio-demographic characteristics of the surveyed vegetable farmers in Arusha district are as 

indicated in Table 2. The socio-demographic characteristics recorded were gender, age and level of education. 

Most of the respondents in this study, (52 representing 74.3% of participants), were male aged from 25 to 65 

years with a mean age of 42.3±13.6 years. It was reported that pesticide application in Arusha is done by men. In 

cases where farmers are women, they hired men to apply pesticides. As a consequence and considering exposure 

through inhalation or skin, the risks of exposure to pesticides for men can be higher than in women. The gender 

distribution is congruent to that made previously in the Manyara basin in Tanzania by Nonga et al. (2011), who 

reported 75% of farmers being male with a mean age of 47±14 years. In a similar work done in Muheza, 

Arumeru, Singida and Kongwa, it was found that 85% of all farmers involved in vegetable cultivation were men 

(Weinberger & Msuya, 2004). Studies done in other developing countries also report similar results (Amera & 

Abate, 2008; Banjo et al., 2010).  

More than half (52.9%) of the vegetable farmers in Arusha district had a formal education of up to primary level. 

About one-fourth of the respondents had no formal education, and less than a quarter had secondary and college 

education. Illiteracy of farmers has been linked to poor pesticide application practices by farmers in previous 

surveys (Mengistie, Mol & Oosterveer, 2015; Nonga et al., 2011). 

Table 2. Socio-demographic characteristics of vegetable farmers (n=70) 

Variable Category Percentage (%) 

Sex Male 74.3 

 

Female 25.7 

Age 15-35 37.1 

 

36-45 21.4 

 

46 and above 41.5 

Level of education No formal education 25.7 

 

Primary school 52.9 

 

Secondary and higher level 21.4 

 

3.3 Pesticide Residue Contents in Ready-to-eat Vegetables 

Ready-to-eat vegetable samples were available from 70 out of the 76 farmers as six farmers were not willing to 

provide samples. The seventy (70) ready-to-eat vegetable samples were analyzed for pesticide residues. They 

included 31 African nightshade (44.3%), 15 kale (21.4%), 10 cabbage (14.3%), three spinach (4.3 %), two 

Ethiopian mustard (2.9%), one Chinese cabbage (1.4%), two Amaranthus spp. (2.9%) and six vegetables 

prepared with combinations of nightshade with kale (4.3%), nightshade with kale and spinach (1.4%), 

nightshade with Ethiopian mustard (1.4%), or kale with spinach (1.4%). Overall, 40% of all the 70 samples 

contained detectable levels of pesticide residues. Individually, 60.0% of cabbage, 53.3% of kale, 35.5% of 

nightshade, 33.3% of spinach and 33.3% of the mixed vegetables contained pesticide residues. No pesticide was 

detected in Amaranthus spp, Chinese cabbage, and Ethiopian mustard.  

Among the 70 samples, 58 (83%) were obtained from respondents’ own grown vegetables whereas the 

remaining 12 (17%) samples were from vegetables purchased from outside homes as follows: three and two 

nightshade samples, respectively, from neighbours and market, two kale samples (one from market and the other 

from a neighbour), two Amaranthus spp. samples (both from neighbours), kale and nightshade and kale and 
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spinach for two mixed vegetable samples from the market and a neighbour, respectively. All the cabbage samples 

were obtained from respondents’ own grown vegetables. Of the 12 samples from market or neighbours only two 

(17%) contained detectable levels of pesticide residues whereas among the 58 samples from farmers own farm 

vegetables, 26 (45%) contained detectable levels of residues. The farmers who obtained their vegetables from 

their neighbours disclosed that they preferred neighbours’ vegetables because were grown without pesticides. 

This might be the reason why pesticide residues were not detectable in vegetables obtained from neighbours, 

except one nightshade sample which contained permethrin. It is also possible that the market vegetables had 

taken longer time, from harvest to consumption, as compared to home-grown vegetables until residues were 

measured. The longer time could allow reduction of pesticide residues to undetectable levels. This is concurrent 

with the statement of European Food Safety Authority that depending on the point along the distribution chain 

where vegetables are obtained, pesticide residues may have declined to levels not detectable at the time of 

consumption (EFSA, 2012).  

There are published reports of higher prevalence of pesticide residues in vegetables than found in the current 

study. For instance, in Chile, pesticide analysis was done in 118 leafy vegetable samples and it was found that 72% 

of spinach samples contained detectable levels of pesticide residues (Elgueta, Moyano, Sepulveda & Quiroz, 

2017). In Algeria, 120 vegetable samples were analyzed and pesticide residues, detected in 57.5% of the samples 

(Mebdoua, et al., 2017). Another study which analyzed pesticide residues in parsley, lettuce and spinach in 

Turkey found that all of the samples contained detectable levels for two or more pesticide residues, including 

dichlorvos which was quantified in every vegetable at a prevalence of 100% (Esturk, 2014). The detected 

pesticide residues in the current study were all above EU-MRL. Other studies also detected pesticide residues in 

vegetables at levels above MRL. For instance, the pesticide residues quantified by Esturk, 2014 were at levels 

above MRL in 28%, 20% and 40% of parsley, lettuce and spinach, respectively. High prevalence of pesticide 

residues at levels above MRL in ready-to-eat vegetables reflects the indiscriminate use and misuse of pesticides 

as reported in the literature (Ngowi et al., 2007; Nonga et al, 2011) and observed in the current study. 

On the other hand, two studies in India found the lower prevalence of pesticide residues compared to the levels 

found in the current study. In those studies, 10% of 50 vegetable samples from Karnataka and 34% of 250 

vegetable samples from the Andaman Islands contained detectable levels of pesticide residues of which all of the 

positive samples (10%) from Karnataka and 15.3% contained pesticide residues above MRL (Pujeri, Pujar, 

Hiremath, Pujari & Yadawe, 2015; Swarman & Velmurugan, 2012).  

