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Abstract 

Although numerical methods enable comprehensive analyses of food freezing, a thorough quantification is 

lacking the effects on the process introduced by uncertainties in variable thermal properties. Analytical models 

are, however, more suitable tools to perform such calculations. We aim to quantify these effects by developing a 

solution to the freezing front (FF) problem subject to temperature-dependent thermal properties and 

one-dimensional convective cooling. The heat integral balance method, Kirchhoff’s transformation, and Plank’s 

cooled-surface temperature equation (as a seed function) enabled us to obtain an approximate solution to the FF 

penetration time (). To optimize model accuracy, two adjustable parameters were correlated with the inputs via 

nonlinear regression referenced to numerical simulation FF data. The mapped () sensitivities, generated by 

perturbations in the temperature-dependent thermal conductivity and effective heat capacity ( and , 

respectively), undergo rapid nonlinear changes for Biot numbers ≤ 6. Above this level, these sensitivities 

stabilize depending on the cooling medium temperature and a thermal conductivity parameter. The median  is 

0.348 and its interquartile range (IQR) is 0.220 to 0.425, whereas the median  is 0.967 (IQR: 0.877 to 0.985). 

Statistical error measures and a ten-split K-fold validation support the model accuracy and reliability of the 

parameter estimates. Together, the model allows for gaining insights into the nonlinear behavior and magnitude 

of the influence of variable properties on the FF for a wide range of conditions. Nonlinear methods and prior 

information enable practical modeling of transport phenomena in foods. 

Keywords: freezing front, moving boundary, mathematical modeling, perturbation analysis, 

temperature-dependent thermal properties 

1. Introduction 

The exact mathematical analysis of phase change in foods is largely limited by nonlinearities introduced a set of 

assumptions comprising temperature-dependent material properties, convective cooling (heating) and finite 

domains. Because of their multi-component system, structure and stability properties, thermal properties are 

difficult to measure and model accurately (Heldman & Singh, 1981). Consequently, it is relevant to understand 

the impact that uncertainties in physical properties have on product design to energy consumption aspects of 

industrial freezing operations (Schwartzberg, 1976; Pham & Willix, 1990).  

Invoking the moving boundary (MB) concept reduces the complexity of the phase change problem by 

formulating one or more material regions separated by well-defined interfaces and subject to simplified physical 

assumptions. For example, pseudo-steady state and constant thermal property assumptions were central to Plank’s 

analysis of freezing times of food materials (López-Leiva & Hallström, 2003). Analytic solutions of the freezing 

front (FF) with variable thermal properties are available only for limited cases (Kucera, 1985; Lunardini, 1988; 

Ramos, Cerrato & Gutierrez, 1994; Voller, Svenson & Paola, 2004; Singh, Gupta & Ral, 2011; Rajeev, 2014; 

Kumar & Singh, 2018). Specifically, the problem becomes analytically intractable when formulated with 

convective cooling, finite geometry, gradual heat release (absorption), and temperature-dependent thermal 

property models with meaningful physical parameters (Özisik, 1980; Delgado & Sun, 2001; Schwartzberg, 

Singh & Sarkar, 2007). 

Although numerical models are suitable to solve complex phase change problems, analytic models are more efficient and 

compact to understand the specific roles that variable thermal properties play in the process (Özisik, 1980). The central 

objective of this exploratory research is to quantify and characterize the effects of variable thermal properties on the 

freezing front. To accomplish this aim, we apply nonlinear methods to analyze the FF problem subject to the 
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aforementioned formulation. Our modeling strategy includes (1) solution to the FF problem using nonlinear 

methods and prior information characterizing the convective surface temperature, (2) FF data generation via 

numerical simulation, (3) nonlinear-regression estimation of two adjustable parameters to optimize model 

accuracy, (4) implementation of the K-fold model validation, and (5) quantification and mapping of the effects of 

temperature-dependent thermal properties on the FF. 

2. Literature Review 

The MB formulation has been applied to processes like food freezing, thawing, frying, ablation, bubble growth, 

sedimentation, and shoreline movement (Kucera, 1985; Farid, 2002; Voller et al., 2004; Rajeev, 2014). This 

partial review identifies analytic methods used in heat conduction problems with moving boundaries 

characterized by the Stefan condition.  

Throughout this paper, we refer to the following assumptions: 

• A1, constant thermal properties for each phase; 

• A2, Dirichlet, fixed cooling medium temperature, boundary condition (BC); 

• A3, Robin BC with constant medium temperature; 

• A4, Neumann BC with constant surface heat flux; 

• A5, semi-infinite domain; 

• A6, one-dimensional finite geometry; 

• A7, initial temperature at the initial freezing point; 

• A8, no sensible heat release; 

• A9, total latent heat release at a unique temperature; 

• A10, pseudo-steady state (PSS), for Stefan values smaller than 1; and  

• A11, temperature-dependent thermal properties and gradual heat release (absorption). 

Although we review some relevant solutions to illustrate their functional expressions, we focus on the potential 

analytical methods to solve the MB problem with conditions A3, A6, A7, and A11. An in-depth theoretical 

treatment of the Stefan problem can be found elsewhere (Goodman, 1958; Solomon, Wilson & Alexiades, 1981; 

Kucera, 1985; Lunardini, 1988; Mitchell & Myers, 2012).  

Neumann applied similarity transformation to a two-phase freezing problem with assumptions A1, A2, A5, and A9 

(Solomon et al., 1981). His exact solution describes the moving boundary (X (t)) being proportional to √𝑡. This 

square-root of time relation is a well-known result of MB physics. By further imposing assumption A10, the 

similarity solution becomes X (t) = √2 St 𝑓 𝑡. If thermal properties and gradual latent heat release are temperature 

dependent, the FF motion may depart from the √𝑡 law (Bazant, 2018). The set of assumptions behind Plank’s 

freezing time Eq. (1) includes A1, A3, A6 to A10 (Hu & Argyropoulos, 1996). In addition to small Stefan 

numbers, assumption A10 also requires negligible diffusion in the freezing region (Kucera, 1985; Lunardini, 1988). 

