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Abstract 

In the past few years, atomic force microscopy (AFM) has provided novel information on the ultrastructural and 

nanomechanical properties of yeast cell walls that play a major role in determining the flocculation 

characteristics of the yeasts. In this study, we used AFM to visualize at the nanoscale the cell surface topography 

and to determine cell wall nanomechanical properties (e.g. elasticity and adhesion) of different strains of S. 

cerevisiae employed for brewing, winemaking and fuel alcohol production. Cell surface topography was found 

to correlate with the flocculation behaviour of these strains during their late stationary phase, with the cell 

surface of flocculent cells being rougher than that of weakly flocculent cells. The elastic modulus of the yeast 

cell walls showed that weakly flocculent strains had a more rigid cell wall than highly flocculent strains. This 

difference in elasticity seemed to have an effect on the adhesive properties of the yeast cell walls, with weakly 

flocculent yeasts displaying lower adhesion energy than the highly flocculent strains. These findings seem to 

indicate that yeast cell surface nanomechanical properties play an important role in governing flocculation.  

Keywords: atomic force microscopy, cell surface, flocculation, flocculins, mannans, nanomechanical properties, 

Saccharomyces cerevisiae 

1. Introduction 

The yeast cell wall is a complex carbohydrate membrane, which not only protects the yeast cells from adverse 

conditions but also helps maintain an optimum osmotic balance to ensure normal cellular activities. The yeast 

cell wall is composed of a microfibrillar matrix of β- glucans (β -1,3 and β -1,6 glucans) which gives it its 

mechanical and chemical resistance. The local mechanical properties of the cell wall are commonly investigated 

by utilizing non-functionalised and functionalised (e.g. decorated with specific biomolecules) AFM probes 

(Francois et al., 2006; Dufrêne, Boonaert, Gerin, Asther & Rouxhet, 1999). Two of the main components of the 

yeast cell wall are β- glucans (~ 50-60%) and chitin (~ 1-3%). Additionally, the yeast cell wall is overlaid with 

highly glycosylated proteins, which are decorated by long chains of mannose residues and represent 40-50% of 

the cell wall mass (Kapteyn, Van Den Ende & Klis, 1999).  

It is well-known that the yeast cell surface is decorated with proteins that play a pivotal role in adhesion, 

communication and microbial infection (Jendretzki, Wittland, Wilk, Straede & Heinisch, 2011). Proteins are 

thought to play an important role in cell wall molecular organization and remodelling due to the variety of 

organization patterns stemming from the different ways in which proteins attach to the polysaccharide moiety. 

Three main proteins’ attachment classes can be distinguished. The first class comprises of the proteins that are 

bound non covalently to the β-1,3- glucan network (the SCWs family); the second category consists of proteins 

attached covalently through a remnant of the GPI anchor to β-1,6-glucans (the GPI-CWPs); and finally the third 

class is made of cell wall mannoproteins that are characterized by Protein Internal Repeat regions (PIR-CWPs or 

CCWs family) that are directly linked to β-1,3- glucans (Klis, Boorsma & de Groot , 2006). This outer layer is 

made of highly mannosylated proteins together with large polysaccahrides complex of 150 or more D-mannose 

units. Thus, the mannoprotein layer bears crucial biochemical and biotechnological properties, some of which 

are adhesion, aggregation and flocculation (Caridi, 2006; Verstrepen & Klis, 2006) as well as virulence (Francois 
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et al., 2013; de Groot, Ram & Klis , 2008). 

According to the lectin-like theory, flocculation occurs because of the interaction between flocculins (specific 

flocculation proteins which are present only on flocculent cells) and the carbohydrate residues (receptors) of the 

cell walls of the neighbouring cells (Miki, Poon, James & Seligy, 1982). AFM plays an important role in the 

investigation of the mechanical properties of cells, as it allows manipulation at single-cell level, local 

determination of the viscoelasticity of cells and direct observation of the cell surface at nanometer resolution 

(Binnig, Quate & Gerber, 1986; Burnham & Colton, 1989; Mizes, Loh, Miller, Ahuja & Grabowski, 1991). 

