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Abstract 
The purpose of this study is twofold. The first is to investigate the construct or factorial structure of a set of 
Reading and Mathematics computerized adaptive tests (CAT), Measures of Academic Progress (MAP), given in 
different states at different grades and academic terms. The second purpose is to investigate the invariance of test 
factorial structure across different grades, academic terms, and states.  Because of the uniqueness of CAT data 
(different students receive different items), traditional factor analysis based on fixed form data is no longer 
practically possible at the item level. This study illustrates how to overcome the difficulty of applying factor 
analysis in CAT data and study results provide evidence for valid interpretation of MAP tests scores across 
grades at different academic terms for different states.  

Keywords: achievement, construct, computerized adaptive tests, factor analysis, Measures of Academic 
Progress 

1. Introduction 

The purpose of this study is twofold: first, to investigate the construct or factorial structure of CAT MAP 
Reading and Mathematics tests at different grades, academic terms, and states; second, to investigate the 
invariance of test factorial structure across different grades, academic terms and states. Recently, computerized 
adaptive testing (CAT) has been seen as a particularly effective method of measuring an individual student’s 
status and growth over time in K-12 assessment (Way, Twing, Camara, Sweeney, Lazer, & Mazzeo, 2010). The 
major reason is that CAT has advantages over traditional paper-pencil tests, such as shorter length, immediate 
feedback on student scores, better reliability, and accuracy (Lord, 1977; Kingsbury & Weiss, 1983; Steinberg, & 
Thissen, 1990). Its unique advantages in K-12 assessment include cost savings, multiple testing opportunities for 
formative and interim assessments, and better validity (Way, 2006).  

Right now, Oregon, Delaware, and Idaho use CAT in their state assessments, and several other states (Georgia, 
Hawaii, Maryland, North Carolina, South Dakota, Utah, and Virginia) are in various stages of CAT development. 
As a matter of fact, one of the two consortia created as part of the Race to the Top initiative, the SMARTER 
Balanced Assessment Consortium (SBAC) consisting of over half of the states, is committed to a computerized 
adaptive model because it represents a unique opportunity to create a large-scale assessment system that provides 
maximally accurate achievement results for each student (Race to the Top Assessment Program, 2010).  

Because high stakes decisions about students are based on state test results, these tests should be evaluated using 
professional testing principles, such as validity and reliability. Validity (and fairness), according to the Standards 
for Educational and Psychological Testing (AERA, APA, NCME, 1999), is the most important consideration in 
test development and evaluation. 

The MAP Reading and Mathematics tests, like most CATs, use a unidimensional item response theory (IRT) 
model based on the premise that correlations among responses to test questions can be explained by a single 
underlying trait. Traits like reading and math are obviously complex, representing many component skills and 
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facts combined in specific ways. The claim of unidimensionality is that these components work together to 
manifest a coherent whole. Although tests are often structured around goal areas, this is done to provide adequate 
domain sampling rather than to measure different traits. While individuals may have strengths and weaknesses in 
goal areas on a unidimensional test, any systematic relationship among goals should be explained by the effect of 
the unitary latent trait on item responses.  

Detecting dimensionality in adaptive assessments is tricky. Because of the uniqueness of CAT tests (different 
persons respond to different items), conducting factor analysis is more challenging for CAT data than for linear 
or fixed form data. 

First of all, there are no common test forms, so data are very sparse. Observable (manifest) item variables differ 
across persons for both the overall test event and at the cluster (goal or subtest) level. So, although goal score 
variables are the same, the context differs; i.e. subtest scores are derived from different sets of items. One 
possible solution is to conduct confirmatory factor analysis (CFA) on the entire item bank, but the large amount 
of missing data (typically, the missing rate is above 90% if the ratio of test length to item bank size is 20) makes 
this unwieldy. For MAP Reading and Mathematics tests, typical missing rates are around 98% because the ratio 
of test length to item bank counts is around 50. The common imputation methods (Rubin, 1987) may statistically 
help the missing issue, but are difficult to execute.  