Several modifications of Eq. (1) have been developed to compensate for Plank’s simplified set of assumptions 

(Pham, 1986; Mittal, Hanenian & Mellikarjunan, 1993; Delgado & Sun, 2001; Fricke & Becker, 2001). Plank’s 

freezing time equation is given by: 

𝑃𝑘 =
𝑠()

Bi·St
 (0.5 Bi 𝑠() + 1),                                (1) 

where s() is the dimensionless FF, τ the dimensionless time, Bi the Biot number, and St the Stefan number; all 

based on the frozen-state material properties. 

Considering that St is less than 1 for most foodstuffs (Schwartzberg, 1976), its effect is to slow down the diffusion 

process. Kucera (1985) applied boundary fixing transformation and iterative series methods to the Stefan 

(solidification) problem invoking assumptions A1, A4, A5, A7, A9, and A10. The upper-bound FF penetration 

time expression given by Kucera is: 

Kc = Pk + 𝑠()
2 (3+Bi 𝑠())

6(1+Bi 𝑠())
,                               (2) 

where τPk is estimated from Eq. (1), and valid for long times τ  𝒪[St−1]. 
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Goodman’s (1958) melting analysis implemented the heat balance integral (HBI) method with assumptions A1, 

A4, A5, A7, and A9. Several HBI investigations have addressed the Stefan problem with assumption A1, A3 or 

A4, A6, and A9 using polynomial, exponential or trigonometric temperature profiles (Özisik, 1980; Wood, 2001; 

Mitchell & Myers, 2012). The latter authors recommended a cubic polynomial for HBI analysis of melting 

problems as optimum modeling strategy. This HBI volume-averaging method allows removing the temperature 

variable from the energy partial differential equation (PDE) and reducing it to an ordinary differential equation 

(ODE). Özisik (1980, p. 419) applied similarity variable transformation to the frozen phase and HBI to the 

freezing phase using assumptions A1, A2, A6, and A7. His solution requires, however, solving a transcendental 

equation and specifying a temperature-polynomial degree. Baudouy (2002) implemented Kirchhoff’s 

transformation and HBI methods for heat transfer in Helium II with assumptions A2 and A5. It has been proven 

that for cp  0, the solution to the Stefan problem with assumptions A1, A3, and A6 to A9 approaches the PSS 

solution (Solomon et al., 1981). Together, the aforementioned methods, however effective in obtaining 

approximate FF solutions, did not solve the phase change problem considering assumptions A3, A6, A7, and 

A11. 

Variational iteration (Singh et al., 2011) and homotopy perturbation (Rajeev, 2014) methods were applied to 

space-variable physical properties and latent heat in Stefan problems. Ramos et al. (1994) implemented the group 

transformation theory to solve for transient temperatures during freezing (thawing). Their assumptions A3, A6, 

and A7 also included a variable effective heat capacity (albeit difficult to interpret) and thermal conductivity 

described, however, by empirical power-law models. 

Cho and Sunderland (1974) used a modified error function to solve the Neumann problem considering a linearly 

temperature-dependent thermal diffusivity. The effect on the moving boundary was significant only for thermal 

diffusivity with marked temperature dependence and for large Stefan numbers (St ≫ 1). Kumar and Singh (2018) 

found comparable results by applying similarity variable transformation and Chebyshev polynomials. Their 

assumptions comprised A2, A5, specific heat and thermal conductivity properties that followed assumed 

empirical power-law functions of temperature. 

Heldman and Singh (1981) described the influence variable thermal properties on temperature fields applying 

numerical and experimental methods but without systematic analysis of errors in thermal property data. This type 

of analysis has been addressed relying on (semi) empirical freezing-time correlations and yielding only mean 

effects for a narrow range of input physical parameters (Mittal et al. 1993; Fricke & Becker, 2001; Rao, Rizvi & 

Datta, 2005). Whereas the reported sensitivities due to perturbations in frozen thermal conductivity (σκ) vary from 

±0.01 to ±0.15, the sensitivity driven by latent heat perturbations (σλ) is approximately 1.16. Pham and Willix 

(1990) conducted an error analysis of process times due to Biot number deviations, but not thermal properties. 

Mittal et al. (1993) evaluated the influence of errors associated with thermal properties on the freezing process 

considering twelve well-known freezing-time (semi) empirical correlations. The latter are essentially modifications 

of Plank’s Eq. (1). 

Collectively, a specific understanding of the role of variable temperature-dependent thermal properties on the 

freezing front is not thorough and has thus motivated this investigation. An analytical and accurate FF model 

based on realistic assumptions would enable such quantification. The advantages of such a model over numerical 

solutions include no computer programming, no numerical convergence or stability problems, and 

straightforward calculations of the effects of variable thermal properties on the MB. Additionally, the model 

could be used as a convenient educational tool to describe the FF in food materials. 

3. Methods 

Our analytical strategy comprised HBI and Kirchhoff’s transformation methods and a simple convective 

surface-temperature expression as a seed function. Ideally, the analysis would yield an FF solution that leads to 

an improved temperature equation. The iterative process is repeated until it converges. If the functional 

complexity of the updated surface-temperature expression curtails the iteration process, the accuracy of the first 

solution is optimized by nonlinear regression of adjustable parameters introduced in the seed function. 

3.1 Numerical Models 

Strategy steps (1) to (3) relied on Wolfram Mathematica’s 11 symbolic, NDSolve (Method of Lines), and 

NonlinearModelFit functions for analysis, numerical simulation, and nonlinear regression calculations, 

respectively. Mathematica’s least-squares minimization uses the Levenberg-Marquardt algorithm. A numerical 

model implemented the finite difference Crank-Nicolson time-stepping scheme (CNFD) and the Thomas 

algorithm in MS Excel 10 to solve the phase change problem (Carnahan, Luther & Wilkes, 1969). This model 

allowed for generating one-dimensional transient temperatures and FF position-time data. We validated the 
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CNFD model against the exact series solution of the heat conduction assuming constant thermal properties 

(Özisik, 1980). CNFD-model freezing predictions were also compared to Mathematica’s numerical temperature 

solution and to Pham and Willix’s (1990) experimental freezing times for tylose substance. The latter validation 

yielded a Pearson correlation coefficient of 0.998 (p∗ < 0.01). 

3.2 Statistical Error Analysis and Validation 

Error analysis of nonlinear regression in step (3), fit quality evaluation and selection of correlation models 

followed published methodologies (Beck & Arnold, 1977; Archontoulis & Miguez, 2015). Mathematica’s 

Generalized Linear Model (GLM) enabled quantifying the significance of thermal property effects on FF 

penetration-time sensitivities. To validate the final parameterized model in step (4), we implemented a ten split 

K-fold method with a 90:10 data partition. The model training and error validation sets comprised 1 350 and 150 

data points, respectively. The final model accuracy is an average of ten validation K-fold error estimates 

(Arboretti-Giancristofaro & Salmaso, 2003; Jung & Hu, 2015). 

