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Abstract 
Introducing cultivars of high productive potential with adequate agronomic management has contributed to the 
increase of maize yield in Brazil. This study aimed to characterize the extraction and exportation of 
micronutrients by modern maize hybrids grown in no-tillage system in the Cerrado region (Brazilian Savannah) 
with two fertilization levels. We established two crop environments with differentiated levels of soil fertilization, 
use of products for seed treatment and leaf fertilization, in which four transgenic hybrids were grown. For each 
environment, we used an experimental design of randomized blocks with four replicates. There were eleven 
plant samplings during the crop cycle to quantify dry mass production and Cu, Fe, Mn and Zn extraction. 
Micronutrient uptake is increased when a hybrid with higher potential for biomass production grows in an 
environment with greater supply of nutrients. Uptake persists throughout the maize cycle, including during the 
final stages of the reproductive phase, showing late demand for the crop. On average, after tasseling, about 39, 
50, 42, and 49% of the total Cu, Fe, Mn and Zn absorption still occurs, respectively. Total uptake of Cu, Fe, Mn 
and Zn are, respectively, around 8, 199, 58 and 40 g to produce a tonne of grain, from which 23, 5, 8, and 42% 
are exported by the harvest. Micronutrient uptake and exportation rates for the studied transgenic hybrids are 
lower than the ones previously reported in Brazil and in works abroad. 
Keywords: absorption march, high yield, nutritional requirements, Zea mays L. 

1. Introduction 
Features of nutrients, quantity and the most adequate time for their supply are information necessary for plant 
nutritional balance, in order to allow maximum expression of its genetic potential of production. Understanding 
the dynamics of nutrient absorption in phenological stages of maize allows determining the potential response to 
fertilization and the periods of higher nutritional requirement (Ciampitti & Vyn, 2014). 

Absorption curves during the cycle reflect the amount of nutrients necessary to the plant; however, it does not 
indicate directly the amount of fertilization, considering the efficiency of fertilizer utilization is essential, varying 
according to the climatic conditions, environments and agronomy management (Castoldi et al., 2009).  

Although Brazil has a notable progress in research on soil fertility and plant nutrition in recent decades, there is a 
lack of up-to-date information on the nutritional requirements of maize, especially for micronutrient 
requirements. There is little recent data on absorption march of nutrients and most publications focus mainly on 
macronutrients, which are most in demand by the crop. In general, Brazilian studies on absorption march are 
from decades ago, with different cultivars from those currently available, based on yield levels smaller than the 
achieved in the best tillages and in crops with conventional soil preparation.  

Micronutrient extraction and exportation rates for maize genotypes vary substantially due to genetic variability, 
which provides distinct behavior among cultivars (Ferreira, 2009). In addition, exportation standards of maize 
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nutrient are directly related to the productivity (Coelho & França, 1995; Coelho & Resende, 2008; Bender et al., 
2013), which still depends on the soil availability levels of different field environments (Padilha et al., 2015). 

Andrade et al. (1795b) carried out the main pioneer study in Brazil. They evaluated micronutrient extraction by 
maize cultivars, observing the following variation (in g ha-1): 103 to 146 Cu; 1,334 to 1,815 Fe; 496 to 720 Mn; and 
294 to 335 Zn. Coelho and França (1995) report extraction of 110.9; 2,100; 340 and 400 g ha-1 Cu, Fe, Mn and Zn, 
respectively. In the United States, considering the average of six cultivars and two sites, Bender et al. (2013) 
observed extraction of 100; 1,400; 500 and 500 g ha-1 Cu, Fe, Mn and Zn, respectively. 

This context justifies researches that study modern cultivars, identifying the minimum amounts of micronutrients 
to be replaced for maintaining the productive capacity of the soil over time. Thus, this study aimed to determine 
the extraction and exportantion of copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn) by transgenic hybrids, 
cultivated under two fertilization levels in a no-tillage Oxisol system, in the Brazilian Cerrado.  

2. Material and Methods 
This study occurred in the 2014/2015 crop season, in the experimental area of Embrapa Maize and Sorghum, S 
latitude 19°28′30″, W longitude 44°15′08″, 732 m altitude, in Sete Lagoas, State of Minas Gerais, Brazil. 
Climate, according to Köppen, is Aw, typical of Savannah, with dry winter and average air temperature in the 
coldest month above 18 °C. The experimental area consists of a dystrophic Red Latosol (Embrapa, 2013), with a 
very clayey texture (660 g kg-1 clay).  

