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Abstract 

To monitor cucumbers' external quality, such as color changes or the presence of any damage during storage, a 

machine vision system was used. Red, Green, Blue (RGB) images were acquired in a "soft box," which provided 

a highly diffused lighting scene for observing visual changes such as color and appearance in the skin of 

cucumber. The RGB images were transformed into L*, a*,b*, and HSV spaces. Histograms for each channel in 

each color space were evaluated for image segmentation, and the blue (B) channel in the RGB color space was 

found superior in terms of measuring damage progression. Damage progression plots (DPP) were made from 

accumulated grayscale images in each of the color channels and to observe variation over time, absolute 

differential damage progression (ADDP) plots were generated. Overall, the order of channel utility was [B], [R, 

G, V], and [H, S, L*, a*, b*]. To assess which channel, in which colorspace, was most sensitive, i.e., could 

capture most of the information regarding day-to-day color changes, a principal component analysis (PCA) was 

performed. The PCA showed that all individual components in the RGB color space were suitable for obtaining 

information about the external changes of cucumber. Based on the results, the machine vision approach is 

recommended as a non-destructive technique for monitoring the external quality of stored fresh produce. 

Keywords: postharvest, machine vision, color spaces, color change, defects, image processing, 3-D histogram 

Highlights: 

1. A machine vision system was used for non-destructive quality evaluation of cucumbers.  

2. From images, changes in R, G, and B values indicated the corresponding color changes. 

3. Blue (B) channel in RGB color space best interpreted the damage progression. 

4. RGB was found to be the most suitable color space based on PCA. 

List of Abbreviations 

ADDP : Absolute differential damage progression 

CCPA : Cucumber center pixel accumulation algorithm 

DPP : Damage progression plot 

HDPE : High-density polyethylene 

HSV : Hue, Saturation, Value 

PCA : Principal component analysis 

RGB : Red, Green, Blue 

 

1. Introduction 

The quality of cucumbers may deteriorate both externally and internally during harvesting, transport, and 

postharvest handling (Mohammadi et al., 2016). Damage or decay on the cucumber surface results in rejection 

by consumers, causing economic loss to producers (Ariana and Lu, 2010). At harvest time, the cucumber skin 

color should be a uniform dark green; fruits with yellow skin and tough seeds are deemed as overmature and of 
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low quality (New Guyana Marketing Corporation, n.d.). Additional quality indices are a uniform shape and 

absence of defects from handling or decay from fungal and bacterial diseases.  

Destructive and nondestructive - these are the two ways quality attributes can be measured. Non-destructive 

approaches offer rapid measurement, which reduces waste and maintains the appearance of the fruit (Nicoläi et 

al., 2014). In addition, repetitive measurements of quality parameters of the same fruits throughout an 

experiment are feasible in a non-destructive technique (Iqbal et al., 2016). Non-destructive machine vision-based 

quality monitoring techniques have been largely applied in postharvest sectors (Kondo, 2010). Machine vision 

technology is being used for automatic grading and quality inspection of fresh commodities, especially fruits and 

vegetables (Cubero et al., 2011; Mohammadi et al., 2015). The computer vision system has been replacing 

human inspection (Du and Sun, 2006) because manual performance is affected by fatigue, may involve large 

errors, and be cost-prohibitive (Ariana & Lu, 2010; Iqbal et al., 2016). Machine vision has been used either to 

inspect products' quality parameters such as maturity, color, size, defects, etc., for grading purposes or to monitor 

a product's evolution as a function of time to evaluate a treatment or a process ( Cubero et al., 2011; Akundi & 

Reyna, 2021). 

Color is one of the critical quality parameters that indicates the quality, maturity, and senescence of fruits and 

vegetables (Mendoza et al., 2006; Mohammadi et al., 2015). In fact, consumers accept or reject a fruit or 

vegetable primarily based on color (Cubero et al., 2011; Sarker et al., 2021). Colorimeters are generally used to 

measure color, but they are not well suited to measure the color of a large area or of objects with non-uniform 

color characteristics (Gardner, 2007). Therefore, a still or video camera can be employed to image a large area 

with or without heterogeneous color where the colors can be discriminated by the pixels. RGB (red, green, and 

blue) space is the most widely used color space in computers and digital images to express the color of a pixel 

(Cubero et al., 2011). Other color spaces that are frequently used are L* a* b* and Hue, Saturation and Value 

(HSV) (Bhargava & Bansal, 2021). RGB color space values can be easily converted to HSV and L* a* b* 

following image processing algorithms to quantify the color of products (Mendoza et al., 2006; Fathi et al., 2009; 

Momin et al., 2017). 