3.3 Thermal Property Models 

To quantify the influence of variable thermal properties on the FF in step (5), we adopted Schwartzberg’s (1976) 

thermal conductivity (𝑘̂) and effective heat capacity ( 𝑐̂𝑝)  models. Below the initial freezing point, the 

normalized properties are given by k̂ (θ) = 1 − κ /(1 − θ) and 𝑐̂𝑝(θ) = 1 + λ /(1- θ)2. Each model depends on a 

single thermal-property parameter that controls their temperature dependence. Estimation of κ and λ is 

straightforward using published thermal property data. These models provide reliable estimates of k̂ and 

𝑐̂𝑝 applicable to a practical range of food types and industrial freezing conditions (Schwartzberg, 1977). Further, 

the models have monotonic and differentiable properties over the entire freezing temperature range (Figure 1). 

3.4 Freezing Front Calculation 

Rather than an infinitesimal thin interface, the FF that develops in multi-component foods occurs as a 

progressive, yet brief, decrease in temperature away from the initial freezing point (Farid, 2002). See the curved 

end of the plateau (top shadow) of the temperature surface in Figure 2. The FF location was computed as a 

time-heat event from simulated transient-temperature fields. When the normalized and accumulated heat release 

(relative to the initial material heat content) changes by a minute but detectable amount or threshold, it signals 

the front’s transition. This detection limit was set equal to 0.334%, considering the total temperature 

measurement error, which comprises thermocouple probe, instrumentation, and calibration errors (Cottrell, 

2006). 

3.5 Freezing Front Penetration-time Sensitivity 

To map the effects of variable k̂ and ĉp, we generated perturbations in the single property parameter (κ or λ) that 

controls their temperature dependence. By introducing a relative error (uncertainty) in κ (𝜖𝜅̂ = ±3%), keeping λ 

constant, the effect on FF penetration time was calculated as a sensitivity measure ( ) equal to 𝜖𝜏̂/𝜖𝜅̂. The 

same procedure applied to perturbations in λ to calculate   as 𝜖𝜏̂/𝜖̂. The simultaneous effect of κ and λ 

perturbations on FF () was computed using Monte Carlo simulation with 5 000 iterations and assuming an 

SD of ±3% of the property parameter means. Under the law of propagation of uncorrelated and random errors, 

the joint sensitivity becomes (Tellingheusen, 2001): 

 𝜅 = √
( ̂)

2+( ̂)
2

̂
2+ ̂

2 ,                                (3) 

where  is ̂/√̂κ
2 + ̂

2
. 

3.6 Numerical Test Design 

Test grids in Table 1 were designed to control the following input factors: Bi, λ, ψ, κ, and s in the numerical 

computations (Chavarria, 2019). Whereas grid T1.1 was used for parameters (n) and (m) calculations, grid T1.2 

applied to computation of σλ and σκ penetration time sensitivities. Test grid T1.2 was defined as full factorial. In 

turn, test grid T1.1 was designed considering 1/Bi2 and St effects on FF. The sample size (N) for grid T1.1 was 

estimated following Bellera and Hanley (2007). The sample points were defined according to the following 

cumulative (percentage) distribution with respect to Bi· St levels: 

{{< 0.015, 55.1%}, {0.45, 69.6%}, {0.8, 73.5%}, {1.5, 80.2%}, {2.55. 88.5%}, {3.95, 92.5%}, {6.05, 94.9%}, 

{8.15, 96.7%}, {10.25, 99.0%}, {11,3, 100%}}. 
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Table 1. Numerical experimentation test design 

Analysis Factor Levels 

Grid T1.1    95* 105* 115*    

n and m   -40 -32 -24 -16 -8   

parameter κ   0.4* 0.5* 0.6*    

estimation, s 0 0.4 0.5 0.5 0.8 0.9 1  

N = 1 500 Bi 0.06 0.061 0.062 0.0634 0.64 0.65 0.0667 0.07 

  0.0734 0.0767 0.080 0.834 0.090 0.093 0.967 0.30 

  0.40 0.60 1 3 6 10 25  

Grid T1.2    90 100 110 120   

,    -40 -32 -24 -16 -8   

 κ   0.4 0.5 0.6    

calculations Bi 0.06 0.07 0.08 0.09 0.1 0.14 0.18  

N = 1 200  0.22 0.27 0.35 0.45 0.60 1.5 3  

  6 10 13 17 21 25   

Grid T1.3     105     

   -40 -32 -24 -16 -8   

mapping κ    0.5     

N = 45 Bi 0.06 0.09 0.667 1.25 3 6 12  

  18 25       

Test grids for the computation of the final model parameters and sensitivities generated by thermal property 

perturbations. Levels with an asterisk indicate additional values in the factor neighborhood 

 

4. Analysis 

4.1 Freezing Front Derivation 

The one-dimensional MB assumes a virtual interface or surface separating the frozen phase from the freezing 

region across the slab thickness and moving at an unknown velocity towards the thermal center (Farid, 2002). 

This interface is defined by the Stefan condition that (a) links both temperature fields, (b) requires the rate of 

latent heat removal to balance the heat flux into the freezing region, and (c) forces the temperature continuity 

across the boundary (Kucera, 1988). The analytical task is to solve for both the transient thermal fields in each 

region and the FF location. 

In the integral method, all the heat phenomena take place within a thermal layer that grows from the cooled 

surface towards the slab center. This dynamic depth ends where the heat flux is zero and the temperature remains 

at the initial phase change point. Once the slab center is reached, the thermal layer concept vanishes (Özisik, 

1980). 

The one-dimensional heat conduction PDE, which accounts for temperature-dependent thermal conductivity and 

effective heat capacity, but no density change, is given by (Heldman & Singh, 1981; Schwartzberg et al., 2007): 

𝑐̂𝑝((𝑟, ))
𝜕𝜃(𝑟,𝜏)

𝜕𝜏
=
𝜕

𝜕𝑟
[𝑘̂((𝑟, ))

𝜕𝜃(𝑟,𝜏)

𝜕𝑟
],                  (4) 

where the dimensionless spatial coordinate is r = x/L. The initial condition is θ (r, 0) = 0, whereas at very long 

times θ (r, τ → ∞) = ψ. 