The detected pesticide residues were insecticides in the groups of organophosphates and pyrethroids which were, 

in 31.4% and 17.1% of the analysed vegetable samples, respectively. Organophosphate pesticides detected (with 

their prevalence in brackets) were dimethoate (14.3%), acephate (12.9%), profenofos (8.57%), malathion (2.86%) 

and dichlorvos (2.86%) and the pyrethroid pesticides were permethrin (17.1%), cypermethrin (1.43%) and 

lambda-cyhalothrin (1.43%). Representative chromatograms of the detected pesticides are presented in Figure 1 

and 2. Range and mean concentration of pesticide residues in the ready-to-eat vegetables are presented in Table 

3.  

 

Figure 1. A chromatogram of Profenofos in kale 
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Figure 2. A chromatogram of Lambda cyhalothrin in kale 

 

Organochlorine pesticides were not detected in the current study which is a good indication that there is a shift 

from the use of organochlorine pesticides to pyrethroid and organophosphorus pesticides and therefore a reduced 

risk of negative health effects associated with exposure to organochlorines. Organochlorines were detected in the 

studies done in Dar es Salaam (Mahugija, Khamis, & Lugwisha, 2017; Ndengerio-Ndossi & Cram, 2005). The 

organochlorine pesticides were found in foods as reported in 2005 despite the fact that they had been banned 

from use in agriculture in Tanzania since 1997 due to their long persistence in the environment and 

bioaccumulation properties (URT, 2005). 

Table 3. Occurrence of pesticide residues in ready-to-eat vegetables (n=70) 

Pesticide group  

(prevalence, %) 

Pesticide Prevalence (%) Range (mg kg-1) Mean±SD1 (mg kg-1) 

Organophosphates (31.4%) Dimethoate 14.3 2.88-15.4 8.56±4.52 

 Acephate 12.9 0.33-12.4 2.90±3.81 

 Profenofos 8.57 6.53-16.6 8.44±3.98 

 Dichlorvos 2.86 8.60-33.0 20.8±17.3 

 Malathion 2.86 4.63-6.31 5.47±1.19 

Pyrethroids (17.1%) Permethrin 17.1 1.23-8.18 2.95±1.92 

 Lambda cyhalothrin 1.43 <0.05-16.2 16.2±0.05 

 Cypermethrin 1.43 <0.06-2.34 2.34±0.06 
1Standard deviation 

 

Distribution, range and mean concentration of pesticides in individual vegetables are presented in Table 4. The 

highest mean concentration for permethrin, dimethoate, and lambda-cyhalothrin (3.44±0.93 mg kg-1, 10.8±6.90 

mg kg-1, and 16.2±0.05 mg kg -1), respectively, were found in kale samples whereas that of cypermethrin, 

acephate, malathion, and dichlorvos (2.34±0.06 mg kg-1, 4.19±5.55 mg kg-1, 5.47±1.19 mg kg-1 and 

33.0±0.01mg kg-1), respectively, were found in nightshade. The highest mean concentration for profenofos 

(16.4±0.01 mg kg-1) was found in mixed vegetables. 

The lowest mean concentrations of permethrin, cypermethrin and malathion (1.7±0.05 mg kg-1, 2.34±0.06 mg 

kg-1, 5.47±1.19 mg kg-1), respectively, were found in nightshade. The lowest concentration for dimethoate 

(6.48±2.68 mg kg-1) was estimated in cabbage whereas that of acephate (0.36 mg kg-1), was found in mixed 

vegetables. The lowest mean concentration for dichlorvos and profenofos were quantified in kale (8.60±0.01 mg 

kg-1) and nightshade (6.64±0.01 mg kg-1), respectively. It should be noted that lambda cyhalothrin and 

cypermethrin were detected in one sample only. For the samples in which pesticide residues were detected, the 

concentrations were above the respective EU MRLs (Table 4). Quantification of pesticide residues in 

ready-to-eat-vegetables at levels higher than MRLs indicates poor adherence to good agricultural practices by 

vegetable farmers.  
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Table 4. Variation of pesticide residues in individual types of ready-to-eat vegetables 

Vegetable (n) Source (n) Group Prevalence 

(%) 

Pesticide MRL- 

(EU) 

Range 

(mg kg-1) 

Mean±SD1  

(mg kg-1) 

f2>LoD (%) f3>MRL (%) 

Cabbage(10) own farm(10) Organophosphate 6(60) Dimethoate 0.05 4.58-8.37 6.48±2.68 (2)20.0 (2)20.0 

   Profenofos 0.01 <0.01-7.07 7.07±0.01 (1)10.0 (1)10.0 

   Acephate 0.01 <0.01-1.97 1.97±0.01 (1)10.0 (1)10.0 

  Pyrethroids  Permethrin 0.05 1.44-3.91 2.37±1.34 (3)30.0 (3)30.0 

Kale(15) own farm(13) Organophosphate 8(53) Dimethoate 0.02 2.88-15.4 10.8±6.90 (3)20.0 (3)20.0 

   Acephate 0.01 2.04-4.60 3.32±1.81 (2)13.3 (2)13.3 

   Profenofos 0.01 <0.01-7.24 7.24±0.01 (1)6.70 (1)6.67 

   Dichlorvos 0.01 <0.01-8.60 8.60±0.01 (1)6.67 (1)6.67 

  Pyrethroids  Permethrin 0.05 2.62-4.45 3.44±0.93 (3)20.0 (3)20.0 

   Cyhalothrin 0.05 <0.05-16.2 16.2±0.05 (1)6.67 (1)6.67 

 purchased (2) Organophosphate  Profenofos 0.01 <0.01-6.53 6.53±0.04 (1)6.67 (1)6.67 