The second issue is that the adaptive algorithm operates on the assumption of local independence (LI), thus 
restricting covariance among items. Items are selected to maximize information at the estimated latent trait level 
so that for dichotomous items the probability of a correct answer is about .5, responses are randomly distributed, 
and item covariance is low. Since the goal of factor analysis is to summarize patterns of correlation among 
observed variables, this restriction may lead to singularly uninformative factor analysis results for CATs. McCall 
and Hauser (2006) used Yen’s (1984) Q statistic to get around the sparse data problem. The Q statistic operates 
on pairwise relationships between items and looks for covariance unexplained by the observed score. Because 
item selection is conditioned on the momentary achievement estimate, the range of ability is restricted, thus 
limiting variance and covariance. Values of the Q statistic were so small compared to those for fixed form tests 
that they were difficult to interpret.  

One way to get around the sparse data problem is to conduct CFA at the item cluster level (goal or sub-content 
level). Since items in each CAT test event are balanced among goal areas based on content specifications, a 
reasonable option may be to assume that items within each goal area are content homogeneous across persons 
and that goal scores may be used as observable variables. This is the method used here. If multiple traits based 
on goal areas explain item responses, this might show up as differential factor loading of the goal scores on the 
overall score. Furthermore, patterns of factor loading might differ with the different goal structures used in 
different states or among grades within the same state. For illustration purpose only, Figure 1  

 

 

Figure 1. Individual item as observables 
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Figure 2. Testlets as observable variables 

 

Figure 1 shows the factor model under the IRT assumption of LI. This is the model that is difficult to test with 
computerized adaptive test data. Figure 2 shows a factor model that uses testlet, goal score, or item clusters as 
observable variables. At the testlet level, this model still satisfies the LI assumption, but the LI assumption might 
or might not hold at the individual item level.  

2. Methods 

2.1 Data Source and Participants 

All data used in this study were collected from MAP Reading and Mathematics tests administered from Spring 
2009 to Spring 2011 twice during the academic year. The MAP tests were used with grade 3 to grade 9 across 50 
states. The data for this study focuses on 10 states (Colorado, Illinois, Indiana, Kansas, Kentucky, Michigan, 
Minnesota, South Carolina, Washington, and Wisconsin) that have the largest MAP sample sizes among the 50 
states. Reading and Mathematics sample sizes for each state are presented in Table 1. Samples were collected for 
five academic terms: Spring 2009, Fall 2009, Spring 2010, Fall 2010, and Spring 2011. For each academic term, 
the samples contained results from five grades, with the grade range depending on the academic term. 

 

Table 1. Sample sizes for MAP reading and mathematics tests across states 

State Name Reading Mathematics 

Colorado 256,310 259,600 

Illinois 444,485 433,595 

Indiana 262,740 247,905 

Kansas 217,730 211,070 

Kentucky 149,785 148,725 

Michigan 150,945 151,645 

Minnesota 457,630 448,470 

South Carolina 473,135 465,525 

Washington 316,980 316,925 

Wisconsin 351,740 351,690 

 

Tables 2 and 3 (due to the limited space, can’t list 10 state tables) list the frequency and percentages of samples 
across grades and terms for the Illinois Mathematics test and South Carolina Reading test. For each state, 
samples were randomly drawn from state records. Approximately 20% of students for each state were selected 
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under the constraints that student has to have scores for five academic terms and is in the grade range of 3 to 9 in 
the first term. 

