
Journal of Agricultural Science; Vol. 10, No. 8; 2018 
ISSN 1916-9752 E-ISSN 1916-9760 

Published by Canadian Center of Science and Education 

156 

Distinct Effects of Bovicin HC5 and Virginiamycin on in vitro Ruminal 
Fermentation and Microbial Community Composition 

Sofia Magalhaes Moreira1, Claudia Braga Pereira Bento1, Analice Claudia Azevedo1 & Hilario C. Mantovani1 

1 Departamento de Microbiologia, Universidade Federal de Vicosa, Vicosa, Minas Gerais, Brazil 

Correspondence: Hilario Mantovani, Departamento de Microbiologia, Universidade Federal de Vicosa, 
36570-900, Vicosa, Minas Gerais, Brazil. E-mail: hcm6@ufv.br 

 

Received: April 29, 2018      Accepted: June 3, 2018      Online Published: July 15, 2018 

doi:10.5539/jas.v10n8p156          URL: https://doi.org/10.5539/jas.v10n8p156 

 

Abstract 
Antibiotics are used as feed additives for cattle to alter rumen fermentation and increase weight gain. However, 
this practice can potentially lead to the presence of antibiotic residues in milk and meat and the selection of 
multiresistant bacteria. Bacteriocins have been suggested as an alternative to antibiotics used in animal 
production. This work aimed to evaluate the in vitro effects of bovicin HC5 and virginiamycin on ruminal 
fermentation and on microbial community composition. Ruminal fluid was collected from fistulated cows fed 
corn silage and incubated with Trypticase (15 g L-1). Cultures treated with bovicin HC5 or virginiamycin 
decreased (P < 0.05) ammonia accumulation by 47.46% and 66.17%, respectively. Bovicin HC5 and 
virginiamycin also decreased (P < 0.05) the concentration of organic acids and gas production, but the effects 
were somewhat distinct. Molecular fingerprinting of the microbial community using PCR-DGGE revealed that 
community structure varied between treatments and were distinct from the controls. These results demonstrate 
that bovicin HC5 and virginiamycin have distinct effects on ruminal fermentation and modify differently the 
microbial community composition. These results also expand the knowledge about the effects of antibiotics and 
bacteriocins on bacterial and archaeal communities involved in protein metabolism in the rumen. 
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1. Introduction 
In ruminant livestock, feedstuffs are fermented by rumen microorganisms generating microbial protein, volatile 
fatty acids (VFAs), ammonia, methane and heat (Rychlik & Russell, 2000; Bach et al., 2005). Much of these 
products are used as protein and energy sources by the host, but dietary losses due to urea excretion and methane 
production can raise the cost of production of dairy and beef cattle. 

For decades, ruminant nutritionists have used chemical additives in rations of dairy and beef cattle to decrease 
dietary losses and increase useful end-products of ruminal fermentation, thus enhancing the efficiency of feed 
utilization (Callaway et al., 1997; Shen et al., 2017). Ionophore antibiotics are the most commonly used feed 
additives for manipulation of rumen fermentation in cattle (Patra, 2012). However, the European Union and 
countries in Asia have gradually banned the use of antibiotics as growth promoters in food-producing animals 
between 1997 and 2006 (Maron et al., 2013). Therefore, several alternatives to growth promoters have been 
sought by farmers and ruminant nutritionists to reduce feeding costs, to maintain animal health and growth 
performance, and to decrease the environmental impact of animal production systems. Among these, several 
feeding management strategies and chemical and biological additives are being investigated as potential 
alternatives to control or manipulate the processing and assimilation of dietary nutrients.  

Chemical and biological additives such as essential oils, non-ionophore antibiotics, antimicrobial peptides, yeasts, 
probiotics and direct-fed microbials could be dosed in-feed to entire herds of ruminants, a route typically used 
for prophylaxis, metaphylaxis, and growth promotion of production animals (Cameron & McAllister, 2016). 
Previous work demonstrated that antimicrobial peptides could have a role modulating the utilization of dietary 
nutrients and bovicin HC5, a ruminal bacteriocin, inhibited amino acid deamination and methane production by 
rumen microorganisms in vitro (Lee et al., 2002). However, its effect on microbiota composition and other 
fermentation parameters has not been investigated. In this work, we aimed to evaluate the in vitro activities of 
bovicin HC5 and virginiamycin, a non-ionophore antibiotic that has been successfully applied to improve feed 
efficiency in different livestock production systems, and evaluate if a ruminal bacteriocin would have similar 
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effects on ruminal fermentation as commercially used feed additives. We focused our analysis on amino acid 
utilization by the rumen microbiota due to the fact that protein is the most expensive component of ruminant 
rations and both inhibitors appear to have protein-sparing effects.  