Nightshade(31) own farm(26) Organophosphate 11(35.5) Dimethoate 0.02 4.25-12.0 8.05±3.74 (5)16.1 (5)16.1 

   Acephate 0.01 0.33-12.4 4.19±5.55 (4)12.9 (4)12.9 

   Malathion 0.02 4.63-6.31 5.47±1.19 (2)6.45 (2)6.45 

   Profenofos 0.01 <0.01-6.64 6.64±0.01 (1)3.22 (1)3.22 

   Dichlorvos 0.01 <0.01-33.0 33.0±0.01 (1)3.22 (1)3.22 

  Pyrethroid  Permethrin 0.05 1.23-8.18 3.40±3.20 (4)12.9 (4)12.9 

 purchased (5) Pyrethroid  cypermethrin 0.05 <0.06-2.34 2.34±0.06 (1)3.22 (1)3.2 

    Permethrin 0.05 <0.05-1.70 1.70±0.05 (1)3.22 (1)3.2 

Mixed (6) own farm (4) Organophosphate 2(33.3) Profenofos 0.01 <0.01-16.4 16.4±0.01 (1)16.7 (1)16.7 

    Acephate 0.01 0.30-0.42 0.36±0.01 (2)33.3 (2)33.3 

  Pyrethroid  Permethrin 0.05 <0.05-2.60 2.60±0.05 (1)16.7 (1)16.7 

Spinach (3) own farm (3) Organophosphate 1(33.3) Profenofos 0.01 <0.01-6.63 6.67±0.01 (1)33.3 (1)33.3 

1Standard deviation; 2detection frequency of the pesticide in the particular vegetable; 3Frequency of detected pesticides that were above MRL; 

Source (MRLs): (European Comission, 2017) 

 

Multiple pesticide residues were detected in 14.9% of the 70 samples. This prevalence is equivalent to 35.7% of 

the 28 samples which were positive for pesticide residues. Among the 31 nightshade and six mixed vegetable 

samples analyzed, 16.13% and 16.67%, respectively, had multiple residues whereas among 15 kale samples 20% 

had multiple residues. Samples of cabbage had the lowest occurrence of multiple residues (one out of six (10%)) 

(Table 5). Multiple occurrences of pesticide residues in vegetables have also been reported in literature: a study 

in Khazastan which analyzed 82 samples of tomato and cucumber found that 30% of the samples contained two 

to nine multiple pesticide residues in one sample (Lozowicka et al., 2015). Presence of multiple pesticide 

residues in one sample indicates that consumers are at higher risk of exposure and synergistic negative health 

effects of pesticides. 

 

Table 5. Co-occurrence of multiple pesticide residues in ready-to-eat vegetables 

Vegetable Pesticide residues combination Prevalence (%) 

Kale Acephate, permethrin 20.00 

 Dimethoate, permethrin, cyhalothrin 

 Profenofos, dichlorvos,  

Overall prevalence in kale  

Nightshade Dimethoate, dichlorvos, malathion 16.13 

 Acephate, dimethoate, permethrin 

 Acephate, dimethoate 

 Dimethoate, malathion 

 Permethrin, cypermethrin 

Overall prevalence in 

nightshade  

 

Nightshade with kale  

and spinach mix 

Acephate, profenofos, permethrin 16.67 

Cabbage Dimethoate, permethrin 10.00 

 

The quantified concentrations of most pesticide residues in the current study were higher than those found in 

other studies. Elgueta et al., 2017 quantified low pesticide residue concentrations in vegetables whereby 
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lambda-cyhalothrin cypermethrin and permethrin were quantified at a range of 0.029-1.000 mg kg-1, 0.00-1.61 

mg kg-1 and 0.00-1.45 mg kg-1, respectively, in chard, lettuce, and spinach. However, they quantified 

methamidophos (29.47 mg kg-1) and chlorpyrifos (6.86 mg kg-1) at higher concentrations than quantified in the 

current study. Also, a study in the Andaman Islands in India quantified profenofos, dimethoate and acephate in 

vegetables at a lower concentrations than that found in the current study whereby profenofos concentrations in 

the study done in the Andaman Islands ranged from 0.023-1.696 mg kg-1, acephate 0.083-0.509 mg kg-1 and 

dimethoate at 0.345 mg kg-1 (Swarman & Velmurugan, 2012). However, a study in Egypt found a concentration 

of profenofos in green parsley (7.2 mg kg-1) (Gad-Alla, Lontfy, Shendy & Ahmed, 2015) similar to that of the 

current study (8.44 mg kg-1). In Ghana, lower concentrations of 0.120-0.143 mg kg-1 as compared to 4.6-6.3 mg 

kg-1 in the current study were found in vegetables. However, the prevalence of samples quantified with pesticide 

residues was higher in the Ghanian study than in this one (Darko & Akoto, 2008). In Turkey, analysis of 

pesticide residues in 120 samples of parsley, lettuce and spinach found dichlorvos at concentrations ranging from 

0.002-0.071 mg kg-1, levels that are lower than the 8.6-33.0 mg kg-1 levels found in this study. In Zambia, 

Sinyangwe et al. (2016) analysed dichlorvos residues in 14 lettuce, 15 cabbage and 9 rape samples and, by 

summing up the prevalence of the residues detected below and above MRL, found that 71%, 93% and 100% of 

lettuce, cabbage and rape plant samples, respectively, contained mean dichlorvos concentrations of 5.23 mg kg-1, 

6.35 mgkg-1 and 398.28 mg kg-1. The reported overall prevalence (89%) is much higher than that obtained in the 

current study (2.86%) for dichlorvos. Also, the concentration of dichlorvos residues in the rape plant reported in 

the same study is considerably higher than that found in the current study (33 mg kg-1). 

