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Abstract 
Thinking development processes among high-school students is an important and significant issue that has been 
widely investigated (Leviathan, 2012; Ball, 1996; De Risi, 2015). A few studies discuss the development of 
mathematical thinking as this field contains additional difficulties to the traditional factors, teachers, students, 
and parents, and is one of the most important areas taught in school, according to De Risi (2015). Due to the 
importance of this subject, the challenge facing researchers, mathematicians, and educators is how to improve 
students’ abilities and achievements in mathematics. In recent years, researchers have found that in order to 
improve students’ achievements and abilities in mathematics, one can use self-direction. Self-direction is a 
strategy by which the learner acquires the ability to cope with learning from several aspects and contributes to 
inking development. In this study, we showed that self-directed learning with an emphasis on metacognition 
would improve students’ understanding of the subject in question. Using the metacognitive guidance model, the 
students acquire and develop learning skills that contribute to developing their geometric thinking. In this study, 
there is the added value of using a learning model based on metacognitive guidance and its significant 
contribution to combining multiple subjects into one problem. 
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1. Introduction 
In the last few decades, mathematics is considered one of the most impotent subjects taught in school by many 
researchers (Paul, Gregory, Elizabeth, & Karen, 2015). 

Due to the importance of the subject, many studies have shown how to improve students’ abilities and 
achievements in various subjects in mathematics (Kramarski & Revach, 2009). It has been found by Perry, 
Phillips and Hutchinson (2006) that to improve students’ achievements and ability to solve complex problems, 
one should first improve thestudents’ thinking ability. 

Thinking is defined as an activity in which information is absorbed from the environment by the senses or 
extracted from memory and undergoes processing and reorganization in the brain (Putnam, 1992; Pintrich, 2000). 
In the theory of pedagogy, there have been several notable changes; the main one is students’ encouragement to 
think (Putnam, 1992; Pintrich, 2000). In this paperis paper’s scope, we refer to the broader aspect of thinking, 
not only performing an algorithm. Thinking includes reflective thinking that will encourage discussion and 
raising questions as a means of advancing the goal as well. 

Teaching with the encouragement of thinking gives students tools to conduct comprehensive research on their 
topic. The scope of the knowledge a student acquires expands while investigating a topic via asking related 
questions and searching for answers similar to academic scholars (Zimmerman, 1990). This is called a student 
as a researcher. Accordingly, the student as a researcher approach is shown to be extremely useful in the 
mathematics pedagogy to develop mathematical and geometric abilities. Such a student will be provided with 
learning tools and skills that will develop his sense of ability, curiosity, integration of knowledge, development 
of proof, logic, and integration of various mathematics fields. 

As is known, a student in an education system studies multiple subjects in which he acquires knowledge but not 
necessarily develops thinking skills. Therefore, an important question that arises is at what age should a student 
be taught thinking skills? Tzohar-Rozen and Kramarski (2013), showed that skills imparted at a young age are 
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also applied in adulthood, particularly in matriculation and university exams. Gardner (1983), in his theory of 
multiple intelligence, claims that every person has eight types of intelligence, some more dominant and some 
less. He also discovers that all types of intelligence can be developed and improved with appropriate guidance at 
an early age for any individual based on this theory.  

Two questions have engaged many researchers over the years. First, what are the skills and tools that must be 
imparted to students to develop mathematical and geometric thinking? Second, how can such a process be 
performed efficiently?  

The outcomes following research treating these questions lead to a shift in pedagogic methods. The perception 
began to permeate among teachers and researchers in education that the transfer of knowledge is not sufficient to 
develop thinking (Zimmerman, 1990). A more efficient method is imparting learning strategies to a student with 
self-directed learning (Ben-Eliyau & Linnenbrink-Gracia, 2015). Self-directed learning refers to creating 
self-thoughts, feelings, and activities designed to achieve learning goals, such as reading and processing data 
(Zimmerman, 1990). Educators focus on developing and perfecting learning skills that encourage and contribute 
to the development of independent learners. 