The main aim of this study is to understand how cell surface roughness, cell adhesion force and cell surface 

elasticity, are correlated to flocculation, i.e. the reversible adhesion phenomenon that the cell undergoes during 

fermentation in the presence of calcium ions.  

2. Materials and Methods 

2.1 Yeast Strains 

Four industrial strains of S. cerevisiae (provided by courtesy of Lallemand Inc. Montreal, Canada) were used: 

brewing yeast strain (LYCCI), champagne strain (LYCCII), wine strain (LYCCIII) and fuel alcohol strain 

(LYCCIV). The yeast strains were kept on Yeast Extract, Peptone, Glucose (YEPG) slopes at 4oC (Nayyar, 

Walker, Canetta, Wardrop & Adya, 2014).  

2.2 AFM Sample Preparation 

The AFM samples were prepared by placing aliquots of 50µl (concentration of 1×108cells/ml) of yeast 

suspensions onto hydrophilic glass slides and allowed to air dry for about 3h at room temperature. AFM samples 

were used immediately soon after to preserve the original morphology of the yeasts under study. The glass slides 

were made hydrophilic by immersing them in aqueous 20% H2SO4 (sulphuric acid) for 24 h. The slides were 

then washed five times with ultrapure water and kept immersed in ultrapure water until use. The slides were air 

dried just before use. .  

2.3 AFM Imaging of Yeast Surface Ultrastructure 

A JPK Nanowizard I AFM (JPK, Berlin, Germany) was used. The yeast samples were imaged in contact mode 

(CM) by using Si3N4 (silicon nitride) triangular cantilevers (Veeco, Santa Barbara, CA, USA). The Si3N4 

cantilever’s spring constant was calibrated systemically using the thermal tune method (Song, Wu, Xu & Fu, 

2015) and was found to be in the range of 0.01 - 0.02N/m. All the images (512×512 pixels) were captured at 

room temperature with a scanning speed of 0.5µm/sec and an applied force of 0.1nN. Since yeast cells can retain 

hydration water for several hours after having left the liquid environment (Canetta, Walker & Adya, 2009), the 

experiments were carried out in air at room temperature. 

2.4 AFM Cytonanomechanics 

After capturing the AFM image of each cell, AFM spectroscopy experiments were performed on the same cells 

in order to investigate their cytonanomechanics properties, such as cell elasticity and adhesion on the bud scar 

(B), cytoplasm (C) and edge (E) areas.  

Fig. 1 shows a typical force spectroscopy curve. To probe only the elasticity (Young’s modulus) of the cell wall 

without considering its adhesive properties (Arnoldi et al., 2000; Yao et al., 2002), the indentation speed was 

kept at 0.5m/s with a maximal loading force of 1.5nN . The adhesive properties of the cell wall were probed 

during the retracting cycle (Fig. 1, points d-f and f-g) when the AFM probe was withdrawn from the cells surface 

at a constant speed of 0.5m/s. The force vs. displacement curves obtained experimentally were converted into 

force-distance curves using the JPK Processing Software (JPK, Berlin, Germany). To access the elastic 

properties of the cells, the slope of each curve was interpolated using the Hertz model (Hertz, 1881):          
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where, F = loading force , E = Young’s modulus, ϑ = Poisson’s ratio, δ = indentation and α = half-cone angle.  

The assumption was made that the AFM probe used to perform the experiments was conical in shape with an 

opening angle of 35◦ (α) (Radmacher, Fritz & Hansma, 1995). A Poisson’s ratio of 0.5 (incompressible material) 

was used.  
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Figure 1. Schematic of the AFM force spectroscopy experiment. (a-b) - (c-d) represents the approaching cycle; 

(d-f) - (g-h) represents the retracting cycle. (a): The AFM probe approaches the cell surface, (b): The AFM probe 

jumps into contact with the cell surface due to Van der Walls forces, (c): The AFM probe indents the cell surface 

and during indentation the AFM cantilever on which the probe is micro-fabricated bends until the point (d) is 

reached, (e): The AFM probe is retracted from the cell surface and the latter stretches until point (f) is reached 

when the AFM probe and the cell surface detach from each other and the AFM probe-cell surface interaction 

force goes to zero (g). 

