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Abstract 

Among nutrients, nitrogen is required in the greatest quantities by bean culture. The objective of this work was 
to evaluate growth, physiological responses and productivity of the common bean cultivar, ‘IAC Imperador’ 
under varying nitrogen doses in Brejo Paraibano. The experiment was carried out at Fazenda Experimental 
Chã-de-Jardim (Chã-de-Jardim Experimental Farm), of the Centro de Ciências Agrárias of the Universidade 
Federal da Paraíba, in the municipality of Areia, state of Paraíba. The treatments comprised 0, 50, 100, 150 and 
200 kg of nitrogen ha-1, applied in coverage at 35 days after sowing. To assess growth, plant height, stem 
diameter and number of leaves were evaluated. For gas exchange, photosynthesis rate, internal CO2 
concentration, transpiration, stomatal conductance, instantaneous water use efficiency and instantaneous 
carboxylation efficiency were evaluated. For chlorophyll “a” fluorescence, minimum leaf fluorescence, 
maximum leaf fluorescence, variable maximum fluorescence, potential quantum efficiency of PSII (Photosystem 
II) and ratio (Fv/F0) were evaluated. For the components of primary productivity, the height of insertion of the 
first pod, number of pods per plant and the number of grains per pod were evaluated. Nitrogen fertilization in 
coverage significantly affected most of the growth, gas exchange and productivity variables, with the dose of 
200 kg ha-1 being responsible for the highest values (p < 0.05). Chlorophyll fluorescence showed no significant 
differences among the nitrogen doses. The nitrogen doses influenced the growth, gas exchange and productivity 
of the common bean in the region of Brejo Paraibano.  

Keywords: Phaseolus vulgaris, management of fertilization, gas exchange, ecophysiology 

1. Introduction 

Beans (Phaseolus vulgaris L.) are one of the most economically important crops for Brazil (FAO, 2017), 
generating employment and income, and are an important source of protein for the population. The expected 
national production in 2017 exceeds 3.3 million tons (IBGE, 2017). However, the average productivity of 886 kg 
ha-1 (CONAB, 2017) is considered low and due mainly to the low level of technology employed (Nascente et al., 
2012).  

The management of fertilization is considered fundamental to achieving better grain yields (Arf et al., 2011), 
with nitrogen (N) being the most influential nutrient for bean crops. This macronutrient is of great importance to 
the physiology of bean plants because it acts on the composition of the chlorophyll molecule by transforming 
photoassimilates into grain, thereby increasing productivity (Soratto et al., 2006). When evaluating fertilization 
with nitrogen in coverage, Crusciol et al. (2007) found productivity above 3,000 kg ha-1, and obtained significant 
responses for nitrogen doses up to a maximum of 120 kg ha-1. High doses of nitrogen can stimulate vegetative 
growth and cause morphological changes in plants (Marschner, 1995). Growth assessment is essential for 
analyzing the effects of management systems on plants by providing information on plant productivity as a 
function of time, which is impossible to obtain from only grain yield (Urchei et al., 2000).  

Several Brazilian ecosystems are favorable for bean cultivation, including the Brazilian semi-arid region, which 
possesses intrinsic edaphoclimatic conditions. However, there is a lack of studies in support of making the 
management of nitrogen fertilization and the use of more productive genotypes feasible for achieving 
satisfactory yields and results for producers.  
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T5 (200 kg ha-1). The plots had a total area of 9.0 m² and a useful area of 6.0 m2, in which five plants were 
chosen, at random from three central lines of each plot, so that they could be evaluated.   

The data were submitted to analysis of variance, according to the design adopted. In the study of the effects of N 
doses, data were submitted to regression analysis, with adjustment of representative curves, according to the 
evaluated characteristics (Soares et al., 2016).  

3. Results and Discussion 

3.1 Growth Analyses 

Table 1 provides F-test results that show that nitrogen fertilization did not affect plant height, but significantly 
affected diameter and the number of leaves. The CVs of all of the variables analyzed were low. It should be 
emphasized that the experiment was carried out in the field.  