The BCs are: 

𝜕𝑟θ (r, τ) = 0   at r = 1,                                 (5) 

−𝑘̂(𝑤(𝑟, ) 𝜕𝑟𝜃 (𝑟, 𝜏)  = Bi ( − 𝑤())     at r = 0,                        (6) 

where θw (τ) = θ (0, τ). 

Applying Kirchhoff’s transformation to the 𝑐̂p () model, yields the new temperature u (Özisik, 1980): 

𝑢 = ∫ 𝑐̂p()𝑑


0
=  +  /(1 − ).                          (7) 
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If Eq. (7) is plugged into (4), we obtain: 

𝜕𝑢(𝑟,)

𝜕
=
𝜕

𝜕𝑟
[̂((𝑟, ))

𝜕𝑢(𝑟,𝜏)

𝜕𝑟
],                           (8) 

where ̂ () = 𝑘̂()/𝑐̂𝑝() becomes an apparent diffusivity term that captures the nonlinear temperature effects. 

The r domain in the thermal layer ranges now from 0 to s(τ). Whereas the initial condition is u (r, 0) = 0, the BCs 

are: 

u(r,τ) = 0 and 𝜕𝑟𝑢(r,τ) = 0        at r = s(τ),                    (9) 

−𝛼̂(𝜃𝑤(𝜏))𝜕𝑟  𝑢(𝑟, 𝜏) = Bi(− 𝜃𝑤(𝜏))     at r = 0.                    (10) 

The RHS of Eq, (10) is a prescribed function of the convective heat flux in terms of s (short notation for s (τ)) and 

is only a function of time. Therefore, it requires no Kirchhoff’s transformation (Özisik, 1980). If Eq. (8) is 

integrated over r, from 0 to s, the HBI equation becomes: 

               ∫ 𝜕 𝑢(𝑟, )𝑑𝑟
𝑠

0
= ̂() 𝜕𝑟𝑢(𝑠, ) − ̂() 𝜕𝑟𝑢(0, ),                  (11) 

where the first term on the RHS vanishes with the zero heat flux at r = s (τ). Applying Leibniz’ integration rule 

together with u (s, τ) = 0 to the LHS and Eq. (10) to the RHS of Eq. (11) yields: 

𝜕 ∫ 𝑢(𝑟, )𝑑𝑟
𝑠

0
= Bi ( − w()).                          (12) 

To eliminate θw in Eq. (12), we invoke the following convective-surface temperature function: 

w(𝑠) = Bi 𝑚 𝑠 /(1 + Bi 𝑚 𝑠 ),                            (13) 

which can be readily derived from Eq. (1) setting m = 1. 

Even though Eq. (13) is a simple rational expression, its introduction as a seed function generates a solution with 

greater functional properties. Goodman (1958, p. 339) obtained a similar equation for St = 0; but even for 0 < St 

< 1, it can be shown that his equation still holds with a relative error of 1.2%. For food freezing processes, St 

values vary from 0.04 to 0.45 (Schwartzberg, 1977). Parameter m was introduced into Eq. (13) to account for Bi 

and St effects considering Goodman’s analysis. 

A temperature polynomial of n-th degree that satisfies Eq. (9) is given by: 

𝑢(𝑟, ) = 𝑢𝑤()(1 − 𝑟)
𝑛.                                   (14) 

Evaluating the u integral on the LHS of Eq. (12) with Eq. (14) yields: 

∫ 𝑢(𝑟, 
𝑠

0
)𝑑𝑟 =

𝑠 𝑢𝑤(s)

1+𝑛
.                                    (15) 

If Equations (13) and (15) are plugged into (12), the HBI equation becomes: 

𝜕

𝜕
[
𝑠 𝑢𝑤(𝑠)

1+𝑛
] =

Bi 

1+Bi 𝑚 𝑠
.                                    (16) 

Combining Equations (13) and (14) with (10), recasts the energy balance at the cooled surface as: 

−𝑛  ̂( 𝑤()) 𝑢𝑤(𝑠)

𝑠
=

Bi 

1+Bi 𝑚 𝑠
.                              (17) 

Using the expressions of 𝑘 ̂() and 𝑐̂𝑝 () in ̂ (), we solve for uw from Eq. (17): 

𝑢𝑤(𝑠) =
Bi 𝑠 

𝑔1(𝑠)
(Bi 𝑚 𝑠)2(+ ( − 1))2) + 2 Bi 𝑚 s (− + 1) + + 1,      (18) 

where g1(s) is: 

g1(s) = n (Bi m s + 1)(1 − Bi m s (ψ − 1)) (Bi m s (κ + ψ − 1) + (κ − 1)). 

 

Plugging Eq. (18) into (16) and applying the chain rule of differentiation results in: 

 



http://jfr.ccsenet.org Journal of Food Research Vol. 8, No. 6; 2019 

135 

 

               ∫ 𝑑


0
= ∫

𝑠

𝑔2(𝑠)

𝑠

0
[−2 (κ− 1) (λ + 1) + (Bi 𝑚 s)5( − 1) 

1
(λ +(− 1)2)  

+ 2 (Bi 𝑚 𝑠)4[κ (2 − 3) + 3-4 +2) (λ +(− 1)2] + Bi m s [κ (λ (− 9) + 7 − 9) + λ (9 − 2) − 8 + 9]  

+ (Bi 𝑚 𝑠)3 [−2 ( − 1)2(4 − 7) + λ (14 − 12 + 2) + κ (2 λ (3  − 7) + 3 3) − 192) + 30  − 14)]  

+ 4 (Bi 𝑚 𝑠)2(−2 λ (− 2) + 3𝜓2− 7+ 4) + κ (λ (− 4) − 2(2− 3 + 2))]𝑑𝑠,                       (19) 

where g2 (s) is given by: 

g2 (s) = (n + 1) (1 + Bi 𝑚 𝑠) (1 − Bi m s (ψ − 1))2 (κ − 1 + Bi 𝑚 𝑠 ψ1)
2, 

and ψ1 = ψ − 1 + κ. Integrating Eq. (19) yields the FF penetration time (τ) as a function of (s) in Eq. (20): 