 

Table 2. Frequency and percentages of samples across grades and academic calendars for Illinois MAP 
mathematics test  

Grade Spring 2009 Fall 2009 Spring 2010 Fall 2010 Spring 2011 Total 

3 20000 
(4.61) 

    20000 
(4.61) 

4 20000 
(4.61) 

20000 
(4.61) 

20000 
(4.61) 

  60000 
(13.84) 

5 20000 
(4.61) 

20000 
(4.61) 

20000 
(4.61) 

20000 
(4.61) 

20000 
(4.61) 

100000 
(23.06) 

6 20000 
(4.61) 

20000 
(4.61) 

20000 
(4.61) 

20000 
(4.61) 

20000 
(4.61) 

100000 
(23.06) 

7 6719 
(1.55) 

20000 
(4.61) 

20000 
(4.61) 

20000 
(4.61) 

20000 
(4.61) 

86719 
(20.00) 

8  6719 
(1.55) 

6719 
(1.55) 

20000 
(4.61) 

20000 
(4.61) 

53438 
(12.32 

9    6719 
(1.55) 

6719 
(1.55) 

13438 
(3.10) 

Total 86719 
(20.00 

86719 
(20.00) 

86719 
(20.00) 

86719 
(20.00) 

86719 
(20.00) 

433595 
(100.00) 

Note. Percentage in parentheses 

 

Table 3. Frequency and percentages of samples across grades and academic calendars for South Carolina MAP 
reading test  

Grade Spring 2009 Fall 2009 Spring 2010 Fall 2010 Spring 2011 Total 

3 20000 
(4.23) 

    20000 
(4.23) 

4 20000 
(4.23) 

20000 
(4.23) 

20000 
(4.23) 

  60000 
(12.68) 

5 20000 
(4.23) 

20000 
(4.23) 

20000 
(4.23) 

20000 
(4.23) 

20000 
(4.23) 

100000 
(21.14) 

6 20000 
(4.23) 

20000 
(4.23) 

20000 
(4.23) 

20000 
(4.23) 

20000 
(4.23) 

100000 
(21.14) 

7 14627 
(3.09) 

20000 
(4.23) 

20000 
(4.23) 

20000 
(4.23) 

20000 
(4.23) 

94627 
(20.00) 

8  14627 
(3.09) 

14627 
(3.09) 

20000 
(4.23) 

20000 
(4.23) 

69254 
(14.64) 

9    14627 
(3.09) 

14627 
(3.09) 

29254 
(6.18) 

Total 94627 
(20.00 

94627 
(20.00) 

94627 
(20.00) 

94627 
(20.00) 

94627 
(20.00) 

473135 
(100.00) 

Note. Percentage in parentheses 
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2.2 Instruments 

The MAP tests of Reading and Mathematics for grades 3 to 9 were used in this study. MAP tests are 
computerized adaptive assessments that have been published by Northwest Evaluation Association (NWEA) 
since 2000. The purpose of MAP tests is to provide educators with information to inform teaching and learning 
in Reading, Mathematics, and Science (NWEA, 2011). In general, the MAP Reading test consists of 40 
multiple-choice items with four options and the MAP Mathematics test includes 50 multiple-choice items with 
four or five options. Because content validity is one of the most important sources of evidence of test validity in 
achievement tests, in NWEA item development, all items match the assessable sections of a set of academic 
content standards both in breadth of content and depth of knowledge. In general, the MAP reading test comprises 
four goals: Word Meaning, Literal Comprehension, Interpretive Comprehension, and Evaluative Comprehension; 
the MAP mathematics test consists of seven goals: Number/Numeration Systems, Operations/Computation, 
Equations/Numerals, Geometry, Measurement, Problem Solving, Statistics/Probability, and Applications. 

For each state, the MAP tests are aligned to specific state content standards by assembling pools of items that 
address state content standards. Test algorithms survey the pools within goal or strand areas to assure domain 
coverage. Table 4 lists test length (fixed length CAT) and numbers of goals (subtests) of both Reading and 
Mathematics tests. The examples of content specifications for Colorado Reading and Indiana Mathematics are 
shown in Table 5.  