2. Methods 
2.1 Microorganisms and Culture Conditions 

Streptococcus equinus HC5 was routinely cultivated under anaerobic conditions (39 °C, 18 h) in basal medium 
as previously described by Mantovani and Russell (2001). Alicyclobacillus acidoterrestris DSMZ 2498 was 
cultivated (43 °C, 16 h) under aerobic conditions in BAM (Bacillus acidocaldarius medium) medium containing 
(per liter): 2.0 g yeast extract; 0.2 g (NH4)2SO4; 0.5 g MgSO4·7H2O; 0.25 g CaCl2·H2O; 3.0 g KH2PO4 and 5.0 g 
glucose. The pH was adjusted to 4.0 with 1 M HCl. 

2.2 Preparation of Antimicrobial Agents 

Previously, we demonstrated by reverse-phase HPLC analysis that S. equinus HC5 semi-purified extracts had 
only one peak with antimicrobial activity corresponding to bovicin HC5 (Lima et al., 2009). Briefly, stationary 
phase S. equinus HC5 cultures (1 L, c. 400 µg mL-1 microbial protein) were harvested by centrifugation (1710 g, 
10 min, 4 °C). The cell pellets were washed and resuspended in acidic sodium chloride (100 mmol L-1, pH 2.0, 
39 °C, 2 h). The cell suspensions were then centrifuged (1710 g, 10 min, 4 °C), and the cell-free supernatants 
were stored at -20 °C until use. The antimicrobial activities of the bovicin HC5 extracts were evaluated by agar 
well-diffusion assays (Tagg et al., 1976). Semi-purified extracts of  bovicin HC5 were serially diluted (2-fold 
increments) in phosphate solution (5 mmol L-1, pH 2.0) and assayed for antimicrobial activity using 
Alicyclobacillus acidoterrestris DSMZ 2498 as the indicator organism (106 CFU mL-1). Bacteriocin activity was 
expressed as arbitrary unit (AU), defined as the reciprocal of the highest dilution that showed a zone of inhibition 
with at least 5 mm in diameter (Lewus et al., 1991). Stock solutions of bovicin HC5 had an activity of 40,960 
AU mL-1.  

Virginiamycin (Phigrow®) was obtained from Phibro Corporation Ltd. The commercial preparation was 
composed by 10% virginiamycin and 90% calcium carbonate. The virginiamycin solution (1.0 mmol L-1) was 
prepared dissolving the commercial additive in sterilized distilled water prepared under anaerobic conditions 
with O2-free nitrogen (N2). The virginiamycin solution was prepared fresh in the same day the incubations were 
carried out. 

2.3 Animal Sampling and in vitro Incubations 

Ruminal fluid was collected from rumen-cannulated dairy cows about two hours after feeding. All procedures 
were performed in accordance with a protocol approved by the Universidade Federal de Viçosa Ethics and 
Animal Care and Use Committee (nº 05/2016). The diet of animals sampled consisted of corn silage (31.2% DM; 
7.2% CP; 54.5% NDF and 2.8% EE) and 30% concentrate (89.4% DM; 28.1% CP; 13.3% NDF and 2.7% EE) 
(Valadares Filho et al., 2016), provided ad libitum. Ruminal digesta was filtered through four layers of 
cheesecloth into thermal containers and transported to the laboratory. Rumen fluid was anaerobically transferred 
to tubes and centrifuged (500 g, 5 min) to remove feed particles. The supernatant (35 mL) was anaerobically 
transferred to serum bottles and Trypticase was added as a source of peptides and amino acids to a final 
concentration of 15 g L-1. The study was conducted in a completely randomized design performed in triplicate 
with two inhibitors and four doses of each inhibitor. Concentrations of bovicin HC5 were 0; 500; 1,000 and 
2,000 AU mL-1, while the following concentrations of virginiamycin were used 0; 5; 10 and 20 µmol L-1. The in 
vitro incubations were carried out in 50 mL anaerobic serum bottles containing 35 mL of rumen contents (final 
volume) incubated under stirring (160 rpm) at 39 °C for 24 h.  