  
1

𝑛(1+𝑛)Bi2κ 𝑚2
(
(−1+κ)(κ2+λ)

1
3 (

Bi 𝑚 𝑠 ψ 1

 1Bi 𝑚 𝑠+κ−1
+ 𝐿𝑛 [1 +

1Bi 𝑚 𝑠

(−1+κ)
]) +

κ Bi 𝑚 𝑠 (λ+(−1+ψ)2)

2(−1+ψ) 1
(2 + Bi 𝑚 𝑠)      −

− κ 𝐿𝑛[1 + Bi 𝑚 𝑠]   +   
λ

(−1+ψ)3
(
Bi 𝑚 𝑠 ψ(−1+ψ)

(−1+Bi 𝑚 𝑠(−1+ψ))
 − 𝐿𝑛[1 − Bi 𝑚 𝑠 (−1 + ψ)])).       (20) 

Equation (20) does not explicitly cast the FF (s) in terms of τ, which precludes an updated surface-temperature to 

be obtained together with further iterations. Goodman’s solution (1980, p. 338) is also an implicit expression in s. 

Such functional relation mirrors temperature measurements in food freezing experiments. Sensing probes cannot 

directly detect the FF. Instead, the time is measured when the temperature barely deviates from the initial 

freezing point at specific and known slab depths. 

The domain of the FF Eq. (20) is 0 ≤ s ≤ 1, gives s (0) = 0, and has a monotonically decreasing derivative (ds/dτ > 

0) as is characteristic of one-dimensional MB solutions (Özisik, 1980; Kucera, 1985; Ramos et al. 1994). 

Whereas 1/Bi², ψ, and 1/m2 significantly influence τ by changing its order of magnitude, λ and κ have only a 

weak to moderate scaling effect. The limit of s as Bi approaches infinity is √2𝑛(𝑛 + 1) 𝜏. This is consistent 

with the classic HBI solution considering assumptions A1, A2, A5 and A9 (Mitchell & Myers, 2012). As the 

parameter (m) approaches zero, the FF time profile shifts from a power law to linear time dependence. The 

temperature-polynomial power (n) has a linear scaling effect on τ, but it does not impact the freezing-front time 

profile. All rational, linear, and logarithmic terms in Eq. (20) are significant. Noteworthy is the change of the s vs. 

τ curvature at about 0.3 < s < 0.5, where it slightly straightens for (−10 < ψ < −8) and (0.06 < Bi < 0.1). This 

subtle FF behavior affects the value of τ at s = 1 to some degree, but more so the sensitivity (σλ or σκ) values, and is 

addressed in the Discussion. 

 

Figure 1. Example of a finite-difference model simulation of normalized slab temperatures, thermal properties, 

and accumulated heat release below the initial freezing point 

 

5. Results 

A slab freezing-simulation case, solved for the normalized temperature (v̂) using Mathematica’s NDSolve 

function and the CNFD-Excel model, is presented in Figures 1 and 2, respectively. The latter graph also 

shows the normalized thermal properties (𝑘̂ and 𝑐̂𝑝) and the accumulated heat released (QL.) Note that, for 
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this specific case, QL is approximately 62% when the FF reaches the slab center at   6. The accumulated 

heat release is, though, always incomplete for the conditions in grid T1.1. As a consequence, with 

everything else being equal except the gradual heat release, the FF will reach the center faster than the 

Plank-predicted FF penetration time (Figure 5). 

5.1 Model Optimization by Parameter Estimation: Fit Quality 

Tables 2 and 3 summarize regression results for fitting Eq. (20) with constant (𝑛̂) and (𝑚̂) values. Notice the 

relative standard errors are less than 2.8%. The maximum intrinsic (0.01720) and maximum 

parameter-effects (0.03384) curvatures are less than 6% of the 95% confidence region curvature (0.57718). 

The fit response (lower plot in Figure 3) shows a regression quality higher for slow cooling rates (τ > 7) than 

for fast rates (τ  7). This fit inconsistency is reflected in the high relative mean and median errors (Table 3). 

To improve model accuracy, parameters (n) and (m) are developed as correlations in terms of input Bi, St, and κ. 

Because the term (1/ (n (1 + n) m2) strongly affects Eq. (20) as one scaling factor, the following models are 

proposed to minimize dependence between the sensitivity coefficients of sub-parameters n1, n2 and m1: 

𝑛 = 𝑛1(1 +  Bi𝑛2)                                   (21) 

𝑚 = 𝑛2
2/(Bi𝑛2(1 + (1 +  𝑡) Bi)𝑚1)                              (22) 

5.2 Objective Function Minimization and Parameter Uniqueness 

To verify the least-squares global minimum, we evaluated the SSE using eight levels of each sub-parameter (w1 

× sub-parameter), where w1 is: {0.1, 0.2, 0.4, 1.11, 1, 2.5, 5, 10}. Results support the SSE values corresponding 

to the global minimum least-squares criterion (Table 3). Insofar as parameter uniqueness, regressions were tested 

with six different initial guesses of each sub-parameter (w2 × sub-parameter), where w2 is: {0.01, 0.08, 0.64, 1, 

4, 10}. Consistent convergence to the reported estimates and errors in Tables 2 and 3 were obtained as long as 

the initial values met the following conditions: 1 < n1 < 10, n2 ≤ 4, and m1 < 0.6. Outside these limits, the initial 

guesses led to SSE values greater than the minimized regression error value; to suboptimal SSE values or 

meaningless negative and nil n values. 

5.3 Parameter Reliability, Residuals and Model Validation 

The pairwise coefficients in the upper-right triangle of the correlation matrix are {1, −0.497, −0.177; 1, 0.665; 1}. 

The sensitivity coefficient pairing n2 and m1 (0.664) indicates partial inter-dependence but only on the second half 

of the FF depth. Further, the maximum intrinsic (0.00615) and maximum parameter-effects (0.01019) curvatures 

are approximately two orders of magnitude smaller than the 95% confidence region curvature (0.61889). These 

measures confirm the asymptotic and almost-linear behavior of the estimates computed at the converged 

sub-parameter values and, thus, their reliability (Karolczak & Mickiewicz, 1995; Seber & Wild, 2003). The 

residuals (upper-left corner in Figure 3) are non-normally distributed according to the Jarque-Bera, skewness, 

and kurtosis tests, whereas the W/S, D’Agostino and Anderson-Darling tests yield opposite results (Ghasemi & 

Zahediasl, 2012). This aspect is addressed in the Discussion. 