Figure 3A shows mean plant height at 45 and 60 days after sowing. Height did not differ significantly among 
nitrogen doses, but maximum heights were obtained at doses of 0 and 200 kg ha-1 for both evaluation periods, 
with it being 8.3 cm at 45 days and 18.4 cm at 60 days. The dose of 100 kg ha-1 produced the shortest height for 
both evaluation periods.  

These results are the opposite of those reported by Biscaro et al. (2012), who found a growth response up to the 
dose of 125 kg ha-1, and for Cunha et al. (2013) and Viana et al. (2013), where they obtained increases in growth 
due to the application of up to 136 and 108 kg ha-1, respectively. However, the results of Valderrama et al. (2012), 
not found an effect of nitrogen fertilization on plant height, are similar to those of the present study. These 
differing results may be related to different edaphoclimatic conditions where the experiments took place. 
According to the edaphoclimatic conditions observed during the present experiment (Figure 2), accumulated 
value (495.8 mm) was higher than the water requirement of the crop, which ranged from 300 to 400 mm 
(Moreira et al., 2003). Souza et al. (2013) attributed these differences specifically to soil fertility levels and to the 
production systems adopted by the authors, in addition to irrigation.  

Studying different bean genotypes under varying doses of nitrogen fertilizer, Sousa et al. (2012) found higher 
growth with the use of 80 kg ha-1, and a constant growth until the dose of 150 kg ha-1, with doses higher than this 
causing a negative effect on growth. Evaluating different doses of fertilization in different salinities, Sousa et al. 
(2013) did not find differences between the doses of nitrogen applied up to 190% of the recommended dose for 
bean crops. Similarly, working with sources and doses of N, on the surface and incorporated, Cunha et al. (2013) 
also observed an increase in bean height with nitrogen supply.  

Studying organomineral fertilization, Nakayama et al. (2013) observed linear growth as a function of the 
application of nitrogen up to 250 kg ha-1. These data are similar to those found by Salgado et al. (2012), who 
evaluated different bean cultivars in nitrogen poor and rich soils and found that growth was better in soils with 
high nitrogen concentrations.  

Bean plant height did not respond well to fertilization even though it was expected that the increased availability 
of the nutrient would lead to greater absorption and height growth since adequate doses of nitrogen are 
associated with high photosynthetic activity and, consequently, vigorous vegetative growth (Souza et al., 2014). 
Nitrogen uptake and crop use are strongly influenced by meteorological conditions, so it is important to discuss 
agronomic characteristics in relation to precipitation, such as low soil water reserves and/or low precipitation, 
since these factors can substantially reduce nitrogen uptake, particularly immediately after fertilization 
(Vleugelsa et al., 2017), which indeed occured in the present study.  

The studied bean ‘IAC imperador’, which is adapted to the region, may have developed a capacity for plasticity 
and translocated nutrients from other plant sites and invested in growth. This factor could lead to a reduction in 
other aspects of the plant, such as productivity.  

The mean diameter of bean plants responded positively to the doses of nitrogen, mainly at 60 days after sowing. 
The dose of 200 kg ha-1 promoted the greatest growth in stem diameter, with an increase of 5% and 16% relative 
to the control treatment at 45 and 60 days post-sowing, respectively (Figure 3B). These data are similar to those 
found by Nakayama et al. (2013), who obtained linearly increasing values in diameter using nitrogen fertilizer up 
to a dose of 250 kg ha-1. On the other hand, Salgado et al. (2012) and Sousa et al. (2013) did not find significant 
difference for stem diameter in situations of low and high availability of nitrogen in the soil, but confirm that 
differences can occur depending on the conditions of the growth environment or the use of different cultivars.  

Studying nitrogen fertilization of up to 150 kg ha-1 at different times, Vleugelsa et al. (2017) did not find 
differences in plant diameter among applied doses. This may have been due to the fact that nitrogen is a very 
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0.05), but not stomatal conductance (Table 2). Evaluating the effect of nitrogen fertilization on growth and gas 
exchange of bean plants, Soares et al. (2013), found a significant effect of nitrogen doses only for transpiration.  
Figure 4 provides the mean values for the physiological responses of beans to the effects of N doses, specifically 
for photosynthetic rate (A), internal CO2 concentration (Ci), transpiration (E), stomatal conductance (gs), 
instantaneous water use efficiency (IWUE) and instantaneous carboxylation efficiency (ICE).  