2.4 Analysis of Ammonia Concentration, Microbial Protein and Amino Acid Deamination Activity  

Concentration of ammonia in ruminal fluid (1 mL) was monitored according to the method of Chaney and 
Marbach (1962). Absorbance at 630 nm was measured in a spectrophotometer Spectronic 20D (Thermo Fisher 
Scientific, Madison, WI, USA) and ammonium chloride (NH4Cl) was used as the standard. Total ammonia 
(mmol L-1) was expressed as the difference in ammonia concentration determined after 24 h of incubation and 
the initial concentration of ammonia (0 h). Concentration of microbial protein was determined according to the 
colorimetric method of Bradford (1976), using lysozyme as the standard. Specific activity of deamination was 
calculated from the difference in ammonia concentration (mmol L-1) between the times zero and six hours of 
incubation, divided by microbial protein concentration (mg L-1) and the incubation time (minutes).  
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2.5 Analysis of the Bacterial and Archaeal Community by Denaturing Gradient Gel Electrophoresis 
(PCR-DGGE) 

Changes in diversity of the ruminal bacterial and archaeal community caused by the addition of antimicrobials 
(bovicin or virginiamycin) was assessed in rumen fluid samples (25 mL) collected after 24 hours of incubation. 
The samples were stored at -80 °C and defrosted at room temperature immediately before being processed for 
DNA extraction, using the phenol-chloroform procedure described by Stevenson and Weimer (2007). Genomic 
DNA extracted from the rumen fluid was utilized in the amplification reactions using primers specific for the V3 
region of the 16S rRNA of the Bacteria and Archaea (Muhling et al., 2008; DeLong, 1992). The regions V3-V4 
and of V4-V5 the 16S rRNA of the Fimicutes and Bacteroidetes phyla, respectively, were also amplified to 
investigate changes in community composition within these phylogenetics groups (Muhling et al., 2008). 

PCR reactions were performed in a Biocycler MG96G (São Paulo, Brazil) using the primers and amplification 
conditions previously described (Bento et al., 2016). DGGE was performed in a DGGE-2401 apparatus (CBS 
Scientific Company, San Diego, CA, USA) as previously described (Bento et al., 2016). The software 
Bionumerics 7.5 (Applied Maths, Kortrijk, Belgium) was used to analyze the bands in the DGGE gel. 
Comparison of the data sets was based on Dice’s similarity coefficient with the optimization and tolerance 
parameters set at 1.0%. Clustering was performed using the unweighted pair group method (UPGMA). 
Shannon-Wiener index was calculated using the Past software (Hammer et al., 2001). 

2.6 Analysis of Organics Acids, pH and Gas Production 

Organic acids were analyzed by high performance liquid chromatography (HPLC) using a Dionex Ultimate 3000 
Dual detector HPLC (Dionex Corporation, Sunnyvale, CA, USA) coupled to a refractive index (RI) Shodex 
RI-101 detector maintained at 40 °C. Separation was performed in a Phenomenex Rezex ROA column (300 × 
7.8 mm) maintained at 45 °C. The mobile phase was 5 mmol L-1 sulfuric acid (H2SO4) and the flow rate was 
maintained at 0.7 mL min-1. Rumen fluid samples (2.0 mL) were harvested after 24 hours of incubation, 
centrifuged (12,000 ×g, 10 min) and the cell-free supernatants were treated as described by Siegfried et al. 
(1984).  

The pH values of the in vitro cultures were recorded at 0, 6 and 24 h of incubation using a pH meter (Model 
TEC-2 mp, Tecnal Scientific Equipments, Piracicaba, Brazil). The volume (mL) of total gas accumulation was 
measured using lubricated syringes that were coupled to the fermentation bottles at time 6 and 24 hours of 
incubation (Theodorou et al., 1994). 