 

Table 4. Test length and numbers of goals of reading and Mathematics tests for grades 3 to 9 across states 

State Name 
Reading Mathematics 

Test Length Number of Goals Test Length Number of Goals

Colorado 40 4 50 6 

Illinois 40 4 50 5 

Indiana 40 5 50 7 

Kansas 40 5 50 4 

Kentucky 40 5 50 5 

Michigan 40 4 50 6 

Minnesota 40 4 50 4 

South Carolina 40 3 50 5 

Washington 40 5 50 4 

Wisconsin 40 4 50 5 

 

Table 5. Content Specifications of Colorado Reading and Indiana Mathematics for Grades 3 to 9 

Colorado Reading Indiana Mathematics 

Goals % items Goals % items

Reading Strategies, Comprehending Literary 
Texts 

25% Number Sense 
14% 

Comprehending Informative, Persuasive Texts 25% Computation 14% 

Word Relationships and Meanings 25% Algebra and Functions 14% 

Total operational items 25% Geometry 14% 

  Measurement 14% 

  Statistics, Data Analysis, Probability 14% 

  Problem Solving 14% 

 

The marginal reliabilities of tests across 50 states and grades are consistently in the low to mid 0.90’s (NWEA, 
2011). Because items selected during the CAT test for each student are based on the student’s provisional ability, 
these items have a limited range of difficulty for a given test taker. However, all items administered to each 
student have to satisfy the content requirements of the test to insure content validity and domain coverage.  
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2.3 Data Analysis 

Using Proc TCALIS in SAS 9.2 (SAS Institute Inc., 2008), both confirmatory factor analysis (CFA) and 
multi-group confirmatory factor analysis (MGCFA) were conducted to determine the adequacy of fit of the 
factor structures of MAP tests and invariance of factor models across grades and academic terms (invariance 
across terms were not statistically tested). All estimation in this study uses the maximum likelihood method.  

All MAP tests assume there is only one latent factor (student achievement) that accounts for covariance among 
observed variables at item or item cluster levels. All MAP tests were scaled based on unidimensional Rasch 
model (Rasch, 1980) and RIT (Rasch unIT) scale that is linearly transformed from logit (RIT = logit x 10 + 200, 
NWEA, 2011). The general rationale on choice of Rasch model over other more complex item response models 
for dichotomous response is that Rasch model has unique properties over other models. These properties include 
sufficiency, separability, specific objectivity, latent additivity (Wright & Stone, 1979; Embretson & Reise, 2000). 
According to Wilson (2003), the general criteria used for choose a measurement model is to preserve the 
interpretability of the construct map and the models must preserve the order of items throughout the range of 
person locations, and must do so in a way that is consistent with the interpretational requirements of the map. 
Rasch model fit the criteria and the data. Figure 3 present CFA and MGCFA models of MAP tests and the 
detailed information of the represented models can be found in papers of McArdle (1988) and McDonald (1985).  

The one-factor model with goal scores (or subtests) as observed variables and CFA was used to evaluate the 
adequacy of model to fully account for the relationships among subtests. Once adequacy of model fit was 
determined, MGCFA was used to test whether the same model holds across different groups. According to 
Steenkamp and Baumgarther (1998), the invariance of factor loadings is sufficient for construct comparability 
across groups. In this study, the additional condition of invariance of factor variance was also tested. Three levels 
of invariance across 5 grades at each of the academic calendars tested are no constraint (NC), equal factor 
loading (L), and equal factor loadings and factor variances (LV, see Appendix A).  