The objectives of this study were: (i) to design and implement a computer vision system for continuous 

monitoring of cucumber external quality, such as color and damage progression over time (ii) to compare the 

suitability of RGB, L* a* b* and HSV color spaces in terms of their sensitivity to color changes and damage 

progression in stored cucumber. 

2. Materials and Methods 

To acquire images from various cucumbers, an imaging arrangement used in earlier research where corn roots 

(Grift et al., 2011) and ears were studied (Grift et al., 2017) was adapted. In addition, acquisition and analysis 

software that was used in earlier research was repurposed using Matlab’s Appdesigner tool. 

2.1 Imaging Arrangement 

Cucumber images were acquired in a "soft box," (Grift et al., 2011; Grift et al., 2017) as shown in Fig. 1a. The 

soft box was made of HDPE panels, creating a highly diffuse lighting scene with low glare (halation) on the 

cucumber, which is important to obtain true color information from cucumbers. While acquiring images, a 

cucumber was placed on a 6.35 mm spike that was rotated by a uni-polar 12 V DC 600 mA stepper motor (part 

no. 162027, Jameco, Belmont, CA). The stepper motor has a stepping angle of 0.9° in half step mode, allowing 

up to 400 unique images per revolution. An aluminum coupler connected the mounting spike to the stepper 

motor. The adjustable coupler also helped the cucumber reach the height necessary for imaging the 

quasi-cylindrical mid-section (qcms) of the cucumber. The stepper motor was controlled by a board with a serial 

interface (model STP100, Pontech, Rancho Cucamonga, CA) and a 12 V, 60 W power supply (part no. 2105308, 

Jameco, Belmont, CA). The bottom part of the cucumber was contained within a 3D printed tri-pod holder to 

prevent cucumber slippage during rotation. Fig. 1a shows a photo of the imaging arrangement; a lateral color 

camera (Unibrain, model 701c) with a resolution of 1280*960 pixels was mounted in the side panel of the soft 

box.  

 

 

 



http://jfr.ccsenet.org Journal of Food Research Vol. 12, No. 2; 2023 

39 

 

 

Figure 1. Cucumber imaging arrangement (a) and schematic diagram of assessing postharvest quality of 

cucumbers (b) 

 

2.2 Cucumber Imaging 

The camera and the imaging process in general were controlled by an app written in the Appdesigner tool 

(MatLab , R2020a). The user can set the serial communication port controlling the stepper motor driver board for 

cucumber rotation, the delay time for the cucumber to come to rest after being rotated, as well as the sample 

barcode. The light intensity in the imaging box was calibrated with the cucumber placed inside. During 

calibration, the app gradually increased the shutter time of the camera until it reaches an image intensity at which 

all image corner pixels achieve a value of 255 (white).  

The lateral camera takes images of the quasi-cylindrical mid-section (Grift et al., 2017), which is approximately 

10 cm in height. To take 400 images (represented by 400 pulses to the stepper motor) in one revolution that is 

equal to 360°, the cucumber rotates at an angle of 0.9° per step. To monitor the cucumber's physical change, 

continuous imaging was carried out up to one week. The schematic of the whole study is shown in Fig. 1b. For 

'weekly' imaging, 400 images were captured at each whole hour throughout the week, resulting in 67,200 

(400*24*7) images.  

2.3 Cucumber Center Pixel Accumulation (CCPA) Algorithm 

To evaluate the damage that a cucumber accumulated during storage, an image is required that covers the 

cucumber’s quasi-cylindrical mid-section (qcms) surface without redundancy. This overall image should ideally 

be rectangular for easy manipulation in software. Shown in Fig. 2a is a cucumber at the end of a one-week long 

study, after it was exposed to high temperatures. This cucumber is obviously severely damaged, being on the 

verge of collapse. To acquire rectangular images representing the qcms surface without redundancy, a Cucumber 