 

Figure 2. Example of normalized-transient temperature profiles during freezing as predicted by Mathematica’s 

NDSolve kernel function, with Bi = 1, ψ = −16, κ = 0.5 and λ = 100 
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Table 2. Nonlinear regression results estimates and fit measures for n, m, and joint sensitivity (σκλ) 

Parameter Es t i ma t e Standard error 95% Conf .  i n te rva l t - v a l u e B i a s  ( % ) 

𝑛̂ 3.0826 0.00863 3.0656 3.0995 357.2 -1.08 × 10−3 

𝑚̂ 0.02992 0.00068 0.0286 0.03124 44.2  7.36×10−4 

Constant parameters model 

𝑛1 2.2264 0.00160 2.2233 2.2296 1381.7 -2.48 × 10−4 

𝑛2 0.18282 0.00064 0.1816 0.1841 285.4 -8.84 × 10−6 

𝑚1 0.84361 0.00579 0.8322 0.8549 145.6  1.65 × 10−3 

Adjustable parameters model 

𝑐1 0.6558 0.00065 0.6543 0.6589 1012.3 -9.82 × 10−  

𝑐2 0.0809 0.00049 0.0799 0.0819 163.9  4.31 × 10−  

Joint sensitivity correlation 

Estimates calculated at a significant probability p∗ < 0.001  

 

Table 3. Nonlinear regression statistics 

Measures Native model Full model 

RMSE 1.049 0.2233 

𝑅𝑝
2 0.9791 0.9978 

AIC 3497.7 612.6† 

BIC 3512.9 647.9† 

 (%) 30.16 11.43 

𝑚(%) 13.73 6.25 

N 1500 150 

Parameters 2 6 

Statistical measures for native and full models. AIC† and BIC†values calculated using N = 1 500 

 

Nonlinear regression errors of the ten K-fold validations are presented in Table 4. Each validation yielded a set of 

sub-parameters n1, n2, and m1 calculated with a sample size (N) of 1 350 data points. The tabulated errors 

measures were obtained using these sub-parameters with the ten validation data-splits of the 150-point datasets. 

Notice the consistency between error measures in this Table (final model) and those in Table 3 (native model). 

5.4 Moving Boundary Model Performance 

Figure 5 compares FF time profiles predicted by Eq. (20), CNFD model, Eq. (2), Özisik’s (1980) analytic 

solution, and Eq. (1), with the Biot number and sample levels of St and κ as parameters. Though the full model’s  

predictions are smaller than Plank’s values, notably for low Bi ≤ 0.1, they are consistent with the CNFD model’s  

 values. Notice that for Bi ≥ 40, the full model’s predictions agree with the Özisik solution, which assumes 

constant thermal properties and a Dirichlet BC. 

 

Figure 3. Comparison of native and full model fit responses vs. FF penetration times by the CNFD model (lower 

plot), and histogram of the raw residuals (upper-left corner plot) 
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5.5 Thermal Conductivity and Latent Heat Effects 

Relative errors in κ (δκ/κ = ±6%) generate (∓δk̂/k̂) and (±δτ /τ ) uncertainties. These effects are illustrated as 

families of s–τ curves in Figure 6 with Bi as parameter. Although ±δτ/τ varies along the FF profile, its variability 

is insignificant (F = 0.145, p∗ = 0.05). Figure 7 maps the sensitivity response against ψ and Bi·κ. In the region 

limited by (0.06 < Bi·κ < 2),  forms a narrow and unexpected pleat or fold (lower-right section of the map). 

The sensitivity values in this pleat are, nevertheless, positive and of the same magnitude of the stabilized 

sensitivity values for Bi·κ > 3. 

Descriptive statistics for   and  sensitivities are presented in Table 5. The three main-effects groups 

detected by Mathematica’s GLM analysis in decreasing order of magnitude are: 

{κ (F = 1882.8)} > {Bi κ (F = 326.6), Bi  ψ (F = 238.1), ψ (F = 140.8), ψ κ (F = 129.8)} > {Bi
2
(F = 9.5)}, 

where all F values are significant at p∗ < 0.002. Factors Bi and λ independently exert no effect on . 

Uncertainties in λ (δλ/λ = ±3%) generate roughly similar errors (±δτ /τ) in the FF penetration time shown (Figure 

8), where families of s–τ profiles are presented with Bi as parameter but κ and ψ set at fixed levels. The mapped 

sensitivity () response to λ perturbations forms a concave surface with ψ and Bi in Figure 9. Noteworthy is the 

  decline for 0.06 < Bi < 12 and subsequent stabilization to levels that depend on ψ. GLM analysis identified 

the following three main-effects groups on , which in decreasing order of magnitude, are: 

{Bi (F = 6590)} > {ψ (F = 2369), Biψ (F = 1784), Bi
2
 (F = 1356)} >{κ (F = 70.9), Biκ (F = 36.4)}, 

where all F values are significant at p∗ < 0.001. Note that λ uncertainties do not affect . 

A joint sensitivity () range was estimated for test grid T1.3 introducing perturbations centered at κ = 0.5 and λ 

= 105 for illustration purposes (Figure 10). Note the quick  decay with increasing Bi and leveling off to  

values (almost linearly) depending on ψ. A statistical correlation to predict  was developed as: 

 =
𝑐1(1+)

(1+Bi St)0.5 𝑐1
+ 𝑐2 𝐿𝑛[1 + Bi],                        (23) 

 

Figure 4. Effect of the Biot number on predicted values of temperature polynomial power (n) and surface 

temperature parameter (m), with St and κ as parameters 
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Table 4. K-fold validation results including mean (), median (𝑚) relative errors, and 𝑅𝑝
2 (N = 150) 

K-fold training Statistical measures 

 p
2  RMSE  (%)   (%) 

K1 0.9995 0.329 12.71 5.36 

K2 0.9962 0.285 11.41 5.53 

K3 0.9960 0.282 10.66 4.93 

K4 0.9951 0.287 10.02 4.58 

K5 0.9962 0.295 12.35 5.89 

K6 0.9967 0.286 11.72 5.23 

K7 0.9946 0.349 12.97 5.36 

K8 0.9963 0.282 10.90 5.44 

K9 0.9964 0.268 13.09 5.25 

K10 0.9961 0.311 12.52 5.48 

Median 0.9959 0.297 11.84 5.42 

SD 0.0007 0.025 1.06 0.35 

Full model 0.9983 0.297 11.83 5.36 

 

which is valid for ̂ = ̂ and for grid T1.2 conditions. Nonlinear regression estimates and statistics describing 

this correlation are presented in Table 2. The error measures supporting the fit include 𝑅𝑝
2 = 0.9988, RMSE = 

0.0248, mean  = 2.77%, m = 2.35%, maximum intrinsic and parameter-effects curvatures are 0.00011 and 

0.00044, respectively, compared to a 95% curvature confidence-region of 0.57704. The pairwise sensitivity 

coefficient (c1, c2) is -0.3585. 