 

2.5 Surface Roughness and Cell Thickness Analyses 

Roughness analysis of the yeasts surface was carried out on raw (i.e. not subjected to any processing, such as 

flattening or filtering) AFM height images by measuring the root mean square roughness, Rrms, of each cell 

visible in the image using the JPK Processing software:  
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where xi is the current height, x  is the height of the mean data plane, and N is number of points within the 

selected area.   

For each of the four strains, 35 cells were selected at random and the Rrms was evaluated at three different areas - 

budscar (B), cytoplasm (C) and edges (E) - on each cell using squares of 2.25µm2.  

The cross sectional analysis was also performed over 35 cells using the JPK Processing software. Briefly, the 

height (peak-to-peak difference) and length of each cell were measured on the raw AFM height images. For each 

cell, the cross sectional analysis was repeated three times and statistics analysis was performed to get the average 

height and length of each individual cell.  

2.8 Statistical Analysis 

Statistical analysis was performed using IBM SPSS software (version 22). One-way ANOVA analysis was 

carried out to ascertain any change in the cell parameters (e.g. elasticity, adhesion force, cell surface roughness 

and cell thickness) with respect to yeast strains and type of sugar in the growth medium. Statistical significance 

was determined using Bonferroni and Tukey’s tests. Correlation analysis was performed taking into 

consideration the Pearson’s coefficient at two tailed level.  

3. Results and Discussion 

The nanostructural and nanomechanical properties of the four industrial yeast strains - (LYCCI - brewing), 
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(LYCCII - champagne), (LYCCIII - wine) and (LYCCIV - fuel alcohol) - were studied to determine a correlation 

between the morphology and cytomechanics of yeast cell surfaces and their level of flocculation. 

3.1 Imaging Yeast Cells at High Resolution 

The nanoscale morphological structures of the four industrial yeast strains were investigated by contact mode 

AFM imaging (Fig. 2). The AFM images of the four yeast strains showed the finest details of their surfaces and 

cellular shapes.  

 
Figure 2. (a) AFM image of brewing yeast strain LYCCI (15 m  15 m area; height scale 0 - 4.1m). The bud 

(B), cytoplasm (C) and edge (E) areas on the yeast surface are indicated; (b) AFM image of champagne strain 

LYCCII, (15 m  15 m area; height scale 0 - 3.1m); (c) AFM image of wine strain LYCCIII (20 m  20 

m area; height scale 0 - 3.0m); and (d) AFM image of fuel alcohol strain LYCCIV (20 m  20 m area; 

height scale 0 - 2.7m) 

 

Cross sectional analysis on the AFM images showed that the brewing strain LYCCI were the largest cells (cell 

length = 2.10 ± 0.05µm) followed by fuel alcohol strain LYCCIV (cell length = 1.1±0.1 µm), champagne strain 

LYCCII (cell length = 0.9 ± 0.1 µm) and wine strain LYCCIII (cell length = 0.60 ± 0.05 µm). 

Roughness analysis of the yeast cell surfaces displayed that the brewing strain LYCCI had the roughest cell wall 

(146 ± 8 nm), followed by the champagne strain LYCCII (95.1 ± 8.0 nm), fuel alcohol strain LYCCIV (73.5 ± 

5.0 nm) and finally wine strain LYCCIII (35.7± 8.0 nm). The surface roughness and cell thickness of brewing, 

champagne and wine yeast cells seemed to be positively correlated (r = 0.846) to their flocculation ability 