Center Pixel Accumulation (CCPA) algorithm was developed. The CCPA algorithm collected a vector of pixels 

from the center (“spine”) of each image of the qcms with a size of 1*1280 pixels. This was done by first 

converting the RGB image into a grayscale image, as shown in Fig. 2a, right, and then by finding the edges of 

the cucumber for each row. The selected Center pixel was chosen at the location of the mean of the edge pixels, 

as shown as the plotted line in the right hand image of Fig. 2a. 
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Figure 2. Shown is an image of a cucumber that is severely damaged (a) and Center Pixel Accumulation image 

with a size of 1280*400 pixels (b) 

 

The center pixels selection process was repeated from the top (row 1) to the bottom (row 1280), yielding a 

Center Pixel vector of 1280*1 pixels per image. This process was repeated 400 times on images that are rotated 

by 0.9° each, and the center pixel vectors were accumulated, forming a 1280*400-pixel sized image that covers 

the complete qcms without redundancy. Figure 2b shows the Center Pixel Accumulation image from the 

cucumber, as shown in Fig. 2a. This image was used to determine the damage progression of the cucumber.  

2.4 Histograms from RGB Images 

In this experiment, the whole cucumber surface captured by combining strip centers of 400 RGB images (400 

pixels) were examined to interpret color changes. Color histograms of the images were computed by MATLAB 

R2020a (The MathWorks, Inc., Natick, MA, USA) imhist () function; imhist () computes the histogram of the 

grayscale image by converting RGB values to grayscale values with a weighted sum of the R, G, 

and B components according to Eqn. 1: 

0.2989* 0.5870* 0.1140*R G B                            (1) 

 

2.5 Damage Progression Plot (DPP) 

To observe the progression of damage, incremental images on a grayscale were plotted by taking images from a 

certain hour step. For example, to obtain 9 (arbitrary choice) accumulated images, images at 14 hours step up to 

140 hours were considered (1:14:140). For easy manipulation of the input parameters, an analysis app was 

developed using the Appdesigner tool in MatLab (R2020a). To detect changes over time, three plots were made 

for a range of nine color space channels being R, G, B, H, S, V, L*, a*, b*. First is the damage progression plot 

(DPP), which comprises accumulated raw grayscale images for individual channels plotted side by side. From 

Fig. 3, as the days progressed, the white areas at the top were moving downward because the cucumber changed 

size and shape as it collapsed. Finally, an absolute differential damage progression (ADDP) plot was made, 

where the first image was subtracted from all other images. The assumption here was that the first image was 

damage free, and therefore any change in greyscale should be assumed damage. In the ADDP plot, any one 

channel (for example, either R, G, or B) from the RGB, L*a*b* or HSV color space was considered and 

subtracted the previous image from the current one. 



http://jfr.ccsenet.org Journal of Food Research Vol. 12, No. 2; 2023 

41 

 

 

Figure 3. Grayscale Damage Progression Plot (DPP) to visualize the damages that happened over time 

 

2.6 Principal Component Analysis (PCA) 

Principal component analysis (PCA) is a statistical tool that gives the direction where the data have the maximal 

amount of variance. PCA has been used to reduce the dimensionality in a dataset and, therefore, helps in data 

interpretation (Chherawala et al., 2006). In this work, PCA was performed using prcomp () function of R 

statistical software (R Core Team, 2019) version 3.5.2. Before performing the analysis, the variables were shifted 

to be zero centered (center = TRUE) and were scaled to have unit variance (scale. = TRUE) to account for 

different data set sizes. To clearly visualize the most correlated variables in the dataset, a correlation plot (Fig. 8b) 

using corrplot () function in R of the variables was made. In the correlation plot (Fig. 8b), positive correlations 

were indicated by a blue color, and negative correlations were indicated by a red color, and the magnitude of the 

correlations was displayed by the color intensity and size of the circle. 

2.7 Image Processing 

Cucumber Center Pixel Accumulation and all the algorithms for color space conversion (RGB2Lab and 

RGB2HSV), color analysis and visualization, and damage progression plot (DPP) were written in MATLAB 

R2020b (The MathWorks, Inc., Natick, MA, USA).  

3. Results and Discussion 

Cucumbers' external changes such as color or appearance of a damage/defects over the storage were described 

through plotting RGB histograms from the images. In addition, damage progression plots were computed, and 

the color channels’ sensitivity to the damage progression over time was compared. Principal component analysis 

(PCA) was carried out to find the most dominant component of a color space for its sensitivity to color changes. 