Several well-known goodness-of-fit indexes (GOF) were used to evaluate model fit: (1) absolute indexes that 
include chi-square χ2 , unadjusted goodness-of-fit indexes (GFI), and standardized root mean square residual 
(SRMR); (2) incremental indexes that include the comparative fit index (CFI) and Bentler-Bonett normal fit 
index (NFI); (3) parsimony index, the root mean square error of approximation (RMSEA). For group 
comparisons with increased constraints, the χ2 value provides the basis of comparison with the previously fitted 
model, although χ2 is not considered as the best practice because it is sample size dependent. A non-significant 
difference in χ2 values between nested models reveals that all equality constraints hold across the groups. 
Therefore, the measurement model remains invariant across groups as the constraints are increased. A significant 
χ2 does not necessarily indicate a departure from invariance when the sample size is large. Hu and Bentler (1999) 
recommended using combinations of GOF indices to obtain a robust evaluation of data-model fit in structural 
equation modeling. The cutoff criterion values of good model fit they recommended are CFI, GFI, NFI > 0.95, 
RMSEA < 0.06, and SRMR < 0.08. It is worth to note that many researchers (March 2007a, Marsh, Hau, & 
Grayson, 2005) showed that GOF criteria from Hu and Bentler (1999) are too restrictive. 

3. Results 

3.1 Results of CFA  

Tables 6 and 7 present the summaries of GOF indexes for independent models of Washington MAP Reading and 
South Carolina MAP Mathematics tests for by grade and term (because of limited space, only partial results are 
listed for two of 10 states). Although not shown in the table, all factor loadings of models across content, grades, 
and states are statistically significant. There are mixed results on the statistically significant χ2 tests (Washington 
Reading tests are not significant and South Carolina Mathematics are significant) and very similar patterns of χ2 

tests results hold for the rest of the states tests. However, given the large sample sizes across states, it is not 
surprising to have statistically significant χ2 tests results for some states. 

All values of fit indexes (except RMSEAs for Michigan MAP Mathematics tests) satisfy the Hu and Bentler 
(1999) criteria and show that each model fits data extremely well for different content areas, grades, terms, and 
states. Overall results suggest that the one-factor (unidimensional) model is the most reasonable model for MAP 
tests in these 10 states. 
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Figure 3. Models of MAP tests across groups (group indicators omitted for simplicity) 

 

3.2 Results of MGCFA 

Tables 8 and 9 display the summaries of GOF indexes of the nested models that tested for measurement 
invariance across grades for Kansas MAP Reading and Michigan Mathematics Tests. In the nested model 
comparison, the effect of constraints (NC, L, and LV) imposed on less restricted modes can be evaluated by 
using the difference between 2 (called 2) because it is distributed as 2 with the degree of freedom equal to 
the difference in degrees of freedom between the two models. The null hypothesis of no significant difference in 
fit is tested by evaluating whether the chi-square difference is significant. If the difference is significant, then the 
null hypothesis is rejected (Loehlin, 2004). However, the 2 test may be misleading because (1) the more 
complex the model, the more likely a good fit, (2) the larger the sample size, the more likely the rejection of the 
model and the more likely a Type II error, and (3) the chi-square fit index is also very sensitive to violations of 
the assumption of multivariate normality. To address these limitations, the difference of other GOF (CFI, GFI, 
NFI, RMSEA, and SRMR) as adjuncts to the 2 statistic can also be used to assess model fit. For the Kansas 
MAP Reading Tests (see Table 8), 2 increases (2) are significant for testing L invariance at different terms, 
but not significant for testing LV invariance. The rest of the states’ results show a similar pattern. For Michigan 
Mathematics Tests, all 2 increases are significant for both L and LV invariance.  
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Table 6. Summary of goodness-of- fit indexes of models of Washington MAP reading tests for each grade at each 
academic calendar  

Academic Calendar Grade N 2 df CFI GFI NFI RMSEA SRMR

Spring  3 12,795 24.94 5 1.00 1.00 1.00 0.02 0.00 

2009 4 13,296 7.19 5 1.00 1.00 1.00 0.01 0.00 

 5 12,957 9.11 5 1.00 1.00 1.00 0.01 0.00 

 6 14,285 7.98 5 1.00 1.00 1.00 0.01 0.00 

 7 10,065 3.33 5 1.00 1.00 1.00 0.00 0.00 

          