WHO recommends classifying pesticides by acute risk to health whereby class Ia refers to pesticides that are 

extremely hazardous, class Ib are highly hazardous, class II are moderately hazardous, class III are slightly 

hazardous and class U are unlikely to cause acute health hazard (International Programme on Chemical Safety 

[IPCS], 2010). The pesticides residues found in the ready-to-eat vegetables analysed in this study are in class Ib, 

II and III. Most pesticides were found under Class II insecticides with exception of dichlorvos which is classified 

as class Ib and malathion classified as class III insecticides. These results indicate that vegetable farmers are 

shifting from using more to less hazardous pesticides and therefore exposed to reduced health effects. The class 

Ib pesticides are registered under restriction and therefore less accessible to vegetable farmers.  

3.3.1 Presence of Unauthorized Pesticides in Ready-to-Eat Vegetables 

In Tanzania, dichlorvos is restricted for the control of the larger grain borer in maize grain storage facilities. 

Pesticides registered for restricted use are those that are highly hazardous and intended for specific use or are 

technical materials for formulation purposes and must be used by specifically trained personnel or under close 

supervision of specifically trained personnel (URT, 2011). Dichlorvos, although less frequently detected (2.86%) 

as compared to other organophosphate pesticides, was detected at the highest mean concentration of 20.8 mg kg-1 

with a range of 8.6-33.0 mg kg-1 (Table 4). Detection of dichlorvos in ready-to-eat vegetables indicates misuse of 

pesticides. It is recommended to provide continuous training to vegetable farmers on pesticide application, and 

undertake regular monitoring of pesticide residues in vegetables to ensure that restricted pesticides such as 

dichlorvos are not inappropriately used and to control pesticide residues (in general) to acceptable levels in 

vegetables. 

3.4 Risk of Exposure above Acceptable Daily Intakes 

3.4.1 Type, Frequency and Quantity of Consumed Vegetables 

The vegetable consumers in Arusha district consume vegetables as side dishes to main dishes that include stiff 

porridge, rice and banana. Among the mainly consumed leafy vegetables, African nightshade was the one most 

consumed. It was consumed by 43% of the respondents. For the vegetables used as a minor ingredient in the 

recipe, onions and tomatoes were consumed by most respondents (76.3 and 70.4, respectively). The average 

daily vegetable consumption at the time of the survey was 119 g per person. The consumption rates ranged from 

14 -302 g per person per day. In Sub Saharan Africa, per capita daily vegetable consumptions ranging from13 g 

(Malawi), through 70 g (Ethiopia) to 84 g (Guinea) and higher quantities ranging from 126 g (Rwanda) through 

137 g (Ghana) and 142 g (Uganda) to 242 g (in Kenya) are reported (Minot and Smith, 2004 ). Note that the 

values in the review work were reported consumption per year but were converted into consumption per day in 

the current work to enable comparison. With the exemption of Kenya, average consumption of vegetables in 

developing countries is a half of the recommended amount of 200 g per person per day (Smith & Eyzaguirre, 

2007). It is recommended to consume at least 200 g of vegetables per day (Agudo & Joint FAO, 2005; Keding, 

Weinberger, Swai, & Mndiga, 2007). When considering this recommendation, only 18.6% of vegetable farmers 

in the Arusha district met the required daily vegetable consumption. If the farmers in Arusha consumed 
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vegetables at the recommended intake of 200g per person per day the risk of unacceptable pesticide intakes 

would increase considerably. Assuming a vegetable farmer with a body weight of 67 kg (the average body 

weight of farmers in Arusha district), consumes 200g of vegetables, every day, containing pesticides at the mean 

concentrations determined in this study, mean exposures in mg kg-1 bwd-1 for this farmer, with the pesticide in 

bracket, would be 0.0036 (dimethoate), 0.0018 (dichlorvos), 0.0022 (profenofos) and 0.0011 (acephate), 0.0005 

(malathion) for organophosphate pesticides. For pyrethroids, the mean exposures would be 0.0011 (permethrin), 

0.0001 (cypermethrin) and 0.007 for lambda-cyhalothrin. These would lead to unacceptable hazard quotients of 

1.829 for dimethoate, and a hazard index of 2.385 for organophosphates. The hazard index for organophosphates 

is more than twofold the hazard index of 1.19 determined in this study with the normal vegetable consumption 

pattern. This indicates that promotion for increased vegetable consumption should go hand in hand with training 

and awareness raising to vegetable farmers on the appropriate use of pesticides and continuous monitoring and 

control of pesticide residues in vegetables. 

3.4.2 Risk of Chronic Pesticide Exposure 

Overall assessment of chronic exposure to pesticide residues through vegetable consumption indicates potential 

health risks to vegetable farmers. Among the 70 farmers that participated in this study, 18.6% were at potential 

health risks of unacceptable exposure to pesticide residues. Exposure levels and hazard indices of 

organophosphate and pyrethroid pesticides to vegetable farmers in Arusha district are presented in Tables 6a and 

b and 7a and b, respectively.  

The vegetable farmers were at higher health risk of unacceptable exposure of organophosphate pesticides. The 

hazard quotient of 7.5 was determined for dimethoate when considering positive detects only (Table 6a), and 

even after including non-detects assigned with the respective half limit of detection (0.5 LOD) in the mean 

exposure estimation was still above one (1.044) (Table 6b). The mean exposure level for this chemical was 0.015 

mg kg-1 bwd-1 when considering positive detects only, and 0.0021 when 0.5 LOD of this residue was included in 

the exposure estimation. Both values were above the ADI of dimethoate (0.002 mg kg-1 bwd-1). The HQ of 

dimethoate was above one for kale (2.57 and 12.8 with and without 0.5 LOD included in the exposure estimation, 

respectively) whereas in cabbage it was 0.928 and 4.75 with and without the 0.5 LOD included in the estimation, 

respectively. Mean exposure for dichlorvos was 0.011 mg kg-1 bwd-1which was also above its corresponding ADI 

(0.004 mg kg-1bwd-1) yielding HQ of 2.75. After including 0.5 LOD in the exposure estimation for this residue, 

the mean exposure was reduced to 0.0003 and HQ of 0.075 was estimated, indicating a minimum potential 

health risk.  