3.1 Histogram from RGB Images 

Figure 4 shows the images of cucumber on day 1, day 7, day 12, and day 14 and the corresponding color 

histograms of images. In the histogram of day 1 image, all the pixels were located to the left of the plot and 

compressed to a small range as demonstrated by larger peaks, which was representative of a fresh dark green 

cucumber surface. In day 7 histogram, pixels were spread to the center, indicating that the surface was turning 

into a lighter green color. However, the histogram depicts that there were still dominant darker pixels in the 

image. Due to the sign of aging and yellowing of cucumber at day 12, the pixels were spread out from the left 

corner to the right corner in the histogram. On the other hand, from day 14 image, yellowness was prevalent on 

almost the entire cucumber surface, and in the histogram, the pixels were reached to the extreme right 

representing a large range of intensities with shorter peaks. Because of this heterogeneous distribution of colors, 
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unlike colorimeters having a small viewing field, non-destructive machine vision approach capturing the whole 

surface of a fresh produce could provide a complete data for monitoring any defects and color changes during 

storage. Further, to understand the changes of R, G, and B components with the increment of storage days, the R, 

G, and B values were examined and the mean data are shown in Table 2; it was observed that there was a steady 

increase in each of the R, G, and B values in general indicating that the surfaces were turning into lighter colors. 

 

Figure 4. Cucumber image at day 1(a), day 7(b), day 12(c), and day 14(d) with the corresponding RGB 

histogram at the right (see section 2.4.) 

 

Table 1. Mean R, G, and B values of the RGB images acquired on different days 

Sampling days R G B 

Day 1 14.738±0.55 14.761±0.80 14.587±1.00 

Day 3 16.018±0.35 15.896±0.41 14.882±0.42 

Day 5 17.484±0.70 17.886±0.87 15.647±0.90 

Day 7 23.093±1.60 24.972±2.00 18.239±1.03 

Day 9 40.696±4.00 43.038±4.20 25.361±1.92 

Day 12 119.841±11.05 107.677±7.25 49.646±3.00 

Day 14 203.806±11.70 156.506±6.78 71.202±4.00 

Data are represented as Mean ± SD (n=24) 
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After harvest, water loss, shriveling, yellowing, and fungal decay lead to the rapid quality loss of cucumber. 

Therefore, cucumber has a shelf-life shorter than 14 days (Bahnasawy and Khater, 2014; Maleki et al., 2018). 

Color is one of the critical quality parameters which primarily determines consumer acceptability (Mendoza et 

al., 2006; Cubero et al., 2011). RGB components determining the color and color distribution data from 

histograms can be used for grading purposes or harvest quality measurements (Kang et al., 2008). Comparing the 

color histograms and the R, G, and B components of the images of whole cucumbers subjected to different 

treatments could be a potential non-destructive method to evaluate the performance of any postharvest treatment 

such as coating, packaging, etc. in terms of reducing the color changes during storage.  

3.2 Damage Progression Plot 

Figure 5a shows the absolute differential damage progression (ADDP) plot. In the original image on day 1, it 

was assumed that there was no damage, but it progressed over time up to the last image. To determine the 

damage from the ADDP plot (Fig. 5a), the image was segmented from the background by a cutoff point 100 

(threshold) on the grayscale (100/255), shown in Fig. 5b.  

 
Figure 5. a) Cucumber absolute damage progression plot made with accumulated images in blue (B) color 

channel, b) Damages that progressed over time were segmented from the background in the absolute damage 

progression plot 

 

To identify the color channel among R,G,B, L*, a*, b*, H,S,V that gave the most interpretable information on 

the damage progression, combined histograms of 9 images from each of the ADDP plots were made and 

compared. Fig. 6 shows the 9 histograms of each ADDP image made in each of the color channels of RGB, 

L*a*b* and HSV. Figure 6c shows 9 histograms in the B channel where the histogram of the first image is in the 

background and histograms of subsequent images are presented in the front. In the blue (B) channel in RGB 

color space, there were apparent differences between the background (pixel values < 100) and foreground (pixel 

values > 100), which offered easy segmentation, and the pixels from the background and the damages that 

progressed over time have distinct peaks and valleys. On the otherhand, the histograms from the R (Fig. 6a) and 