Cultivating metacognitive thinking is the result of increasing the number of strategies available to the student 
(Kramarski & Friedman, 2014). Another research indicates that mathematicians are also incorporate in their 
thought processes metacognitive guidance. 

This figure underscores the importance of establishing and cultivating problem-solving strategies in this 
approach (Carlson & Bloom, 2005). 

In this research, we present how self-guidance in learning with an emphasis on metacognition will improve 
students’ understanding and coping in Euclidean geometry studies in middle schools. This subject was chosen as 
previous research conducted by the National Network for Measurement and Evaluation in Education in Israel 
(2007) emphasized that this topic is harder for middle school students than other topics in mathematics. We 
show that the proposed pedagogic model is robust in any subject one wishes to teach as it requires only minor 
modifications. 

This paper is organized as follows: In Section 2, we explore the academic literature on high-school mathematical 
pedagogic models that use metacognitive. In Section 3, we present a pedagogic model based on the SRL model 
with a metacognitive component focusing on teaching geometrically related subjects. In Section 4, we discuss 
the main pedagogical results arising from the model and the experiment. 

2. Literature Overview 
Geometry is a field of mathematics that studies properties of space that are related to distance, shape, size, and 
relative position of figures (De Risi, 2015). Geometry has been studied for the last 3000 years and is one of the 
oldest branches of mathematics. In Israel, geometry studies have become an integral part of the curriculum and 
play a significant part. The Israeli Ministry of Education sees great importance in building broad infrastructures 
in mathematics and geometry from an early age. This reality has brought Van Hiele characterized understanding 
in general, and geometrical-understanding in particular as follows:” A person understands a subject if he can 
apply it to a situation which he never encountered before and consciously presents the solving process” (Van 
Hiele, 1999). 

Van Hiele (1999) based his theory on five stages of learning shapes and bodies According to his theory, the 
learner cannot reach a certain stage before mastering the stage before it (Van Hiele, 1999). They showed that a 
student would not be able to reach the ability to write geometric proof in the absence of one of the following five 
steps (Van Hiele, 1999): recognition, analysis, ordering, deduction, and regulation. Several studies show that by 
using the Van Hiele pedagogic model, one directs the student to structured learning integrated building 
information based on knowledge. 

The mathematics curriculum in Israel includes three areas: the numerical field (including statistics and 
probability), the algebraic field, and the geometric field. This academic program is based on the content learned 
in the first to the sixth grades. In these grades, there is a shift in the level of understanding and analysis 
capabilities required of the student. During these years, students are required to reach application, analysis, 
synthesis, and evaluation gradually. 

In the 1980s, metacognition was introduced (Shavelson & Stern 1981). This approach claims that the following 
four elements must take place for a learning process to be exhausted and meaningful. First, cognition is all the 
internal processes of information processing that mediate between the stimulus. The response cognition refers to 
all the knowledge and information available to the person and the processes in which they were acquired, 
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processed, and implemented (Flavell, 1979). These internal processes are thinking, perception, understanding, 
learning, attention, memory, drawing conclusions, making decisions, and solving problems. Second, motivation 
is the learner’s continuous learning process when there is no external supervision and no rewards or sanctions. 
Third, metacognition is high-level thinking, the individual’s knowledge and awareness of his or her cognitive 
processes, and the ability to actively direct and monitor them (Flavell, 1987) by building new cognitive skills and 
thus improving learning achievement (Schraw, 1998). Fourth, context learning is a highly self-directed learner 
that regulates his behavior according to context, environment, and learning situations. 