 

Figure 5. Comparison of freezing front predictions by Eq. (20) with selected published and CNFD freezing front 

models 

 

Figure 6. Effect of the conductivity parameter κ (±6%) deviations on the freezing front movement 
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Table 5. Descriptive statistics of independent and joint sensitivities. MAD is 1.483 × (median of absolute 

deviations) 

 Descriptive statistics 

Sensitivity Median MAD IQR Minimum Maximum 

σK 0.348 0.152 0.220-0.425 0.027 0.950 

σλ 0.967 0.032 0.877-0.985 0.617 0.991 

σKλ 0.664 0.086 0.611-0.712 0.539 0.804 

 

 

Figure 7. Sensitivity (σK) as influenced by Bi κ and ψ, for κ = 0.5 and 0.6. Surface data smoothed by Statistica 

wafer-fit function 

 

 

Figure 8. Effect of dimensionless latent heat (λ) (±3%) deviations on the freezing front movement 

 

5. Discussion 

Although numerical analysis enables solving food freezing problems with realistic assumptions, it may not be an 

efficient approach to quantifying the uncertainties introduced by estimated variable thermal properties (Özisik, 

1980). We have thus developed an approximate analytical model to map these effects on the FF against relevant 

input properties, material and cooling conditions. The mentioned effects were calculated as sensitivities driven by 

independent or joint κ and λ uncertainties (,  , and , respectively). Together, these sensitivities vary 

between 0.1 and 1. 
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For low to medium freezing rates and as Bi increases from 0.06 to approximately 6, the κ-driven sensitivity 

range is 0.1 ≤   ≤  0.6. Sensitivities  and  , in turn, decrease from approximately 1 to ≤  0.7 and from 

roughly 0.8 to≤ 0.55, respectively. For high freezing rates (Bi > 8), all sensitivities stabilize to levels controlled 

by  for  and , and by ·κ for . This means that the greater the cooling temperature (), the closer the 

thermal properties are to their frozen state values and the faster the sensitivities stabilize. 

 

Figure 9. Dimensionless latent-heat driven sensitivity (σλ) against Bi and ·κ. Surface data smoothed by 

Statistica distance-weighted least-squares function 

 

 

Figure 10. Effect of Bi and ψ on the joint sensitivity (σκλ). Surface data smoothed by Statistica negative 

exponential function 

 

Lacking comparable sensitivity maps, we evaluate our σκ against Mittal et al.’s (1993) sensitivity values obtained 

from semi-empirical versions of Plank’s Eq. (1). The median σκ of 0.348 (IQR = 0.205) is consistent with Mittal 

et al.’s absolute value range of |-0.69 to -0.06|. Consider also that Plank’s theoretical sensitivity relative to kf  is 

̅𝑘𝑓 = -Bi/(2+Bi). For high Bi > 8, σκ stabilizes to levels depending on ·κ (Figure 7), which agrees with the 

theoretical ̅𝑘𝑓 behavior against Bi. There is no contradiction with the negative sign of Mittal et al.’s or Plank’s 

sensitivities because relative deviations in the κ drive changes of opposite sign in the fully frozen thermal 
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conductivity (kf). Plank’s mean |̅kf|is 0.794 (spanning from 0.029 to 0.926) in the Bi range of 0.06 to 25. Note 

that σκ < ̅𝑘𝑓. This is due to a Plank sensitivity that depends only on Bi, without accounting for either  or any 

buffering effect of the Stefan number. 

Our median  (0.967, IQR = 0.107) is consistent with published values (0.684 to 1.172) (Mittal et al., 1993) and 

with the theoretical -driven Plank sensitivity of 1. As the convection factors (Bi and ||·κ) increase,  drops at 

an ever-decreasing rate but stabilizes for Bi > 8 at levels that depend on ·κ. Therefore, the  map reveals 

that the closer is the thermal layer to the fully frozen state or total heat removal, the smaller is the λ uncertainty 

effect on the FF. Otherwise stated, the slower the convective freezing rate, the closer the FF is to mirror the  

uncertainty. 

The joint κ and  median sensitivity () falls between the independent σκ and values. This result is 

consistent with the law of error propagation (Tellingheusen, 2001). Notice the dominating -perturbation influence 

on the  response (Figures 9 and 10). Although the  sensitivity correlation was developed for equal 

relative errors in κ and , it yields a unique insight into the combined variable thermal property influence on the 

FF nevertheless. The odd σκ pleat at the low end of  and Bi·κ ranges (i.e. mild cooling rate) stems from the 

balancing of the two rational terms containing the FF location (s) in Eq. (20). Together they generate a slight 

inflection point in the first half of the FF. This subtle slope change becomes amplified at the end of the s–τ profile 

(s = 1), where σκ is calculated. Beyond this inflection point, the s–τ curvature remains monotonic.  

Several HBI analyses of simplified Stefan problems have either assumed or estimated the temperature polynomial 

power (n) from known analytical solutions (Goodman, 1958; Özisik, 1980; Mitchell & Myers, 2012). For a 

realistic problem formulation, neither case applies. However, it is more coherent with the phase change physics to 

extract n and m information from the FF data via nonlinear regression. This unique approach enabled us to 

estimate constant 𝑛̂ and 𝑚̂ but, more importantly, of n and m correlations with the input data (Bi, , , and κ). 

The lack of comprehensive, structured, and reliable experimental FF data justified generating these by a 

numerical solution of the energy equation. 