Mean exposure for other organophosphate (acephate, profenofos, and malathion) and pyrethroid (permethrin, 

cypermethrin, and lambda cyhalothrin) pesticide residues quantified in this study were below one in both 

scenarios indicating a minimum health risk. These results indicate that vegetable farmers in Arusha district are at 

risk of intolerable health effects associated with exposure to organophosphate pesticides and that the risk is 

mainly contributed to by intake of dimethoate through consumption of kale. Risk of cumulative exposures to the 

organophosphate pesticide residues is above one even after including the 0.5 LOD of the non-detects in the 

exposure estimation as shown by the Hazard index (HI) of 11 for positives only (Table 6a) and 1.19 after 

including the 0.5 LOD of the respective residues in the exposure (Table 8). The HI for pyrethroid pesticide 

residues was found to be below one in both scenarios (0.029 and 0.9 with and without the 0.5 LOD, included in 

the estimation, respectively) (Table 7a and 7b). These results show that the risk of exposure to the pesticide 

residues is overestimated when values for non-detects are not included in estimation of the risk. However, even 

after including these values it shows that there remains a risk of intolerable health effects and the risk is 

aggravated through multiple exposures to the organophosphate pesticide residues. 

A study in Egypt reports cumulative hazard indices for organophosphates higher than those of pyrethroids but 

both of them below one (Gad-Alla et al., 2015; Thabet, Shendy, & Gadalla, 2016). Usually, in Arusha district, 

vegetables are prepared for consumption for the entire family including children and pregnant women who are 

reported to be more vulnerable to health risks associated with exposure to pesticide residues than other groups of 

the population (FAO/WHO, 2009). Exposure to organophosphate pesticides during pregnancy has been linked 

with autism spectrum disorders (ASD) characterized by problems in socio-communication and restricted 

repetitive behaviours and pregnancy miscarriage. Children are more adversely exposed to the pesticide residues 

due to their small body size and therefore might be at a higher risk than estimated in this study for adults 

(Arbuckle, & Lin, 2001; Eskenazi et al., 2004; Bouchard, et al., 2011). Furthermore, dietary exposure to 

pesticides is not limited to vegetables. The farmers may also be exposed to pesticides from other food types, 

water and air.  
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Table 6a. Risk of dietary pesticides exposures above ADIs for organophosphate (positives only) 

Pesticide (Prevalence ) Code  Vegetable Concentration  

(mg kg-1) 

EDI  

(mg kg bw-1d-1) 

ADI  

(mg kg-1 bw) 

HQ/HI 

Dimethoate (14.3%) B26 Nightshade 4.25 0.011 0.002 5.500 

 B41 Nightshade 12.0 0.013 0.002 6.500 

 B1 Nightshade 11.7 0.005 0.002 2.500 

 B74 Nightshade 7.75 0.016 0.002 8.000 

 B4 Nightshade 4.54 0.005 0.002 2.500 

  Nightshade (average)  0.010  5.000  

 B71 Kale 15.4 0.052 0.002 26.00 

 B36 Kale 14.1 0.023 0.002 11.50 

 B5 Kale 2.88 0.002 0.002 1.000 

  Kale (average)  0.026  12.80 

 B62 Cabbage 4.58 0.003 0.002 1.500 

 B6 Cabbage 8.37 0.016 0.002 8.000 

  Cabbage (average)  0.010  4.750 

    0.015  7.500 

Dichlorvos (2.86%) B73 Kale 8.60 0.007 0.004 1.750 

 B1 Nightshade 33.0 0.014 0.004 3.500 

    0.011  2.750 

Acephate (12.9%) B15 Spinach, nightshade 0.30 0.001 0.030 0.033 

 B33 Kale, nightshade 0.42 0.001 0.030 0.033 

 B54 Nightshade 12.4 0.012 0.030 0.400 

 B34 Nightshade 2.03 0.002 0.030 0.067 

 B41 Nightshade 1.97 0.002 0.030 0.067 

 B74 Nightshade 0.33 0.001 0.030 0.033 

  Nightshade (average)  0.004  0.140  

 B39 Kale 4.60 0.003 0.030 0.100 

 B44 Kale 2.04 0.005 0.030 0.167 

  Kale (average)  0.004  0.130 

 B49 Cabbage 1.97 0.005 0.030 0.167 

    0.004  0.130 

Malathion (2.8%) B1 Nightshade 6.31 0.000 0.300 0.001 

 B4 Nightshade 4.63 0.005 0.300 0.017 

  Nightshade (average)  0.003  0.009 

       

Profenofos (8.6%) B15 Spinach, nightshade 16.6 0.069 0.03 2.300 

 B51 Nightshade 6.64 0.011 0.03 0.367 

 B46 Kale 6.53 0.015 0.03 0.500 

 B73 Kale 7.24 0.004 0.03 0.133 

  Kale (average)  0.010  0.320  

 B61 Cabbage 7.07 0.001 0.03 0.033 

 100 Spinach 6.63 0.015 0.03 0.500 

    0.019  0.630 

      11.00* 

Note: 1 mg kgbw-1d-1 is mg per kg body weight per day; Source (ADI): (FAO & WHO, 2015); The bolded values in the column of EDI are 

the mean exposure values for the particular pesticide in the vegetables; The bolded values in the HQ/HI column are the HQ values for 

particular pesticide in the vegetables *The HI for the organophosphates   

 