2.1 Assimilation of Geometric Language and Study of the Proof Model 

Most of the students in their first year of middle school in Israel arrive without writing a mathematical proof. 
This is a direct result of the fact that they do not learn how to conceptualize. An experiment done by the 
Organisation for Economic Co-operation and Development (OECD, 2004) shows that students in their first year 
of middle school are confronted with forms they are familiar with. At this point, the student must already be 
writing proof based on a collection of sentences that he needs to understand, remember, and know-how to apply. 
Elementary school students learn the first and second levels of thinking according to Van Hiele’s model. In high 
school, they have to develop the remaining thinking stages. Geometry studies require a’ language’ that must be 
assimilated among students. This language is not only based on a collection of sentences and definitions but also 
on the ability to construct logical arguments and draw conclusions. In the first phase, the Israeli Ministry of 
Education, the Division for Curriculum, has built a dictionary of geometry terms that every student should be 
familiar with during his years of high school. The difficulty the student has to deal with is not necessarily getting 
familiar with this information, but its application and the way it is formally written. During their studies the 
students were requested write a proof that requires high-order thinking (Tzohar-Rozen & Kramarski, 2013). 

2.2 The Effect of Thinking and Intelligence on Learning Processes in Geometry 

Dealing with the definition, statements, and mathematical theorems is relatively easy for students as it only 
requires memorizing a relatively small collection of data points (Beyer, 2001). The main challenge facing students 
is the ability to write proofs and develop geometric logical thinking. To assist students in this challenge, two 
concepts needed first to be defined: thinking and intelligence. These concepts accompany and influence every 
learning process in general and geometry in particular. 

We define thinking as an activity in the brain, which deals with information received from the environment by the 
senses or extracted from memory and its processing or reorganization. In parallel with the study of thinking, 
researchers also discuss intelligence, the set of skills that can be used to solve problems requiring thinking. By 
1983, there was a widespread belief that there is one general intelligence, and the IQ testhe IQ test assessed it 
assessed it. Howard Gardner (1996) argued that there is no one general intelligence, but there are multiple 
intelligences. Two intelligences that are related to the learning process of mathematical subjects are mathematical 
logical intelligence and geometric intelligence. On the one hand, one may come across a student who demonstrates 
high abilities in the calculation, inference, the ability to use an algorithm to solve a problem, and on the other hand, 
has difficulty with visual perception and the ability to abstract. In an innovative and evolving world environment, 
students are required to solve problems based on a built-in memory process and problem-solving (Paul, 1993). 

2.3 Pedagogic Model 

Self-redirected learning (SRL) has been proven in many fields, including mathematics, to improve achievement 
and improve learning processes (Pintrich, 2000). We chose to focus on SRL because it is meaningful for both the 
teacher and the student. SRL provided a solution to developing mathematical thinking skills (Putnam, 1992; 
Kramarski & Revach, 2009). 

The self-directed meta-cognitive component in the SRL method is significant because it allows the student to 
realize his potential. During the theoretical learning process, it was found that there is a gap between the level 
required in the teaching and learning processes and the level of knowledge and abilities of the student. This gap 
will diminish while improving learning processes that incorporate metacognitive knowledge (Kramarski & 
Revach, 2009). 

To bridge this gap, one needs to build a uniform learning model that will provide a different solution for each 
student through this model. Each student will be able to reduce the gap in comparison to the official program. In 
this study, we will present a model that will guide students in developing learning skills in geometry. This intention 
will contribute to the development of levels of thinking according to the Van Hiele theory. 

The proposed pedagogic model is based on the model proposed by Mevrach et al. and Michalsky (Mvarech & 
Kramarski, 1997; Michalsky, 2013). Our model enhances their model by introducing the self-directed 
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meta-cognitive component specifically for the development of geometric thinking. 

3. Experiment 
3.1 Methodology 

The research population included 21 ninth-grade students in middle school in Israel. At the beginning of the 
academic semester, the classroom teacher provided the students with a questioner (see Table 1) with a rhetorical 
question based on the proposed metacognitive model. Also, the classroom mathematics teacher was provided 
with the following guideline. First, students should be trained based on the questioner they have been provided 
with. They should be encouraged to practice mathematics based on the metacognitive model in both the 
classroom and home. Second, the construction of a question should be performed mainly in the practice stages of 
the lesson. They should encourage students to practice writing styles that develop mathematical thinking 
processes and not just memorization. Third, based on the idea that the right mathematical in general and 
geometric are structured from rules and laws that include information, prior knowledge, and logic. Students must 
be trained to use these rules and laws in the correct form of mathematical language. Table 1 showed that line of 
questions for the high school students. 