In 2012, the area was divided into two environments, under medium or high technological investment in 
fertilization (Padilha et al., 2015). In November 2014, before assembling the experiment for the study, 2 t ha-1 
dolomitic limestone, 1 t ha-1 gypsum and 200 kg ha-1 mixture of 3:1 potassium chloride and FTE BR 12 were 
spread in the environment with high investment, in order to provide soil fertility differential conditions.  

On December 17, 2014, four transgenic maize hybrids were sown (AG 8088 PRO X, DKB 310 PRO 2, DKB 
390 PRO and P 30F53 YH) in high and medium fertilization environments using plot spacing seeder of 0.5 m 
between rows and 70,000 seeds per hectare. The cultivation occurred with complementary irrigation managed 
under no-tillage system.  

In each environment, the experimental design took place in randomized blocks with four replicates. Plots 
consisted of four 6 m rows in length; the two central rows with one-meter border at the ends were the useful area 
(4 m2). There were duplicated plots of each treatment in order to collect plants along the cycle to determine the 
micronutrient absorption march, and to evaluate the grain yield after physiological maturation. 

For the environment with high investment, seeds were treated with the insecticide Cropstar® (imidacloprid + 
thiodicarb, 350 mL 100 kg-1), plus fertilizer Biozyme® (600 mL 100 kg-1), consisting of 1.73% N; 5% K2O; 
0.08% B; 0.49% Fe; 2.1% S; 2.45% Zn; 1.0% Mn; 3.5% Co. For the environment with medium investment, the 
seeds received insecticide only. In the sowing fertilization, we used 500 and 340 kg ha-1 NPK formula 08-28-16 
+ 0.3% B, corresponding to high and medium investment, respectively.  

Twenty days after sowing (DAS), when the plants reached the phenological stage V4 (Ritchie et al., 2003), a 
cover fertilization was developed in both environments, with 90 kg ha-1 N (200 kg ha-1 de urea). In the 
high-investment environment, two more cover fertilizations were performed, providing 70 kg ha-1 N and K2O 
(350 kg ha-1 NPK 20-00-20) at 27 days after sowing, at the phonological V5 stage; and 40 kg ha-1 N + 44 kg ha-1 
S (200 kg ha-1 ammonium sulphate) 33 days after sowing, at V7 stage. Finally, in the V7 stage, foliar fertilization 
took place in the high-investment environment with a mixture of Biozyme® (2 L ha-1), monoammonium 
phosphate - MAP (2.5 kg ha-1) and calcium nitrate 1.5 kg ha-1), using coastal sprayer.  

At 20 DAS, soil sampling took place to characterize the fertility conditions for maize cultivation, at a 0-20 cm 
depth (Table 1), following analytical methodologies using the Mehlich 1 extractant for Cu, Fe, Mn and Zn, and 
hot water for B, as described by Silva (2009). Herbicides and insecticides were used in phytosanitary treatments, 
according to technical criteria for the control of weeds and caterpillars. 

 

 

 

 

 



jas.ccsenet.org Journal of Agricultural Science Vol. 10, No. 9; 2018 

306 

Table 1. Soil fertility conditions in environments with medium and high fertilization investment, at 0-20 cm 
depth 

Investment pH MO P1 K S Ca Mg Al3+ H+Al CTC V2 m3 

 Water dag kg-1 ----- mg dm-3 ----- ----------------- cmolcdm-3 ------------------ ---- % ----

Medium 6.1 4.1 14 54 4 6.2 1.0 0 5.6 13 57 0 

High 6.0 3.9 22 159 15 5.7 1.2 0 6.8 14 52 0 

Note. 1 Mehlich 1 extractant. 2Base saturation. 3Aluminum saturation. Micronutrients (mg dm-3): Medium 
investment: B = 1.1; Cu = 0.9; Fe = 28; Mn = 54.3; Zn = 3.4; High investment: B = 1.8; Cu = 0.5; Fe = 19; Mn = 
9.2; Zn = 3.8; Granulometric analysis (g kg-1): sand = 130; silt = 210; and clay = 660.  