Fall  4 12,795 10.07 5 1.00 1.00 1.00 0.01 0.00 

2009 5 13,296 15.13 5 1.00 1.00 1.00 0.01 0.00 

 6 12,957 12.55 5 1.00 1.00 1.00 0.01 0.00 

 7 14,285 15.06 5 1.00 1.00 1.00 0.01 0.00 

 8 10,065 6.52 5 1.00 1.00 1.00 0.00 0.00 

          

Spring  4 12,795 17.56 5 1.00 1.00 1.00 0.01 0.00 

2010 5 13,296 19.52 5 1.00 1.00 1.00 0.01 0.00 

 6 12,957 10.78 5 1.00 1.00 1.00 0.00 0.00 

 7 14,285 5.72 5 1.00 1.00 1.00 0.00 0.00 

 8 10,065 7.29 5 1.00 1.00 1.00 0.00 0.00 

          

Fall  5 12,795 15.39 5 1.00 1.00 1.00 0.01 0.00 

2010 6 13,296 5.28 5 1.00 1.00 1.00 0.00 0.00 

 7 12,957 11.66 5 1.00 1.00 1.00 0.01 0.00 

 8 14,285 18.77 5 1.00 1.00 1.00 0.01 0.00 

 9 10,065 6.06 5 1.00 1.00 1.00 0.00 0.00 

          

Spring  5 12,795 4.4 5 1.00 1.00 1.00 0.00 0.00 

2011 6 13,296 10.63 5 1.00 1.00 1.00 0.01 0.00 

 7 12,957 15.08 5 1.00 1.00 1.00 0.01 0.00 

 8 14,285 13.90 5 1.00 1.00 1.00 0.01 0.00 

 9 10,065 4.52 5 1.00 1.00 1.00 0.00 0.00 
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Table 7. Summary of goodness-of-fit indexes of models of South Carolina MAP Mathematics tests for each 
grade at each academic calendar  

Academic 
Calendar 

Grade N 2 df CFI GFI NFI RMSEA SRMR

Spring  3 20,000 58.25 5 1.00 0.99 1.00 0.02 0.01 

2009 4 20,000 109.70 5 0.99 1.00 1.00 0.03 0.00 

 5 20,000 152.66 5 1.00 1.00 0.99 0.04 0.00 

 6 20,000 88.94 5 1.00 0.99 1.00 0.03 0.01 

 7 13,205 65.05 5 0.99 1.00 1.00 0.03 0.00 

          

Fall  4 20,000 70.17 5 0.99 1.00 1.00 0.03 0.00 

2009 5 20,000 113.07 5 1.00 0.99 1.00 0.03 0.01 

 6 20,000 58.18 5 1.00 1.00 0.99 0.02 0.00 

 7 20,000 88.11 5 1.00 1.00 1.00 0.03 0.00 

 8 13,205 74.75 5 1.00 1.00 0.99 0.02 0.00 

          

Spring  4 20,000 149.51 5 1.00 0.99 1.00 0.04 0.01 

2010 5 20,000 180.02 5 1.00 0.99 1.00 0.03 0.01 

 6 20,000 145.66 5 1.00 1.00 0.99 0.04 0.00 

 7 20,000 128.38 5 1.00 1.00 1.00 0.04 0.00 

 8 13,205 78.99 5 1.00 1.00 0.99 0.03 0.00 

          

Fall  5 20,000 151.35 5 1.00 0.99 1.00 0.04 0.01 

2010 6 20,000 37.83 5 1.00 1.00 1.00 0.02 0.00 

 7 20,000 70.91 5 1.00 1.00 0.99 0.03 0.00 

 8 20,000 102.66 5 1.00 0.99 1.00 0.03 0.00 

 9 13,205 66.81 5 1.00 1.00 1.00 0.03 0.00 

          