(Nayyar et al. 2014) (Fig 3). In particular, it was observed that the rougher the cell surface and the thicker the 

cell, the higher the ability of the yeasts to flocculate. Interestingly, the fuel alcohol yeast strain showed a 

different behaviour compared to the wine yeast strain (Fig. 3); although it was rougher and thicker than the latter, 

its ability to flocculate was less good. The results for the brewing, champagne and wine yeast cells seem to 

indicate the presence on their surfaces of more sites for anchorage for the cells to hold on each other’s surface; 

this could explain the formation of stable flocs in the fermenter and the increase in the flocculation ability for the 

strains (Ahimou, Touhami & Dufrene, 2003; Dague, Bitar, Ranchon, Durand & Yken, 2010). The low 

flocculation ability displayed by the fuel alcohol yeast strain compared to the wine strain despite being rougher 

and thicker than the wine yeasts could be caused by the fact that the fuel alcohol strain is less hydrophobic than 

the wine strain (Nayyar et al., 2014). 
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Figure 3. Relationship of (a) RMS roughness (nm) and (b) cell thickness (µm) with the % flocculation ability of 

the four Saccharomyces cerevisiae LYCCI, LYCCII, LYCCIII and LYCCIV yeast strains during their late 

stationary phase. The histograms represent the % flocculation ability, while the squares represent the RMS 

roughness in (a) and.the cell thickness in (b). Statistically significant direct relationship (p ≤ 0.001) showed that 

for strains LYCCI, LYCCII and LYCIII the rougher the cell surface and the thicker the cell, the higher their 

flocculation ability. On the contrary, for the fuel alcohol strain LYCCIV displayed a lower flocculation ability 

than that of the wine strain despite being rougher and thicker than the latter 

 

3.2 Effect of Elastic Modulus and Adhesive Force on the Flocculation Behaviour 

Flocculation tests previously carried out by Nayyar et al. (Nayyar et al., 2014) during all the phases of growth 

for the four industrial strains LYCCI, LYCCII, LYCIII and LYCCIV indicated that the brewing yeast strain 

LYCCI was highly flocculent throughout the fermentation including the late stationary phase (42.5%), followed 

by the champagne strain LYCCII (14.8%), wine strain LYCCIII (13.8%) and fuel alcohol strain LYCCIV 

(11.6%).  

The Young’s modulus, Y, adhesion force, Fadh, and adhesion energy, Wadh, of each of the four industrial strains at 

three different locations on the cell, bud scar (B), cytoplasm (C) and edge (E), was investigated by performing 

AFM force spectroscopy experiments. 
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Figure 4. (a) Young’s (elastic) modulus, (b) adhesion force and (c) adhesion energy for each of the four strains 

was measured at three different locations on the cell surface, i.e. on the bud scar (B), the cytoplasm (C) and the 

edge (E) of the cell 

 

The results for the elastic modulus (Fig. 4a) were the same across the cell surface and showed that the brewing 

yeasts LYCCI were the softest ones (Y = 389 ± 7 kPa) and the fuel alcohol yeasts LYCCIV (Y = 1152 ± 11 kPa) 

the stiffest ones. These findings further confirmed the pattern observed in the flocculation essay and the surface 

roughness and cross sectional analyses, i.e. there is a positive correlation between the elasticity of the cell wall, 

the surface roughness and thickness of the cell, and its flocculation ability. In particular, these results seem to 

indicate that a high level of flocculation is achieved when the yeast cells have a rough surface and a soft cell wall 

because this morphological-mechanical synergy could allow for a higher mobility of GPI-anchored proteins 

(Verstrepen & Klis 2006; Zhang et al., 2013). 

To investigate the adhesive force that comes into play when the cell surfaces of two or more yeast come in 

contact, the adhesion force between the cell membrane and the AFM probe was measured. The hypothesis is that 

the higher the adhesion force of the cell membrane, the higher the stability of the flocs in the fermenter. 