2.7 Statistical Analysis 

All in vitro incubations were performed in triplicate and with three biological replicates. The data were subjected 
to analysis of variance (ANOVA) and significant differences were analyzed with the Tukey’s test using the 
Statistical Analysis System and Genetics software (Ferreira, 2011). Differences among means with P < 0.05 were 
considered statistically significant.  

3. Results 
When ruminal microbiota were incubated in vitro with Trypticase (15 g L-1), the specific activity of deamination 
and ammonia accumulation were 36.11 nmol of NH3 mg protein-1 min-1 and 57.49 mmol L-1, respectively (Table 
1). Addition of bovicin HC5 or virginiamycin to the incubated cultures did not affect the concentration of 
microbial protein, but most of the other parameters being evaluated were influenced by one or both of the 
inhibitors. The ruminal pH decreased (P < 0.05) with the addition of 2,000 AU mL-1 bovicin HC5 or with 10 and 
20 µmol L-1 virginiamycin compared to the controls. 

Bovicin HC5 did not affect (P > 0.05) synthesis of microbial protein and the specific activity of deamination 
(SAD). However, a significant decrease in total ammonia accumulation (47.46% reduction in NH4

+) was 
observed with the addition of 2,000 AU mL-1 (Figure 1A). In the case of virginiamycin a reduction in SAD was 
observed at 10 µmol L-1, while ammonia concentration was inhibited by 66.17% with the addition 20 µmol L-1 of 
the inhibitor (Figure 1B). Differences (P < 0.05) were also observed for the interactions control vs antimicrobials 
(57.49 vs 28.59) in the SAD and for bovicin HC5 vs virginiamycin (33.63 vs 24.82) in the quantification of 
ammonia accumulation (Table 1). 

Bovicin HC5 and virginiamycin decreased (P < 0.05) the concentration of total organic acids produced during 
ruminal fermentation in vitro (Table 1). The addition of bovicin HC5 or virginiamycin decreased (P < 0.05) the 
concentration of isobutyric acid, valeric acid, and isovaleric acid. Bovicin HC5 increased the concentration of 
acetic and propionic acid and the acetate:propionate ratio was not affected. Treatments containing virginiamycin 
increased (P > 0.05) the concentration of propionic acid and showed lower (P < 0.05) acetate:propionate ratios 
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compared to controls. Total gas production also decreased (P < 0.05) throughout the fermentation when bovicin 
HC5 or virginiamycin were added to the cultures, being reduced by 32% and 53%, respectively, when compared 
to the controls (Table 1). 

Diversity analysis of Bacteria and Archaea domains and different bacterial phyla by denaturing gradient gel 
electrophoresis (DGGE) revealed higher similarity of the microbial communities within each treatment and 
lower similarity between treatments (Figure 2). Analysis of the band profiling in ruminal fluid generated from 
this study revealed 38, 41, 56, and 29 bands for the domain Bacteria, phylum Firmicutes, phylum Bacteroidetes 
and domain Archaea, respectively (data not shown). The structure of the microbial community (domain Bacteria 
and phylum Bacteroidetes) in samples treated with bovicin HC5 were more similar to the controls compared to 
the samples treated with virginiamicin (Figures 2A and 2B).  

 

Table 1. Effect of bovicin HC5 and virginiamycin on ruminal fermentation parameters in vitro 

Parameters Control 
Bovicin HC5 (AU mL-1) Virginiamycin (µmol L-1) P-Value  Contrast* 

500 1,000 2,000  5 10 20  Bov Virg  Cont. vs Ant. Bov. vs Virg.

pH 6.52a 6.53a 6.49ab 6.44b  6.51a 6.28b 6.30b  0.01 <0.01  0.04 <0.01 

Protein1 909.29 862.96 937.37 876.70  881.52 897.14 873.17  0.76 0.94  0.61 0.83 

SAD2 36.11a 33.57 28.93 29.81  35.75a 25.80b 29.73ab  0.08 <0.01  0.01 0.87 

NH4
+3 57.49a 37.58b 32.47b 30.81b  34.23b 21.21c 19.84c  <0.01 <0.01  <0.01 <0.01 

Gas4 29.90a 22.33b 19.80b 18.50b  18.08b 13.41b 15.16b  0.02 <0.01  <0.01 0.05 

Total VFA5 191.51a 171.77ab 168.87ab 159.52b  168.79b 160.23b 158.50b  0.03 <0.01  <0.01 0.48 