Spring  5 20,000 140.04 5 1.00 0.99 1.00 0.04 0.01 

2011 6 20,000 89.24 5 1.00 1.00 1.00 0.03 0.00 

 7 20,000 158.49 5 1.00 1.00 1.00 0.04 0.00 

 8 20,000 201.38 5 1.00 1.00 1.00 0.04 0.01 

 9 13,205 75.93 5 0.99 1.00 1.00 0.03 0.00 
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Table 8. Results of comparisons of model invariance of Kansas MAP reading tests across five grades 

Academic 
Calendar 

Grade/ 

Group 
Model 2 df 2 CFI GFI NFI RMSEA SRMR

Spring G3-G7 1. NC 67.00 25  1.00 1.00 1.00 0.01 0.00 

2009  2. L 528.76 41 461.76 1.00 1.00 0.99 0.02 0.02 

  3. LV 619.04 45 90.28 1.00 0.99 1.00 0.02 0.04 

           

Fall G4-G8  1. NC 29.88 25  1.00 1.00 1.00 0.00 0.00 

2009  2. L 225.73 41 195.84 1.00 1.00 1.00 0.02 0.03 

  3. LV 258.16 45 32.44 1.00 0.99 1.00 0.03 0.04 

           

Spring G4-G8  1. NC 61.99 25  1.00 1.00 1.00 0.01 0.00 

2010  2. L 509.85 41 447.86 1.00 0.99 1.00 0.04 0.03 

  3. LV 566.77 45 56.92 0.99 0.99 0.99 0.04 0.05 

           

Fall G5-G6 1. NC 27.54 25  1.00 1.00 1.00 0.00 0.00 

2010  2. L 333.64 41 306.10 1.00 0.99 1.00 0.03 0.03 

  3. LV 379.73 45 46.09 1.00 1.00 1.00 0.03 0.04 

           

Spring G5-G6 1. NC 65.99 25  1.00 1.00 1.00 0.01 0.00 

2011  2. L 353.53 41 287.54 1.00 0.99 1.00 0.03 0.03 

  3. LV 487.08 45 133.54 1.00 1.00 1.00 0.03 0.06 

Note. The levels of model constraints restricted to be equal across grades are: 1. NC: No Constraint (Model 
structure). 2. L: Factor loading. 3. LV: Factor loading + Factor Variance.  

 

All fit indexes for both Reading and Mathematics tests for different grades and academic years from 10 states 
satisfied Hu and Bentler’s criteria, except RMSEAs and SRMRs for Michigan Mathematics Tests. In summary, 
the results provide clear support for the metric invariance for all tests except for Michigan Mathematics Tests, 
and at least, there are configure invariances for all tests. 

These results suggest that constructs of MAP tests are well defined, proved to be unidimensional equivalent 
across grades, and have the same patterns across academic years. 

 

Table 9. Results of comparisons of model invariance of Michigan MAP Mathematics tests across five grades  

Academic 
Calendar 

Grade/ 

Group 
Model 2 df 2 CFI GFI NFI RMSEA SRMR 

Spring G3-G7 1. NC 1844.03 45  0.98 0.98 0.98 0.08 0.02 

2009  2. L 3410.3 65 1566.30 0.97 0.97 0.96 0.09 0.07 

  3. LV 3726.05 69 315.72 0.96 0.96 0.96 0.09 0.12 

           

Fall G4-G8 1. NC 1995.99 65  0.98 0.98 0.98 0.08 0.02 

2009  2. L 4008.02 69 2012.02 0.97 0.96 0.97 0.10 0.08 

  3. LV 4328.11 45 320.10 0.97 0.96 0.97 0.10 0.13 
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Spring G4-G8 1. NC 2628.19 45  0.98 0.97 0.98 0.09 0.02 

2010  2. L 4699.64 65 2071.45 0.97 0.95 0.97 0.11 0.08 

  3. LV 152033.9 69 14734.32 0.97 0.95 0.97 0.11 0.14 

           