Conversely to the elastic modulus, the values of adhesion force, Fadh, of the cell wall to the AFM probe was cell 

area dependent (Fig. 4b) with the differences at the bud scar, cytoplasm and edge of individual cells statistically 
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significant (p ≤ 0.001). The brewing strain LYCCI was found to be most adhesive at the edges of the cells Fadh = 

10.0 ± 0.6 nN) followed by the champagne strain LYCCII (Fadh = 9.0 ± 0.6 nN). Conversely, the fuel alcohol 

strain LYCCIV (Fadh = 7.00 ± 0.63 nN) and wine strain LYCCIII (Fadh =6.00 ± 0.65 nN) displayed the least 

adhesive properties. These findings agreed with the values obtained for the elastic modulus because the LYCCI 

strain is the softest and also the most adhesive as expected. Similarly, the LYCCIV strain is the stiffest and also 

the least adhesive.   

To gain a deeper insight into the relation between the adhesive properties of the strains and their flocculation 

abilities, the adhesion energy, Wadh, of their membranes was also studied. Adhesion energy describes the amount 

of work required for the cell to detach from a surface (in our case the AFM probe): 

defadhadh xFW                                    (3) 

where xdef accounts for how the amount of deformation undergone by the cell membrane before complete 

detachment from the AFM probe. Hence, Wadh provided information on the deformability of the cell membrane. 

Same as for the elastic modulus, the adhesion energy was area-independent, i.e. for each yeast strain the 

adhesion energy pattern was the same in the bud scar, cytoplasm and edge areas (Fig. 4c). However, the 

differences in the adhesion energy were more statistically significant at the cytoplasm and edge areas (p ≤ 0.001) 

of the cells of the strains, and less significant on the bud scar region of the cell (p ≥ 0.05). This was expected due 

to the rigidity and low adhesion of bud scars compared to the cytoplasm and edge areas of the yeasts. The results 

showed that wine making strain LYCCIII had highest adhesion energy (Wadh = (22.5 ± 0.6) × 10-15 J) and 

champagne strain LYCCII presented the lowest adhesion energy (Wadh = (9.1 ± 0.5) × 10-15 J). Comparing the 

findings for Fadh and Wadh highlighted that the champagne yeast cells LYCCII had a high Fadh but the lowest Wadh, 

while the wine yeasts LYCCIII had a low Fadh but the highest Wadh. Eq. (3) indicates that these differences 

between adhesion force and energy are due to the cell wall of LYCCII deforming less than that of LYCIII. Since 

the elasticity of the cell membrane of LYCCII is higher (i.e. softer) than that of LYCCIII, the lower deformation 

presented by LYCCII could indicate a more liquid-like behaviour of its cell membrane compared to LYCCIII.  

3.3 Correlation between the Flocculation Ability and the Different Nano Mechanical Properties of Cells 

The surface roughness, nanomechanical and flocculent properties of the four strains are summarised in Table 1.  

Table 1. Summary of the average surface roughness, nanomechanical and flocculation properties of the four 

strains. E represents the Young’s modulus (kPa), Fadh the adhesion force (nN), and Wadh the adhesion energy 

(10-15 J), respectively 

Strain Rrms (nm) Y (kPa) Fadh (nN) Wadh (10
-15

 J) Flocculation (%) 

LYCCI 146.0  8.0 126.0  7.0 8.0  0.6 4.7  0.7 42.5  9.5 

LYCCII 95.1 8.0 251.0  7.0 10.0  0.6 3.1  0.5 14.8  3.4 

LYCCIII 35.7 8.0 303.0  9.0 6.3  0.6 7.4  0.6 13.8  3.3 

LYCCIV 73.5 5.0 374.0  11.0 7.1  0.7 3.5  0.5 11.6  2.9 

 

A pattern in the relationship between flocculence, surface roughness and nanomechanics of the cell wall could be 

observed. In particular, our findings showed that is LYCC1 (brewing strain) is the most flocculent and presents a 

high level of adhesion. Moreover, LYCCI was the softest yeast and seemed to deform more than others, and its 

surface was the smoothest. Conversely, LYCCIV (fuel alcohol strain) displayed the lowest flocculation ability 

and was found to be the most rigid of the four yeast strains with a relatively rough surface. Additionally, 