Table 6b. Risk of dietary pesticides exposures above ADIs for organophosphate (including non-detects assigned 

with 0.5 LOD); EDIs in (mg kg bw-1d-1) 

n Vegetable Acephate Dimethoate Profenofos 

  Mean EDI HQ Mean EDI HQ Mean EDI HQ 

31 African nightshade 0.001 0.018 0.002 0.813 0.000 0.011 

15 Kale 0.001 0.018 0.005 2.570 0.001 0.046 

10 Cabbage 0.000 0.012 0.002 0.928 0.000 0.005 

3 Spinach 0.000 0.000 0.000 0.002 0.005 0.166 

2 Ethiopian mustard 0.000 0.000 0.000 0.003 0.000 0.000 

2 Amaranthus spp 0.000 0.000 0.000 0.001 0.000 0.000 

1 Chinese 0.000 0.000 0.000 0.005 0.000 0.000 

6 Mixed vegetables 0.000 0.011 0.000 0.002 0.011 0.382 
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Table 6b. Risk of dietary pesticides exposures above ADIs for organophosphate (including non-detects assigned 

with 0.5LOD); EDIs in (mg kg bw-1d-1)1 cont… 

n Vegetable Dichlorvos Malathion 

  Mean EDI HQ Mean EDI HQ 

31 African nightshade 0.000 0.112 0.000 0.001 

15 Kale 0.001 0.116 0.000 0.000 

10 Cabbage 0.000 0.001 0.000 0.000 

3 Spinach 0.000 0.001 0.000 0.000 

2 Ethiopian mustard 0.000 0.001 0.000 0.000 

2 Amaranthus spp 0.000 0.001 0.000 0.000 

1 Chinese 0.000 0.002 0.000 0.000 

6 Mixed vegetables 0.000 0.001 0.000 0.000 

 

Table 7a. Risk of dietary pyrethroid pesticide exposures below ADIs (positives only) 

Pesticide (Prevalence) Code  Vegetable Concentration  

mg kg-1 

EDI  

mg kgbw-1d-1 

ADI 

mg kgbw-1d-1 

HQ/HI 

Lambda cyhalothrin (1.4%) B5 Kale 16.2 0.012 0.02 0.600 

Cypermethrin (1.4%) B10 Nightshade 2.34 0.003 0.02 0.150 

Permethrin (17.1%) B15 Spinach, nightshade 2.60 0.011 0.05 0.220 

 B4 Nightshade 2.10 0.002 0.05 0.040 

 B10 Nightshade  1.70 0.002 0.05 0.040 

 B29 Nightshade 2.17 0.002 0.05 0.040 

 B28 Nightshade 1.23 0.002 0.05 0.040 

 B41 Nightshade 8.18 0.009 0.05 0.180 

  Nightshade (average)  0.003  0.068 

 B11 Cabbage 3.91 0.013 0.05 0.260 

 B62 Cabbage 1.76 0.001 0.05 0.020 

 B3 Cabbage 1.45 0.002 0.05 0.040 

  Cabbage (average)  0.005  0.110  

 B45 Kale 4.45 0.010 0.05 0.200 

 B5 Kale 3.27 0.002 0.05 0.040 

  B44 Kale 2.62 0.007 0.05 0.140 

  Kale (average)  0.006  0.130 

    0.005  0.100 

      0.900*  

Note: 1 mg kgbw-1d-1 is mg per kg body weight per day; Source (ADI): (FAO/WHO, 2015); The bolded values in the column of EDI are the 

mean exposure values for the particular pesticide in the vegetables; *The HI for the pyrethroids 

 

Table 7b. Risk of dietary pesticide exposures below ADIs for pyrethroids (including non-detects assigned with 

0.5LOD); EDIs in (mg kg bw-1d-1) 

n Vegetable Permethrin Cypermethrin Cyhalothrin 

  Mean EDI  HQ Mean EDI  HQ Mean EDI  HQ 

31 African nightshade 0.001 0.011 0.000 0.005 0.000 0.000 

15 Kale 0.001 0.026 0.000 0.000 0.001 0.041 

10 Cabbage 0.002 0.031 0.000 0.000 0.000 0.000 

3 Spinach 0.000 0.000 0.000 0.000 0.000 0.000 

2 Ethiopian mustard 0.000 0.000 0.000 0.000 0.000 0.000 

2 Amaranthus spp 0.000 0.000 0.000 0.000 0.000 0.000 

1 Chinese 0.000 0.000 0.000 0.000 0.000 0.000 

6 Mixed vegetables 0.000 0.036 0.000 0.000 0.000 0.000 
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Table 8. Average estimated daily intakes and hazard quotients of pesticide residues in vegetables 

Pesticide group Pesticide residue EDIs HQ HI 

Organophosphates Dimethoate 0.002 1.044 1.190 

 Acephate 0.000 0.014 

 Profenofos 0.002 0.055 

 Dichlorvos 0.000 0.075 

 Malathion 0.000 0.000 

Pyrethroids Permethrin 0.001 0.018 0.029 

 Cypermethrin 0.000 0.002 

 Cyhalothrin 0.000 0.009 

 

3.5 Association of Pesticide Exposure and Application Practices 

Sources of vegetable for household consumption, knowledge and awareness on pesticide use, vegetable cropping 

systems and lack of advice from agricultural extension officers, pesticide application rates and adherence to 

pre-harvest interval were assessed in this study in order to establish their association with exposures to pesticide 

residues through vegetable consumption. 