 

To characterize micronutrient absorption march, eleven plant samplings were taken from the useful area of the 
plots. The first collection occurred in the V4 stage, with four plants being cutted from each plot. In the other 
collections, two representative plants were obtained at the following phenological stages defined by Ritchie et al. 
(2003): V5, V7, V9, V12, VT, R1, R2, R3, R5 and R6. Plants were cutted close to the soil and, when appropriate, 
fragmented into stem, leaf, straw + cob and grains. Samples from the different parts of the plant were oven dried 
at 65 °C until constant weight. Afterwards, we weighed and grinded them for Cu, Fe, Mn and Zn determinations, 
according to the methodologies described in Silva (2009).  

Nutrient accumulation in the different phenological stages was calculated by multiplying the content obtained in 
the laboratory analysis by the respective dry mass of each plant compartment. The values were extrapolated to a 
stand of 70,000 plants per hectare, a population commonly used in summer crops aiming high yields.  

We harvested the useful area from the plots to perform grain yield evaluation after physiological maturation. 
Productivity corrected to 13% humidity was used to calculate the micronutrient accumulation in the grains at the 
end of the maize cycle, corresponding to the quantities exported with the harvest. 

For each phenological stage, the variables were submitted to joint analysis of variance, in order to verify the 
existence of interaction between hybrids and fertilization investment environments. Grouping test of Scott-Knott 
averages 5% probability compared treatments for dry mass production and micronutrient accumulation in 
different phenological stages as well as grain yield, with the aid of statistical program SISVAR (Ferreira, 2011).  
3. Results and Discussion 
For the total dry mass at physiological maturation (stage R6), there was a significant effect of investment 
environments on fertilization and hybrids. On average, the dry mass accumulation up to this stage was 
approximately 25,627 kg ha-1 (Table 2) with an order partition of 10, 28, 16 and 43% between the leaf, stem, 
straw + cob and grain compartments, respectively (Figure 1).  

Dry mass production was statistically different between the high and medium investment environments (Table 2), 
with a difference of 10.8%, showing a considerable response due to the improvement of soil fertility by higher 
fertilization, which should have an impact also in the quantities of micronutrients. In both environments, 
accumulation of dry mass until flowering (stage R1, 64 DAS) reached a little less than half (45.9%) of the total 
(Figure 1), becoming more intense later, so that in the 40 following days (stage R5, 104 DAS), the crop reached 
95% of total dry mass production. 
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extraction capacity compared to the others, totaling 107.5 g ha-1, a difference of 43% in relation to the lowest 
average (AG 8088), which is in agreement with its high potential for dry mass and grain production (Table 2). 

The highest Cu extraction from the environment with high investment (Table 3) is probably due to the higher 
fertilization level that has been adopted over time, which intensifies maize development. Thus, greater 
accumulation of dry mass is expected to have direct reflection in the extraction of nutrients available in that 
environment. 

Maximum extraction of this micronutrient was only completed in the physiological maturation, corresponding to 
98 and 73 g ha-1 in the high and medium fertilization environments, respectively (Table 3 and Figure 2). On 
average, up to 61.5% of the maximum accumulation was observed up to the bolting stage (VT), showing that a 
considerable part of Cu absorption occurs later, after crop anthesis. 

 

Table 3. Micronutrient uptake (g ha-1) in different phenological stages of maize grown in environments with high 
and medium fertilization investment 

Phenological stage 

Copper 
 

Iron Manganese 
 

Zinc 

Investment Investment Investment Investment 

High Medium  High Medium High Medium  High Medium 

V4 4 a 3 a  448 a 441 a 14 a 12 a  12 a 11 b 

V5 12 a 10 a  446 a 344 b 44 a 36 b  41 a 33 b 

V7 21 a 19 b  567 a 382 b 128 a 105 b  119 a 95 b 

V9 38 a 35 a  840 a 733 a 237 a 195 b  155 a 103 b 

V12 56 a 44 a  1.189 a 978 a 382 a 283 b  226 a 158 b 

VT 58 a 47 b  1.212 a 988 a 427 a 299 b  262 a 190 b 

R1 59 a 47 b  1.245 a 991 a 432 a 301 b  279 a 195 b 

R2 80 a 58 b  1.529 a 1.208 b 627 a 404 b  387 a 259 b 

R3 79 a 59 b  1.531 a 1.433 a 631 a 426 b  428 a 303 b 

R5 95 a 70 b  2.222 a 1.855 a 764 a 496 b  484 a 393 b 

R6 98 a 73 b  2.513 a 1.880 b 778 a 500 b  486 a 396 b 

Note. For each variable, averages followed by the same letter in the row do not differ by Scott-Knott test at 5% 
probability. 