LYCCIV cell membrane showed a relative low level of adhesion and deformability. The results appeared to 

indicate a negative correlation between the flocculent and elastic properties of the cell: the softer (low elastic 

modulus) and more deformable (high adhesion energy) the cell membrane, the more flocculent the strain. This 

seemed to suggest that the flexibility of the cell wall was an important parameter to enhance the flocculation 

ability of the yeast strain during fermentation. To verify this hypothesis, the surface roughness, elastic modulus, 

adhesion force and adhesion energy of the cells were plotted as functions of the flocculation ability of the strains 

(Fig. 5). As expected, a statistically significant (p ≤ 0.001) and strong negative correlation (r = −0.825) between 

the flocculation ability and the elasticity was found (Fig. 5a). Conversely, the flocculation ability of the yeasts 

and their surface roughness displayed a statistically significant (p ≤ 0.001) and strong positive correlation (r = 

0.846). These findings could indicate that the flocs in the liquid medium are held by the better and stable 

anchorage that rough surfaces provide.  
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Figure 5. Correlation studies between the percentage (%) flocculation ability, the surface roughness and 

nanomechanical properties of the four industrial yeast strains LYCCI (brewing yeast), LYCCII (champagne 

yeast), LYCCIII (wine yeast), and LYCCIV (fuel alcohol yeast). The circles represent the relationship between 

the surface roughness of the yeasts and their % flocculation ability. This correlation is positive (r= 0.846). The 

triangles represent the Young’s modulus, adhesive force and adhesive energy of the four industrial strains. (a) 

Statistically significant (p ≤ 0.001) negative correlation (r = -0.825) between % flocculation ability and the 

Young’s (elastic) modulus of the cells. (b) and (c) Positive correlation between % flocculation ability and the 

adhesion force (r = 0.177) and the % flocculation ability and the adhesion energy (r = 0.051) of the yeasts.  In 

both cases the correlation is statistically insignificant (p ≥ 0.05). 

 

Interestingly, a statistically insignificant (p ≥ 0.05) and weak positive correlation between the flocculation ability 

of the strains and the adhesion force (r = 0.177) and adhesion energy (r = 0.051) of their cell walls was observed, 

suggesting that the adhesion force between the yeast surfaces and the deformability of their cell walls played a 

less important role in governing the flocculation ability compared to the elasticity and roughness of the cell 

membrane. These findings are important in food technology because of their potential critical impact on 

fermentation performance. In fact, knowing the physical biomarkers (i.e. surface roughness and 

cytonanomechanical properties) of highly flocculating S. Cerevisiae yeast strains can be used not only to reliably 
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characterise yeast strains but also for engineering them in order to achieve the best yeast management.    

4. Conclusions 

Morphological changes in the yeast cell surface for different strains, at nanoscopic level were observed by 

immobilizing the cells on hydrophilic slides by air drying for as long as 5h (Canetta, Adya & Walker, 2006a, 

2006b; Canetta et al., 2009).The topological changes were quantified in terms of changes in roughness, which 

was found to be maximum for the brewing strain LYCCI, which was also found to be highly flocculent. The 

dramatic change in roughness may have some consequence on the adherence capacity of yeast to material 

surface (Gallardo-Moreno, González-Martı́n,Perez-Giraldo, Bruque & Gomez-Garcıa, 2004; Mercier-Bonin, 

Ouazzani, Schmitz & Lorthois, 2004). Also it is clear from our data that the elasticity of the cell wall, as 

determined by force-indentation curves, is directly related to the flocculation patterns for the strains, as it was 

seen that strains with higher mean Young’s modulus, adherence energy and adhesion force exhibited higher 

flocculation ability. Altogether these changes help us understand the rigidness of the cell wall which could help 

us relate to the reasons contributing to different flocculation patterns for the strains.  
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