Acetate (A)6 56.88b 60.05ab 61.10ab 61.95a  59.56 59.79 60.38  0.02 0.13  0.02 0.02 

Propionate (P)6 17.05c 18.30b 18.85a 18.98a  21.26b 23.67a 23.26a  <0.01 <0.01  <0.01 <0.01 

Butyrate6 10.25 11.13 11.44 11.45  10.69 9.47 9.56  0.50 0.53  0.65 0.01 

Isobutyrate6 3.36a 1.76b 1.40b 1.25b  1.40b 1.13b 1.14b  <0.01 <0.01  <0.01 0.02 

Succinate6 0.00c 0.30bc 0.59ab 0.68a  0.24b 0.81a 0.84a  <0.01 <0.01  <0.01 0.37 

Valerate6 3.88a 2.03b 1.84b 1.72b  2.12b 1.77b 1.62b  <0.01 <0.01  <0.01 0.85 

Isovalerate6 8.55a 6.41ab 4.74b 3.94b  4.71b 3.34b 3.18b  <0.01 <0.01  <0.01 0.02 

A:P7 3.34 3.28 3.24 3.27  2.80b 2.53b 2.60b  0.92 <0.01  0.07 <0.01 

Note. 1 Microbial protein (mg ml-1). 2 Specific activity of deamination (SAD; nmol of NH3 mg protein-1 min-1). 3 
Ammonia concentration (NH4

+; mmol l-1). 4 Total gas concentration (ml). 5 Total volatile fatty acids (Total VFA; 
mmol l-1). 6 Acetic acid, propionic acid, butyric acid, isobutyric acid, formic acid, succinic acid, valeric acid and 
isovaleric acid (%). 7 Acetate:Propionate ratio (A:P). 8 Antimicrobial effects were tested using contrasts. Cont. 
(control with no antimicrobial); Bov. (different doses of bovicin HC5); Vir (different doses of virginiamycin). 
Means followed by at least one letter in the line for the different doses of each antimicrobial and control do not 
differ at 5% significance level by Tukey test.  

 

Richness analysis and the Shannon-Wiener index were calculated from a binary matrix generated based on the 
electrophoretic profiles in the DGGE gels using the software BioNumerics 7.5 (Figures 3A and 3B). Our results 
showed no differences (P > 0.05) in species richness and diversity of Firmicutes and Bacteroidetes between the 
controls and treatments added with bovicin HC5 or virginiamycin. The addition of antimicrobials increased (P < 
0.05) the species richness and the Shannon-Wiener index of the domain Bacteria; however, only virginiamycin 
increased (P < 0.05) the species richness and the Shannon-Wiener index of the domain Archaea (Figures 3A and 
B). 

4. Discussion 
The emergence of multidrug resistant bacteria associated with livestock has increased the threat of antibiotic 
resistance genes being spread throughout the food chain. Therefore, alternatives have been investigated to 
decrease the use of antibiotics in animal production. Among these, antimicrobial peptides (bacteriocins) 
produced by Gram-positive bacteria have been evaluated in vitro and in vivo as potential alternatives. 
Bacteriocins have been traditionally studied as potentially useful biological tools in the food industry (Deegan et 
al., 2006), but studies demonstrated that these antimicrobials are also effective in controlling animal pathogens 
(Twomey et al., 2000; Wu et al., 2007). These peptides also show synergistic interactions with antibiotics 
(Todorov, 2010), and could be useful to manipulate rumen fermentation (Lima et al., 2009; Shen et al., 2017). 
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for the treatments with the addition of bovicin HC5, and might be related with changes in structure and function 
of the microbial community. 

In conclusion, our results show that both the lantibiotic bovicin HC5 and the non-ionophore antibiotic 
viriginiamycin had positive effects on ruminal biochemical parameters, but the impacts of these inhibitors on 
rumen microbial community composition were distinct. Results indicated that bovicin HC5 had more 
pronounced effects against members of the phylum Firmicutes. Based on the results shown here it appears that 
both antimicrobials have a protein-sparing effect and it seems plausible that bovicin HC5 could have potential as 
an additive to manipulate rumen fermentation in cattle production.  
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