Fall G5-G6 1. NC 3212.61 45  0.98 0.97 0.98 0.10 0.02 

2010  2. L 3843.60 65 630.99 0.97 0.96 0.97 0.10 0.04 

  3. LV 4298.94 69 455.34 0.97 0.95 0.97 0.10 0.14 

           

Spring G5-G6 1. NC 2705.84 45  0.98 0.97 0.98 0.10 0.02 

2011  2. L 4254.03 65 1548.19 0.97 0.96 0.97 0.10 0.06 

  3. LV 4326.35 69 72.32 0.97 0.96 0.97 0.10 0.08 

Note. The levels of model constraints restricted to be equal across grades are: 1. NC: No Constraint (Model 
structure only). 2. L: Factor loading. 3. LV: Factor loading + Factor Variance.  

 

4. Scientific Significance of the Study 

The factor structure of test for a particular grade is directly related to the construct validity interpretation of the 
test, and validity is one of the most important considerations when evaluating a test. The factor invariance across 
grades is a fundamental requirement for use in vertical scaling and interpretation of student growth based on the 
test scores. There are many challenges to providing validity evidence for CAT tests because of its uniqueness 
compared to fixed form tests. This study using real data provides empirical evidence of construct and invariance 
construct of MAP scales across grades at different academic calendars for 10 different states. Results show the 
consistency and reasonableness of interpretation of the MAP RIT scale across grades and academic calendar 
years for the different states. 
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Appendix A 

1. CFA Measurement Model 

Y =  +  +                   (A.1) 

where Y is the vector of manifest indicator (goal scores in this study),   is a vector of measurement intercepts, 
 is the matrix of factor loading, and  is a vector of residuals.  The model-implied covariance matrix is 

 

 =  +                   (A.2) 

where  is the latent variable (achievement in this study) covariance matrix and  is the residual covariance 
matrix.  Because we expect the mean achievement will be different across the grades, mean structure is not our 
concern in this study. In this study, all measurement intercepts were set to zero. 

2. CFA Measurement Model in the Multiple Group 

Y
g
 = 

g
 + 

g


g
 + 

g
            (A.3) 

Where g is group indicator and g = 1,2,...5 in this study. Y
g
 is the vector of manifest indicator (goal scores in this 

study), g is a vector of measurement intercepts, 
g 
is the matrix of factor loading, and 

g
 is a vector of residuals.  
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The model-implied covariance matrix is  


g
 = 

g


g


g
 + 

g
              (A.4) 

where 
g
 is the latent variable (achievement in this study) covariance matrix for group g and 

g
 is the residual 

covariance matrix for g group.  Because we expect the mean achievement will be different across the grades, 
mean structure is not our concern in this study and all measurement intercepts were set at zero. 

According to many researchers (Bryne, Shavelson & Muthén, 1989; Jöreskog ,1971; Marsh, Muthén, 
Asparouhov, Lüdtke, Robitzsch, Morin &Trautwein, 2009), the invariance of the parameter matrices implied by 
equation (A.4) means, the covariance matrices for G groups will only be identical if all of the factor loadings, 
factor variance and covariances, and residual variance are identical across groups. Although there are total 13 
partially nested models (named differently for different researchers) can be tested (Marsh et al., 2009) for model 
invariance. In this study, three invariance tests conducted are: (1) configure invariance (congeneric invariance) 
without constraint imposed on parameters; (2) weak factor invariance (tau-equivalent or metric invariance) with 
constraint of equal factor loading; and (3) invariance of factor loading and factor variance.  The invariance 
tested in this study is summarized as following: 

1. No constraint, baseline model (NC) 

2. Equal factor loadings (L) 

H0: 
1
=

2
=

3
=

4
=

5
 

3. Equal factor loadings and factor variance (LV) 

H0: 
1
=

2
=

3
=

4
=

5
 

H0: 
1
=

2
=

3
=

4
=

5
 

 