3.5.1 Source of Vegetables 

Among the 70 vegetable farmers interviewed only 12 (17%) reported to obtain their vegetables from market or 

neighbours as discussed in the previous section of pesticide residues in ready-to-eat vegetables. This finding 

indicates that most of the vegetable farmers consume what they produce. The farmers who bought vegetables 

reported that they usually do so while waiting for the pre-harvest interval to elapse after they have sprayed their 

own vegetables or prefer a different type of vegetable than what they have on their farm. It was revealed in this 

study that the odds of exposure to pesticide residues were 4.062 higher for farmers who consume own grown 

vegetable than for those who bought vegetables. However, the association was not statistically significant.  

Results of pesticide exposure for vegetable farmers who reported to obtain the vegetable samples from their own 

farms (n=58) were used in the logistic regression analysis in order to clearly associate the practices and exposure 

levels. Results showing the association between exposure to pesticide residues and knowledge or application 

practices for pesticides are presented in Table 7. 

3.5.2 Knowledge and Awareness of Pesticide Application 

Knowledge and awareness of pesticide application are important for appropriate pesticide application and 

handling. Among the 58 vegetable farmers interviewed, only 20 (34.5%) had attended some form of training on 

pesticide application. Among those 38 out of 58 who had no training, 52.6% were exposed to pesticide residues. 

Linear regression analysis shows that there is a significant association (P=0.043) between lack of training on 

pesticide application and exposure to pesticide residues. The adjusted odds of exposure to pesticide residues are 

3.73 times higher for the vegetable farmers who had no training than for those who had undertaken training on 

pesticide application. 

It was reported that 81% (47) of the farmers had a low level of education (only up to primary level) and the 

others (19%) had a higher level of education (secondary to university). A similar level of literacy is reported in 

other developing countries. In Nigeria, 96.2% of farmers had a low level of education (only up to primary level). 

The odds of exposure to pesticide residues for the farmers with a low level of education were 1.745 higher than 

for those who had a higher level of education but the results were not statistically significant (p=0.634). These 

results suggest that continuous training and awareness raising among vegetable farmers on pesticide application 

regardless of their level of education can significantly reduce dietary exposure to the pesticide. The training 

should include provision of knowledge on health and environmental effects associated with indiscriminate use of 

pesticides and provide other options for pest and disease control so that farmers can willingly shift from relying 

on the indiscriminate use of synthetic pesticides to safer pest management methods such as the integrated pest 

management (IPM) approach. This approach combines various means of pest and disease control including the 

use of cultural and mechanical means, biological control such as introduction of beneficial insects and mites and 

minimum use of IPM compatible pesticides (Dijkxhoorn, Bremmer, & Kerklaan, 2013; Lahr, Buij, Katagira, & 

Valk, 2016). The approach is currently applied in Europe, and in parts of East Africa, particularly in Kenya for 

farmers who grow vegetables for export and who apply this practice in order to meet the stringent requirements 

that vegetables are not allowed to contain pesticide residues above MRLs (Maredia, Dakouo, & Mota-Sanchezs, 

2003). 
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Table 9. Association between dietary exposure to pesticide residues with knowledge and pesticide application 

practices 

+ Farmers exposed (%) p-value  OR1 CI2 (95%) AOR3 p-value CI (95%) 

Primary or lower level  

of education (n=47) 

23 0.634 1.745 0.176-17.261    

Source of vegetables (own grown n=58) 44.8 0.087 4.062 0.817-20.201    

Lack of a formal training on  

pesticide application (n=20) 

34.5 0.133 2.317 0.822-8.179 3.73* 0.043 1.04-13.363 

Vegetables intercropped  

with cabbage (n=33) 

51.5 0.961 1.889 0.652-5.476    

Lack of advice from  

extension officer (n=13) 

15.4 0.031 6.768 1.188-38.57 6.56** 0.031 1.187-36.291 

Prepare pesticide at over-dosage (n=24) 58.3 0.032 4.12 1.127-15.06 3.751 0.038 1.078-13.06 

Non-adherence to PHI4 (n=31) 32.3 0.038 3.83 1.166-11.659 3.223 0.057 0.964-10.768 
1odd ratio, 2confidence interval; 3adjusted odd ratio; 4the time that lags between last pesticide spraying and harvest of the vegetables; *odds 

ratio of exposure to the residues for lack of training after be 

ing adjusted from influence of low level of education and lack of advice from extension officer; **adjusted odds ratio of exposure to the 

residues for lack of advice from extension officers after being adjusted for confounding influence of lack of adherence to PHI and 

over-dosage; the bolded values are for practices with significant association.  

3.5.3 Vegetable Cropping System 

During the field survey, it was observed that vegetables were grown in small farms (mostly ≤0.5 acre) located 

close to the residential area of the respondents. Vegetables were either intercropped or in separate plots. Most of 

the farmers who grew cabbage and other types of vegetables claimed that they separated cabbage from other 

crops because the crop is more frequently sprayed with pesticides. Thus, they separated cabbage from the other 

vegetables in order to control pesticide cross-contamination. Among the 58 respondents who consumed 

vegetables from their own farm, 55.2% (32) reported growing cabbage, of which 75% planted cabbage in a 

separate farm. Among those who intercropped cabbage with other vegetables, 62.5% were exposed to pesticide 

residues. However, there was no significant association between intercropping cabbage with other vegetables 

and exposure to pesticide residues (p=0.961, odds ratio=3.769).  

Results of pesticide residue analysis in the vegetable samples show that pesticide residues were more frequently 

detected in cabbage samples than other vegetables. Of the cabbage samples, 60% contained pesticide residues 

higher than 53.3% of kale and 35.5% of nightshade (Table 4). However, the occurrence of multiple pesticide 

residues was higher in nightshade 18.75% and kale 10.5% than in cabbage (10%), indicating that the farmers’ 

claim is not valid. Literature reports that intercropping of cabbage with appropriate vegetables (referred to in the 

literature as companion crops) has potential for controlling pests in vegetables and thus minimising pesticide use. 