Whereas our constant 𝑛̂  estimate is 3.08, the adjustable n correlation predicted values ranging from 

approximately 2.8 to 5.3 depending on Bi, St, and  levels. In comparison, Mitchell and Myers’ (2012) HBI 

analysis yields 𝑛̂ ≈ 3.6 assuming constant properties. As Bi increases above 8, the shift of n towards a quintic 

power is consistent with Schwartzberg’s (1977) freezing-simulation temperature profiles. The higher the n value 

above 2, the more pronounced is the temperature profile convexity with a plateaued top. A drawback of the 

temperature polynomial assumption is that, for Bi values below 0.1, the temperature profile cannot plateau unless 

n is less than 1, which violates the energy balance at the interface. Last, if n is defined as time dependent (Mitchell 

& Myers, 2012), the solution would most likely require numerical methods, preventing thus an analytical 

expression for the FF. 

The parameter m was introduced into Eq. (13) to modulate the convective Bi effect. An m parameter magnitude of 

𝒪 [ 𝑡 =  10−1] was expected because, in phase change analysis, St reduces the Bi convective effect. Indeed, for 

most foodstuffs, St values range between 0.068 and 0.444 (Schwartzberg, 1977). To develop Eq. (22), we 

conjectured that m would correlate with Bi, St, and κ. First, a power term of Bi could enhance the first-order 

rational Bi expression in Eq. (13). Second, Eq. (13) misses the buffering effect St has on Bi, and thus the 

incorporation of the Stefan number. Third, for Bi > 0.1 the thermal conductivity (via κ) should influence the slab 

temperature profile. 

All nonlinear regression statistics in Tables 2 to 4 show significant reductions in parameter, curvature, and 

regression error measures. The (small magnitude of the intrinsic and parameter-effects) curvature measures 

relative to the 95% curvature confidence-region confirm the asymptotic and almost linear behavior of the 

sub-parameters at their converged values. Parameter reliability is thus corroborated (Karolczak & Mickiewicz, 

1995; Seber & Wild, 2003). 

Whereas the full model is in close agreement with the numerical simulation FF penetration time values because 

of the fit, it is also consistent with Özisik’s (1980) analytic solution for Bi values above 8. Plank’s predictions are 

consistently higher than our predictions because they are based on the complete heat release at the initial freezing 

point. The robust statistical measures supporting the improved fit quality include the minimized AIC, BIC, 

RMSE, mean and median relative errors ( and m), and 𝑅𝑝
2 (Table 3). The median relative regression error (m) 

was reduced by half to 5.36%. These error measures and graphical assessment of the fit response vs. FF data 

together endorse the final model accuracy. 

Though the normality tests give mixed results, the distribution graph of residuals is not radically non-normal. 

The large sample size of the FF data supports the reliability of the estimates under the central limit theorem 
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(Beck & Arnold, 1977; Ghasemi & Zahediasl, 2012). Our FF model accuracy is based on conservative error 

measures (Tables 3 and 4) that are averages of ten K-fold data splits and not of the whole dataset (Jung & Hu, 

2015). 

Together, the robustness of our FF model and sensitivity analysis are supported by (a) the physical significance 

of property parameters (κ and ), (b) final model accuracy, (c) consistent predictions with published average 

freezing-time sensitivities, and (d) coherent patterns for high Biot numbers and cooling temperature. Our 

sensitivity maps may be applied to the cooling and subcooling freezing process stages. Particular attention must 

be given to error estimation for low to medium freezing rate processes (Bi < 8), because of the rapid sensitivity 

change with the Biot number and cooling temperature ( or ·κ). 

Future studies could invoke alternative convective-surface temperature models (relaxing the PSS assumption) 

that account for temperature-dependent thermal properties. These models should lead to consistently monotonic 

s–τ profiles without anomalies. Time dependence of the temperature polynomial power (n) could be pursued, but it 

may lead to an irreducible energy PDE. This investigation could also be extended to other regular geometries and 

account for a temperature-dependent density. 

7. Conclusions 

Our approximate model enabled us to quantify and map systematically the effects of temperature-dependent 

thermal properties on the FF with acceptable accuracy. We show that the Biot number, cooling temperature, and 

thermal conductivity markedly and nonlinearly control these FF effects. While the thermal conductivity effect 

exhibits the greatest variability, the dimensionless latent heat effect is greater and essentially generates a direct 

and proportional perturbation on the FF. Nonlinear methods and prior information can thus be effective in 

constructing reliable mathematical models for phase change food processes together with its parameterization via 

nonlinear regression. 

List of Symbols 

AIC Akaike information criterion 

Bi         Biot number, h L/kf 

BIC        Bayesian information criterion 

𝑐𝑝 volumetric heat capacity below Ti , dimensional 

𝑐𝑝̂ dimensionless effective and volumetric heat capacity below Ti , (cp/cpf ) 

h surface heat transfer coefficient, dimensional 

∆H latent heat of moist food material, at the initial freezing point, adjusted by bound water content, 

dimensional 

k thermal conductivity below Ti , dimensional 

𝑘̂ dimensionless thermal conductivity, (k/kf ) 

N sample size 

L slab half thickness, dimensional 

R2 coefficient of determination 

𝑅𝑝
2 coefficient of determination adjusted for number of parameters 

RMSE root means square error 

St Stefan number, -/(𝑐𝑝(𝑇𝑖 − 𝑇𝑎)) 

t dimensional time 

T dimensional food slab temperature 

u Kirchhoff-transformed temperature, dimensionless 

v  re-scaled dimensionless temperature, (T - Ta)/(To - Ti) 

X dimensional freezing front or moving boundary location  

x dimensional spatial coordinate 
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Greek symbols 

α dimensional thermal diffusivity below Ti 

 normalized regression error, |1 − 
𝑚𝑜𝑑𝑒𝑙

𝐶𝑁𝐹𝐷⁄ | 

θ dimensionless temperature, (T − Ti)/(To − Ti) 

κ dimensionless thermal conductivity parameter, (1 − ku/k f ) 

λ dimensionless latent heat, ∆H/(cp f (To-Ti)) 

σκ sensitivity due to κ perturbations, (δτ/τ) (κ /δ κ) 

σλ sensitivity due to λ perturbations, (δτ/τ) (λ/δλ)  

τ dimensionless time, α
f t/L

2 

ψ dimensionless cooling medium temperature, (Ta − Ti)/(To − Ti) 

Subscripts 

a external cooling medium 

f fully frozen state 

i initial freezing point  

m median 

o freezing point of pure water  

u unfrozen food state 

w cooled surface 
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