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Abstract 
Nitrification inhibitors have been used to enhance the efficiency of nitrogen fertilizers. This research evaluated 
the effectiveness of nontreated urea ammonium nitrate (UAN) at 0, 67, 135, 202, and 270 kg N ha-1 as well as 
UAN treated with nitrification inhibitors (pronitridine at 9.4 and 18.8 L ha-1 or nitrapyrin at 0.5 kg a.i. ha-1) to 
enhance N uptake and increase yield of corn (Zea mays L.). The study took place from 2012-2014 in upstate 
Missouri on a claypan soil. During the experiments, environmental conditions (high, medium, and low yielding 
years) affected corn response to pronitridine and nitrapyrin. In general, UAN plus pronitridine at 9.4 L ha-1 had 
similar effects on corn compared pronitridine at a higher (18.7 L ha-1) rate. During a high-yielding year (2014), 
in order to produce yields equivalent to 67 kg N ha-1 plus pronitridine at 9.4 L ha-1 or nitrapyrin, UAN needed to 
be increased 14 to 19%. Similarly, the amount of nontreated UAN needed to be increased 8 to 11% for yields to 
be equivalent to UAN at 135 kg N ha-1 plus pronitridine at 9.4 L ha-1 or nitrapyrin. Grain N removal and 
agronomic efficiency was highest with pronitridine at 9.4 L ha-1 and nitrapyrin combined with 67 and 135 kg N 
ha-1, respectively. This research indicates that pronitridine was as effective as nitrapyrin when added to a 
pre-emergence application of UAN placed between the rows in a dribble band.  
Keywords: corn, enhanced efficiency fertilizer, nitrification inhibitor, nitrogen, nitapyrin, pronitridine, urea 
ammonium nitrate 

1. Introduction 
Nitrogen is a critical input for high-yielding corn production. In 2010, nitrogen applied to corn in the United 
States totaled over 5 million Mg (USDA-ERS, 2015). More than 40% of U.S. N consumption is nitrogen 
solution (USDA-ERS, 2015), of which a majority is urea ammonium nitrate (UAN). Urea ammonium nitrate, 
which is made by dissolving ammonium nitrate and urea in water, contains 50% N as amide, 25% as nitrate and 
25% as ammonium. Liquid UAN can be applied in the spring, but it is commonly used for sidedress applications. 
Nitrogen fertilizer is susceptible to loss, which depends on environmental and field conditions. When soils are 
saturated for an extended period and conditions are warm, denitrification may be a major loss mechanism 
especially on poorly drained soils. In such conditions, nitrification inhibitors may benefit farmers. Others have 
reviewed the development and effects of nitrification inhibitors on reducing N loss and crop production (Stelly, 
1980; Prasad & Power, 1995; Wolt, 2004; Cook et al., 2015). 

Nitrification inhibitors have been utilized not only to reduce gaseous and leaching loss of N fertilizer by delaying 
nitrification of N fertilizers in the soil (Bremner & Blackmer, 1979; Aulakh et al., 1984; Bronson et al., 1992; 
Delgado & Mosier, 1996; Weiske et al., 2001; O’Callaghan et al., 2010; Khalil, 2011; Omode & Vyn, 2013; Aita 
et al., 2014; Fisk et al., 2015; Frame, 2017), but also to increase crop yields (Randall et al., 2003; Ruser & 
Schulz, 2015; Ren et al., 2017). The most consistent results in the north central U.S. with nitrapyrin 
(2-chloro-6-(trichloromethyl) pyridine) and dicyandiamide (DCD) were reported on coarse-textured soils with 
reduced rates of N (Malzer et al., 1989). Extensive research has evaluated how nitrapyrin affects Nitrosomonas 
in soils as a bactericide with anhydrous ammonia (Hughes & Welch, 1970; Bremner et al., 1981; Bronson et al., 
1992). Nitrapyrin is effective for six to eight weeks in warm soil and can persist longer in cold soils (Trenkel, 
2010). Nitrapyrin was marketed in the early 1970’s (Prasad & Power, 1995), and it was recently reformulated as 
a water-based microencapsulated product (Instinct, Dow AgroSciences, Indianapolis, IN) for use with liquid 
fertilizer solutions to delay ammonium conversion to nitrate and subsequently reduce the potential for gaseous 
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and leaching loss of N (Burzaco et al., 2013; Omonode & Vyn, 2013; Kyveryga & Blackmer, 2014). The 
probability of a yield response to nitrapyrin was greatest when spring precipitation was high (Kyveryga & 
Blackmer, 2014). Wolt’s (2004) review found that nitrapyrin increased grain yields 7% and that it reduced 
leaching loss 16% and greenhouse gas emissions 51%. Dicyandiamide was introduced into the U.S. in the 1980’s 
for use with UAN solutions. Nitrosomanas bacteria are suppressed as a bacteriostatic effect with DCD and may 
stabilize ammonium for 4 to 10 weeks (Mason, 1987; McCarty & Bremner, 1989; O’Callaghan et al., 2010; 
Trenkel, 2010; Khalil, 2011).  