Regarding gas exchange, the values for photosynthetic rate (A) exhibited an increasing linear response to the 
effect of the doses of N and, according to the regression equation, the values range from 15.552 µmol m-2 s-1 

(control, 0 kg of nitrogen ha-1) to 17.891 µmol m-2 s-1 (200 kg of nitrogen ha-1) (Figure 4A). The dose of 200 kg 
of nitrogen ha-1 had the highest values of photosynthetic rate, which may be related to there being a sufficient 
amount of nitrogen since the nutritional state of plants influences photosynthesis. According to Taiz et al. (2017), 
the deficiency of some nutrients, such as nitrogen and magnesium, in the soil causes chlorosis in the leaves, 
which interferes with the process of photosynthesis. According to Larcher (2004), the highest photosynthetic 
rates are achieved through fertilization.  

The results for transpiration (E) followed the same trend of stomatal conductance with a linear response to the 
effect of N doses, with values varying between 2.926 mmol m-2 s-1 (control, 0 kg of nitrogen ha-1) and 4.010 
mmol m-2 s-1 (200 kg of nitrogen ha-1) (Figure 4B). The elevation of leaf transpiration rate not only increases 
water flow in the xylem, but also raises the concentration of cytokinin synthesized in the roots, which is an 
important mechanism for delaying leaf senescence, as evidenced in the present study (Larcher, 2004; Marschner, 
1995; Soares et al., 2013; Taiz et al., 2017).  

The internal carbon concentration (Ci) exhibited an increasing linear response to the effect of the doses of N and, 
according to the regression equation, increased the most with the dose of 200 kg of nitrogen ha-1 (Figure 4C). 
The internal carbon values varied between 188.72 µmol m-2 s-1 (control, 0 kg of nitrogen ha-1) and 534.19 µmol 
m-2 s-1 (200 kg of nitrogen ha-1). Ferraz et al. (2012) analyzed gas exchange of cultivated beans in the field in the 
semi-arid region of Northeast Brazil, and found no significant responses to the different doses, with the most 
expressive results being 277.0 and 289.6 μmol m-2 s-1. Evaluating the effects of nitrogen on gas exchange of the 
common bean, Anjos et al. (2014) found no significant effect of the different doses on internal carbon 
concentration.  

Stomatal conductance (gs) exhibited a linear response among doses, with the lowest values being for the control 
(0 kg of nitrogen ha-1), which had values varying between 0.157 mol m-2 s-1 (control) and 0.264 mol m-2 s-1 (200 
kg of nitrogen ha-1). This response may be related to a high degree of closure of the stomata at the lowest N 
doses in order to void losses to the water conduction system. Nitrogen is a nutrient involved in protoplasmic 
processes, enzymatic reactions and photosynthesis, causing an osmotic gradient that allows the movement of 
water, thereby regulating the opening and closing of stomata (Epstein & Bloom, 2006; Silva et al., 2013).  

Regarding instantaneous water use efficiency (IWUE), a reduction of 28% was observed between the highest 
value of 102.50 [(µmol m-2 s-1) (mmol m-2 s-1)-1] for the 200-dose kg of nitrogen ha-1, and the lowest value of 
84.75 [(µmol m-2 s-1) (mmol m-2 s-1)-1] for the control (Figure 4E). The increase in IWUE for the 100-dose kg of 
nitrogen ha-1 may be associated with the already established benefits that this dose provides to gas exchange in 
bean plants, which provides better development of the photosynthetic process. This parameter is determined by 
the relationship between the rate of photosynthesis and the rate of transpiration (A/E), in which the values 
measured relate to the amount of carbon the plant receives for each unit of water it loses (Jaimez et al., 2005).  