For instance, intercropping cabbage with alliums and tomato were found to significantly minimise pests in the 

field (Baidoo, 2012; Debra & Misheck, 2014; Luchen, 2001).  

3.5.4 Lack of Advice from Agricultural Extension Officers 

The role of agricultural extension officers is to provide farmers with knowledge, information, experience, and 

technology which are important for improved productivity. In the current study, most of the vegetable farmers 

(84.6%; n=58) reported that they did not seek agricultural officer advice on pesticide application issues. Of those 

who did not rely on the officers’ advice, 53.3% were exposed to pesticide residues. The result from the 

regression analysis indicates that there is a significant association between exposure to pesticide residues and 

lack of advice from agricultural extension officers (p=0.031). The adjusted odds for exposure to pesticide 

residues are 6.56 higher in the farmers who did not rely on extension officers’ advice than for those who did.  

Literature reports that most of vegetable farmers do not rely on extension officers' advice in pesticide application 

issues (Issa & Atala, 2012; Lekei et al., 2014; Ngowi et al., 2007). Each ward and two villages (Shiboro and 

Siwandeti) visited in the current study had at least one agricultural extension officer. Therefore, if agriculture 

extension services were well-equipped by the government and utilized by farmers, the risk of exposure to 

pesticide residues would be minimized. 

3.5.5 Over-dosage of Pesticides  

Appropriate pesticide preparation is crucial for controlling pesticide residues in vegetables. By comparing 

application rates for pesticides as indicated on labels of pesticides to the rates applied to vegetables, it was 
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realized that 41.1% of the interviewed farmers prepared pesticides at over-dosage. Among those who prepared 

pesticides at over-dosage, 58.3% were exposed to pesticide residues. The adjusted odds ratio of exposure to the 

residues was found to be 3.751 higher in the farmers who prepared pesticides at over-dosage than for those who 

prepared pesticides accurately. The association was statistically significant at p=0.038. Pesticide dosage has been 

a great challenge in developing countries because most farmers dose inaccurately which results in excessive 

pesticide residues in vegetables (Adjrah et al., 2013; Banjo et al., 2010; Sheikh, Nizamani, Panhwar, & Mirani, 

2013).  

During the field survey farmers reported measuring liquid pesticides with calibrated caps, most of them 

delivered together with the pesticide package. However, in the case of powdery pesticides such as Linkmil 72WP, 

Ebony 72WP, and Ivory 72WP, tablespoons were used as measurement tools. This is a bad practice because 

powdery pesticides should be weighed in grams. Unpublished information from the Horticultural Research and 

Training Institute Tengeru, Arusha informed that the lack of appropriate measures such as weighing scales for 

powdery pesticides is a common challenge. Extension officers further have attempted to calibrate commonly 

used equivalent tools at the farm level, such as spoons, but it is still a challenge because new pesticides which 

are lighter or heavier than those previously used for calibration, are entering the market. A similar challenge is 

reported in Ethiopia where farmers use non-calibrated measuring tools (Mengistie, Mol and Oosterveer, 2015). 

Pesticide formulators and extension officers should find means for farmers to be able to measure an accurate 

quantity of pesticide. This will minimize the risk of exposure to pesticide residues associated with the 

inappropriate measurement of pesticide quantities. 

3.5.6 Adherence to Pre-harvest Interval (PHI) 

The time that lags between the last pesticide spraying and harvest of the vegetables is important to ensure 

reduction levels of the applied pesticides to at least the recommended maximum residual levels. Field surveys 

revealed that all vegetable farmers interviewed were aware of PHI. Among the 58 respondents, 31 (53.4%) 

reported waiting for the recommended PHI whereas 27 (46.6%) harvest earlier than the recommended intervals. 

Adherence to PHI was in concurrence with the effectiveness of pesticides. More than three quarters (87.1%) of 

the farmers who reported that the pesticides applied were effective, could adhere to PHI. Among the farmers who 

reported to harvest vegetables before the recommended interval (n=21), 59.3% were exposed to pesticide 

residues through vegetable consumption. The odds ratio of exposure to the residues was 3.83 times higher for the 

farmers who did not adhere to PHI and the result was statistically significant at p=0.026. However, after 

adjusting for confounding influences such as the lack of advice from extension officers, the results showed no 

significant association (p=0.057) suggesting that the lack of advice from extension officers was the cause for 

non-adherence to PHI. It is therefore suggested that farmers should be advised on the importance of adherence to 

PHI so that safe vegetables are produced for their own consumption and for other consumers.  

4. Conclusion and Recommendations 

The findings of the present study indicate that 18.6% of vegetable farmers in Arusha district are at potential risk 

of exposure to organophosphate pesticide residues through vegetable consumption. The risk is due to high levels 

(above MRLs) of organophosphate pesticide residues that were detected in almost one-third of vegetable 

samples. Dimethoate was the main contributor to the exposure to high levels of organophosphates with a hazard 

index above one. Other organophosphate pesticides detected were dichlorvos, acephate, profenofos, and 

malathion whose HQs were below one. Pyrethroids including permethrin, cypermethrin, and lambda-cyhalothrin 

were also detected having HQ and combined HI below one, indicating a minimum potential health risk. Our 

findings showed that lack of formal training on pesticide application, non-reliance on agricultural extension 

officers’ advice and over-dosage of pesticides are the main factors for the observed potential risk of exposure to 

pesticide residues. Since vegetable farms were closer to the residential houses, there are possibilities that 

individuals, especially pregnant women and children, are at higher risk of exposure through other routes such as 

inhalation and skin contact. For that reason, we recommend that an exposure assessment for the general 

population be carried out using a more robust approach that includes other potential routes including 

consumption, inhalation and skin contact. The risk may be minimized by observing extension service advice, 

specifically by observing pre-harvest intervals for these pesticides and applying pesticides at an appropriate 

dosage.  
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