G (Fig. 6b) channel had no distinct peaks compared to the B channel (Fig. 6c), therefore indentifying damage 

from the image through segmentation would be impossible. None of the L*a*b* color channels (Fig. 6d-f), gave 

information about the damage progression. In the L* (Fig. 6d) and b* (Fig. 6f), there was no useful information 

because here, the ADDP plots were black. The V channel (Fig. 6i) in the HSV color space worked similar to R 

and G from the RGB color space. Therefore, the order of channel utility was [B], [R, G, V], and [H, S, L*, a*, 

b*]. 



http://jfr.ccsenet.org Journal of Food Research Vol. 12, No. 2; 2023 

44 

 

 

Figure 6. 3-D Histograms of the absolute differential damage progression (ADDP) plot made in different color 

channels. Top row represents R (a), G (b) and B (c), middle row represents L* (d), a* (e) and b* (f), and bottom 

row represents H (g), S (h) and V (i). Note: d and f have no information on the histograms because the ADDP 

plots for L and b color channels were completely black 

 

For further verification, the color channels from all the three-color spaces were compared (Fig. 7). The B channel 

has clearly segmentable damaged and non-damaged parts (Fig. 7a). In the R and G channel, there were overlaps 

between the damaged and non-damaged parts (Fig. 7a). In the L*a*b* color space, there was no information on 

the lightness (L*), the damages, and the background were completely intermingled in the green-red (a*) channel, 

and little information was obtainable from the blue-yellow channel (b*) (Fig. 7b). On the other hand, in the HSV 

color space, the Hue (H) channel was completely black (Fig. 7c). The saturation (S) channel had a different color 

contrast compared to the other channels; it had a gray background and a black foreground that made it difficult to 

compare with other channels (Fig. 7c). The value (V) appeared similar (Fig. 7c) to the R and G channels.  

Similar to present study, disease or damage extensions were reported by color information alone. Damaged 

surface on dates was identified by image analysis where R from RGB space and H and V from HSV space were 

used (Al-Rahbi et al., 2013). Maturity stages of persimmon were classified by taking color as an indicator of 

maturity; R and G from the RGB color space, b* from the L*a*b* color space, and S from the HSI color space, 

and grey levels were used to define fruit maturity stages (Mohammadi et al., 2015). However, in the present 

study, to investigate the absolute damage progression over time in cucumber, the plot and the histogram made in 

the B channel in RGB color space was optimal. It must be noted that the method applied here was merely tested 

on a single cucumber with extreme damage. Nevertheless, the approach could be useful in assessing the 

performance of a postharvest treatment in terms of reducing the damage progression over the storage period.  

a) b) c) 

d) e) f) 

g) h) i) 
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Figure 7. Visualization of images in the individual color channel for comparison 

 

3.3 Identification of the Most Dominant Color Channels 

The color space that was the most sensitive overall, i.e., could capture most of the information about the 

day-to-day color changes of cucumber was identified. To identify the most significant color component (R, G, B, 

L*, a*, b*, H, S, V) in a color space RGB, L*a*b*, and HSV, a principal component analysis (PCA) was carried 

out. 

 

a) b) 

c) 
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Figure 8. A biplot of the first two components of a PCA model of the calibration data set (a) and correlation plot 

of the variables of the calibration data set (b) 

 

Figure 8a shows a PCA biplot containing both PC scores (dots) and loading (arrows) of each variable on the axis. 

Therefore, the biplot visualizes the lines that account for the maximum variance and most significant information 

of the data. The plot also shows how the variables are correlated with each other; the variable H, which was 

placed on the other side of the plot, was negatively correlated with the other variables (Fig. 8a). From the 

correlation plot (Fig. 8b), it is clear that the variables R, G, B, L*, b*, and V were highly and positively 

correlated with each other. As it was already interpreted from the PCA biplot, there were negative correlations 

between H and the other components.  

From Figure 8a, the explained variance by PC1 and PC2 is 88.2% and 9.7%, respectively. It is obvious that PC1 

alone explained the majority of variance in the data set. It is imperative to know which variables contributed the 

most to PC1. A list of loadings that indicates the variables with high loadings on the first two principal 

components is shown in Table 2. From the loadings of the variables in Table 2, the variables that strongly 

contributed to PC1 were R, G, B, L*, b*, and V. On the other hand, the variables a*, H, and S contributed to PC2 

and, therefore, did not contribute much to PC1. Hence, a*, H, and S can be designated as PC2. Also, from the 

biplot, the lines representing the variables R, G, B, L*, b*, and V were directed further from the PC origin. 