The instantaneous carboxylation efficiency (ICE), calculated by ratio A/Ci, differed among the different doses. 
Plants that received the dose of 200 kg of nitrogen ha-1 had the highest instantaneous carboxylation efficiency, 
with 0.560 [(μmol m-2 s-1) (μmol mol-1)-1] (Figure 4F). The instantaneous carboxylation efficiency (ICE) 
obtained by Machado et al. (2005) bears little resemblance to the internal CO2 and the carbon dioxide 
assimilation rate. Some authors, such as Silva (2012), have found high values for internal CO2 concentration, 
associated with increased stomatal conductance, indicating an increase in the instantaneous carboxylation 
efficiency. Similar results were found in the present work, with ICE values varying among the doses of N applied 
(Figure 4F). Evaluating the effect of nitrogen fertilization on three bean-cultivars, Ferraz et al. (2012) recorded 
ICE values ranging from 0.03 to 0.08 [(μmol m-2 s-1) (μmol mol-1)-1].  
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In relation to chlorophyll fluorescence, no significant differences were observed among doses applied and the 
analyzed variables (Table 3). The doses of nitrogen applied to the bean plants did not significantly interfere with 
minimum fluorescence (F0), indicating all reaction centers were open (Figure 5A). According to previous 
experiments (Baker & Rosenqvst, 2004; Konrad et al., 2005; Suassuna et al., 2010), maximum fluorescence (Fm) 
represents the maximum intensity of fluorescence, when practically all the quinone is reduced and the reaction 
centers reach their maximum capacity of photochemical reactions. In the case of the present study, the doses of 
nitrogen applied did not interfere with the reduction of quinone. Maximum variable fluorescence (Fv), potential 
quantum efficiency of PSII (Fv/Fm) and the ratio between maximum variable fluorescence and minimum 
fluorescence (Fv/F0) also did not differ significantly among doses (Table 3 and Figure 5). 

There have been other studies relating fertilization to fluorescence efficiency in beans. Studying different 
irrigation levels and fertilization of the eggplant, Silva et al. (2014) found similar values of Fm, where increased 
irrigation depth and nitrogen doses did not interfere with Fm. Therefore, in the present study (Figure 5B), the 
highest values of Fm found, although not significant, may be related to the availability of water during the 
conduction of the experiment being favorable for the development of the crop (495.8 mm), thus showing that it 
did not cause deficiency in quinone A (QA) photoreduction and the flow of electrons between photosystems 
(Tatagiba et al., 2014).  

All of the values for potential quantum efficiency of PSII were greater than 0.75 electrons quantum-1 (Figure 5D), 
indicating that the photosynthetic apparatus is intact and performing all its functions. Previous works carried out 
with stress from fertilization and irrigation levels have verified that this is the threshold for a good response of 
plants to photosynthetic potential with no damage being caused (Reis & Campostrini 2008; Santos et al., 2010; 
Suassuna et al., 2010). 

The ratio Fv/F0 is usually used in studies to evaluate different factors in several species, among them fertilization, 
shading and water stress. When studying the effects of salinity and fertilization on fluorescence parameters of P. 
vulgaris, Zanandrea et al. (2006) observed a maximum value of 4.578 electrons quantum-1 when 80 mmol L-1 of 
NaCl was applied. Studying gas exchange and chlorophyll fluorescence in six legume cultivars under aluminum 
stress, Konrad et al. (2005) found that the Fv/F0 ratio did not differ significantly among the six cultivars 
evaluated. In view of this, it can be seen that the type and dose of nitrogen can affect the physiological behavior 
of plants, but soil nitrogen my have been sufficient to supply the minimum fluorescence needs of the bean in this 
experiment (Figure 5E).  

 

Table 3. F test for minimum fluorescence (F0); maximum fluorescence (Fm); variable maximum fluorescence (Fv); 
potential quantum efficiency of PSII (Fv/Fm); and the ratio (Fv/F0) of cultivated beans under different doses of 
nitrogen 

Source of Variation 
F Test 

F0 Fm Fv Fv/Fm F0/Fv 

N rates ns ns ns ns ns 

Quadratic Reg. ns ns ns ns ns 

Block ns ns ns ns ns 

C.V. (%) 9.38 7.65 10.00 4.31 13.63 

Note. ns, **, * respectively, not significant, significant at p < 0.01 and p < 0.05, by F-test.  
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