 

These results are in agreement with Bender (2013), which reported that in the period before flowering only half 
of the total Cu accumulation has occurred. Maximum Cu extraction point determined by Andrade et al. (1975b) 
was between 101 and 108 days after emergence, and Borges et al. (2009) at 102 days after emergence. 
Confirmation of Cu extraction pattern extending to the end of the cycle indicates that, regardless of the hybrid 
used and the growing environment, ensuring conditions for satisfactory supply of this micronutrient, also during 
the grain filling stage of the crop, are important.  
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Figure 3. Iron uptake during maize cycle grown in environments with high (a) and medium (b) investment in 
fertilization. Average of four hybrids 

 

Total Fe uptake data were close to 1,900 g ha-1, value reported by Karlen et al. (1988), higher than the average of 
1,100 g ha-1 found by Bender et al. (2013) in a study with transgenic hybrids in the USA. However, this value is 
below the 3,296 g ha-1 reported by Duarte et al. (2003) as the average of cultivars from temperate and tropical 
climate evaluated in Brazil. The patterns of Fe extraction by maize may be quite variable, according to 
environments, soil conditions, hybrids and other handling practices established in the crop. 

The trend of Fe accumulation in physiological maturation in different parts of the plant was similar in both 
environments, with 48, 42, 5, and 5% distributed in leaf, stem, cob + straw and grains, respectively (Figure 3). 
Thus, leaves and stem are the main sites of Fe deposition absorbed by maize, while the grains do not represent a 
strong drain of this micronutrient. The surface liming (2 t ha-1), performed before the start of the experiment in 
the high investment environment, did not affect Fe acquisition by maize. This is consistent with the absence of 
significant alterations in pH data in soil analysis, although the available levels of Fe (Table 1) are interpreted as 
low and medium (Alvarez et al., 1999), in high and medium investment, respectively.  

On average, for each tonne of grain, maize extracted 199 g Fe, close to Ciampitti & Vyn (2013), which 
quantified absorption of 194 g t-1. In spite of being the micronutrient extracted in greater quantity by maize 
plants (Table 3), Fe proportion allocated in the grains was relatively low, about 5.4% of the total extracted. This 
proportion corresponds to an exportation of 10.6 g t-1, a rate lower than reported by Bender et al. (2013) and 
Ciampitti and Vyn (2013), of 20.7 and 32.3 g t-1, respectively.  

In the case of manganese (Mn), the extraction was influenced by the hybrids and fertilization environments in 
several stages from V5, including the evaluation performed in the physiological maturation (R6). However, there 
was no interaction between these factors. Among the hybrids, DKB 310 stood out in Mn accumulation, with 
significantly higher content than the other hybrids, especially at the end of the cycle, in the R5 and R6 stages. 
Similar to Cu and Fe extraction, when expressing the highest potential of dry mass and grain yield, DKB 310 
hybrid also exhibited higher Mn requirement.  

High investment environment in fertilization promoted greater Mn accumulation starting in V5; the total 
extraction in the physiological maturation was 778 and 500 g ha-1 in the environments of high and medium 
investment, respectively (Table 3). These quantities are below the 900 g ha-1 quantified by Karlen et al. (1988); 
however, close to the values obtained by Duarte et al. (2003) and Andrade et al. (1975b), of 638 g ha-1 and 496 to 
720 g ha-1, respectively.  

After Fe, Mn was the second micronutrient with the highest extraction by maize plants. The most expressive 
accumulation under high technological investment (Table 3, Figure 4) may be associated with the greater 
potential of dry mass production by hybrids (Table 2) in this condition.  
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different regions of maize cultivation. This approach should gain relevance as better results are sought in crops, 
especially in intensive production systems.  

4. Conclusions 
Micronutrient uptake is increased when a hybrid with higher potential for biomass production grows in an 
environment with greater supply of nutrients.  

Micronutrient uptake persists throughout the maize cycle, including during the final stages of the reproductive 
phase, showing late demand for the crop. On average, after tasseling, about 39, 50, 42, and 49% of the total Cu, 
Fe, Mn and Zn absorption still occurs, respectively.  

Total uptake of Cu, Fe, Mn and Zn are, respectively, around 8, 199, 58 and 40 g to produce a tonne of grain, from 
which 23, 5, 8, and 42% are exported by the harvest. 

Micronutrient uptake and exportation rates for the studied transgenic hybrids are lower than the ones previously 
reported in Brazil and in works abroad. 
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