Therefore, these variables might capture the most variation in the data set. For further confirmation, a prediction 

about the principal components was made with two new independent data sets with the same variables. With the 

new validation data sets, PC1 still contained a majority of the information (75%) about the color changes by the 

same dominating variables as the calibration data (Fig. 9). 

a) b) 
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Figure 9. Prediction on the principal components with the new validation data sets 

 

Table 2. Contributions (%) of variables to PC1 and PC2 

Variables Contributions 

Calibration data Validation data 

PC1 PC2 PC1 PC2 

R 0.35 0.11 0.36 0.00 

G 0.35 0.01 0.36 0.07 

B 0.35 0.01 0.36 0.09 

L* 0.35 0.00 0.36 0.05 

a* 0.22 0.81 0.13 0.96 

b* 0.35 0.02 0.36 0.11 

H 0.30 0.45 0.29 0.03 

S 0.33 0.34 0.33 0.23 

V 0.35 0.10 0.36 0.02 

 

Table 2 shows that each R, G, and B component in the RGB color space performed as PC1. Unlike RGB, all 

three channels in L*a*b* and HSV did not contribute to PC1. For visualization, on the first day and last day 

(after two weeks) of imaging, RGB images and all three components in grayscale are shown in Fig. 10. The 

corresponding pixel value histograms are also shown. Figures 10 shows that all the individual R, G, and B 

components effectively represent the color changes of cucumbers from day 1 to day 14.  

Similar to the present study, color changes during mango maturation were evaluated in CIELAB and HSV. 

However, using only a*, b*, S, and H coordinates offered adequate classification of ripeness after PCA analysis 

in selecting the most dominant variables (Vélez-Rivera et al., 2014). Group comparisons for papaya ripening 

achieved better predictions when normalized mean values of R, G, and B channels were used (Santos Pereira et 

al., 2018). The RGB color space is the fundamental color space that is transformed into other color spaces to 

better reflect human perception but the outcome is also devise-dependent (Vélez-Rivera et al., 2014). The RGB 

transformation to other colors can be done in two ways: linear and nonlinear. The transformations to HSV 

and L*a*b* color spaces are examples of nonlinear transformation. Color spaces differ by characteristics, and 

their performance varies by the type of visual tasks (Yang et al., 2010; Bhargava & Bansal, 2021). In the present 

work, RGB color space was found to be suitable to get the necessary information about the external changes of 

cucumber. Therefore, no color transformation is required, and it is recommended to interpret the images as an 

RGB image.  
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Figure 10. Visualization of Day 1 RGB image (a) with its corresponding grayscale red, green, and blue channel 

and pixel value histogram (b) and visualization of Day 14 RGB image (c) with its corresponding grayscale red, 

green, and blue channel and pixel value histogram (d) 

 

4. Conclusions 

In this study, a machine vision system was developed and utilized to monitor cucumbers' external quality during 

storage. External changes of stored cucumbers were evaluated by extracting color and creating Absolute 

Differential Damage Progression Plot. Comparing the grayscale histograms and the R, G, and B values over the 

storage period was found to be a suitable means of obtaining insight into the color changes of cucumber. Over 

time, in the color histogram plots, the pixel values of the image shifted from left to right, indicating the 

cucumber surface turning yellowish. Similarly, R, G, and B values had a steady increase as the color of the 

surface changed. The Blue (B) channel in RGB color space was found to be optimal for interpreting the damage 

progression from the absolute differential damage progression plot (ADDP) and the corresponding histogram. 

RGB images of the cucumbers were transformed into L*a*b* and HSV color spaces. The most sensitive color 

space, i.e., the space that could capture most of the information about the day-to-day color changes of cucumber, 

was identified by means of the Principal Component Analysis (PCA). According to the PCA on the test data, 

unlike L*a*b* and HSV color spaces, each of the individual channels in RGB space was found to be suitable to 

retain the necessary information about the external changes of cucumber. This observation was further validated 

with independent datasets. Overall, the machine vision approach could be a potential nondestructive technique 

for monitoring the external quality of cucumber as well as for evaluating the performance of any postharvest 

treatment during storage. In the future, the recognition or classification of the damage in a cucumber image 

should follow a standard procedure to be able to prevent it effectively.  

 

a) 
b) 

c) d) 
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