 

Table 1. The questionnaire provided to the high-school students  

Question 
Symbol 

Question Type 

Q1 What is the exercise about? Is all the data clear? Mark or explain in words what does each figure mean? Understanding 

Q2 Is there prior knowledge that you can use? Discover and locate the hidden data (which is not explicitly given 
in the question)? Can they help you? 

Contact 

Q3 What are the courses of action you will choose in order to solve the problem/write the proof? How do you 
build the proof? What sentences will you use? What are the symbols you will use? 

Strategy 

Q4 How do you check that the proof is valid? Validation 

Q5 Are there other ways to prove it? Compare with your classmate. What were the difficulties you encountered? Self-esteem 

Q6 Build a geometry question based on sentences and information from the above question and let your 
classmate solve it. 

Activation 

 

Afterward, the students had ten mathematical lessons (over 8 weeks) based on the proposed model on a new 
subject that they had not learned before, which was partially based on the last subject they learned. The usage of 
the model was incorporated during the lessons in the classroom and during the time students perform homework 
at home. Emphasis was placed on the teacher’s assimilation of the proposed model in metacognitive guidance in 
a systematic and orderly manner. 

Finally, after the last lesson, the students were asked to fill out another questionnaire regarding their experience 
from the previous 10 studies (see Table 2). 

3.2 Research Questions 

The research question we dealt with was the contribution of metacognition guidance to improve learning 
processes in geometry and develop geometric thinking among ninth-grade students. 

3.3 Data & Results 

The experiment was conducted on 21 students, six males (28.57%), and 15 females (71.42%). All students were 
nine graders, ages 14 to 15 years old. 

 

Table 2. The questionnaire provided to the high-school students 

Q1 What is the exercise about? Is all the data clear? Mark or explain in words what does each figure mean. 
Q2 Is there prior knowledge that you can use? Discover and locate the hidden data (which is not explicitly given in the question)? 

Can they help you? 
Q3 What are the courses of action you will choose in order to solve the problem / write the proof? How do you build the proof? 

What sentences will you use? What are the symbols you will use? 
Q4 How do you check that the proof is valid? 
Q5 Are there other ways to prove it? Compare with your classmate. What were the difficulties you encountered? 
Q6 Build a geometry question based on sentences and information from the above question and let your classmate solve it. 
Q7 Build a geometry question based on sentences and information from the above question and let your classmate solve it. 
Q8 Build a geometry question based on sentences and information from the above question and let your classmate solve it. 
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Students declared positive improvements after just two months of learning with the proposed model, as shown in 
Figure 1. Specifically, both the average and median values are higher than three, which shows that on average, 
students benefit from using the original pedagogical model used in Israel in 2020. Nevertheless, we argue that 
complementary research needs to be conducted to better understand the proposed model’s pedagogical 
implications. First, the model should be implemented for metacognitive guidance in middle schools as part of a 
routine learning process and examine changes in students’ performance in a long-time study. Second, a 
professional development course for teachers should be conducted on the intelligent use of the metacognitive 
guidance model and its contribution to the learning system and examine changes in their students’ performance. 
Finally, we request to examine the effectiveness of metacognitive guidance and its contribution to online 
learning. This study presents the contribution of metacognitive orientation in the study of geometry. The 
pedagogical model can be integrated with other interrelated areas such as science, technology, and mathematics 
(STEM) and thus contribute to interdisciplinary learning. 

5.  Recommendations 

1) A longitudinal study with a larger number of participants should be conducted to contribute to the “model” to 
increase the number of students in five units of mathematics. 

2) Examine whether students will use the “model” in other mathematics study topics. 

3) Practical mathematics curricula should be built that incorporate meta-cognition. 

4) A personal curriculum for each student based on the “model” should be built, thus reducing learning gaps and 
improving students’ academic achievement in geometry. 

5) Further research should be conducted to examine the extent to which the “model” contributes to reducing 
anxiety about studying mathematics in general and geometry in particular among students. 
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