The Midwestern U.S. has approximately four million ha of claypan soils (Buckley et al., 2010). Waterlogged soil 
conditions are favorable for denitrification and gaseous N loss (Zurweller et al., 2015; Ren et al., 2017). Claypan 
soils have a clay layer that is usually less than 50 cm below the soil surface that causes poor internal drainage 
(Buckley et al., 2010; Nelson & Smoot, 2012). These soils are prone to gaseous loss of N fertilizer due to 
saturated conditions (Nash et al., 2012, 2015; Zurweller et al., 2015). Loss of N to the atmosphere may approach 
30% (Wilkison et al, 2000). Numerous studies have investigated nitrification inhibitors in soils at high risk of 
leaching potential, and once N is leached out of the root zone plant N uptake is reduced (Mason, 1987; McCarty 
& Bremner, 1989; Francis et al., 1993; Martin et al., 1994). A new nitrification inhibitor, pronitridine (CAS RN 
1373256-33-7, Centuro™, Koch Agronomic Services, Witchita, KS), was recently developed to enhance the 
efficiency of N applications in corn (Vetsch & Schwab, 2014; Gabrielson & Epling, 2016). Pronitridine contains 
a nitrification inhibitor (DCD) plus 30% N fertilizer (Nitamin Nfusion, Koch Agronomic Services, Witchita, KS) 
which is a reaction product of ammonia, DCD, formaldehyde, and urea. It was formulated to inhibit nitrification 
and reduce leaching of the nitrification inhibitor in agriculture crop production systems (Gabrielson & Epling, 
2016). In wet spring conditions in Minnesota, nitapyrin and pronitridine increased corn grain yields 0.8 to 1.1 
Mg ha-1 (Vetsch & Schwab, 2014). No known research has evaluated corn response to pronitridine with UAN on 
poorly drained soils. The objective of this research was to evaluate the effectiveness of UAN treated with 
pronitridine or nitrapyrin nitrification inhibitors to enhance N uptake and increase corn yield.  

2. Methods 
2.1 Location 
Field experiments were conducted at the University of Missouri Greenley Research Center near Novelty, MO 
(40.02324 N, 92.18162 W) from 2012 to 2014. The soil was a Putnam silt loam (fine, smectitic, mesic, Vertic 
Albaqualfs). The study was arranged in a randomized complete block design with five replications in plots 3 by 
15 m. This research was arranged as two-factor experiment with five N rates (0, 67, 135, 202, and 270 kg N ha-1) 
and nitrification inhibitors (nontreated, pronitridine (Centuro™, Koch Agronomic Services, Witchita, KS) at 9.4 
L ha-1, pronitridine at 18.8 L ha-1, and nitrapyrin (Instinct®, Dow AgroSciences, Indianapolis, IN) at 0.5 kg a.i. 
ha-1). UAN rates were adjusted to offset pronitridine’s N contribution so the total amount of N applied was the 
same. Fertilizer was applied pre-emergence by dribble banding between rows with a CO2-propelled hand sprayer. 
Nitrapyrin may affect nitrification up to 10 cm from the band (Omonode & Vyn, 2013). Selected management 
practices are reported in Table 1. 

2.2 Soil Sampling and Field Measurements 
Before applying fertilizer, composite soil samples were taken from the plot area from each replication using a 
Uhland probe from four depths (0-15 cm, 16-30 cm, and 31-46 cm). Soil properties, presented by year in Table 2, 
were analyzed using standard soil testing analytical procedures for Missouri (Nathan et al., 2006). The 0-15 cm 
sample was analyzed for pH (0.01 M CaCl2), organic matter content, cation exchange capacity (CEC), available 
P (Bray 1-P), and extractable (1 M NH4AOc) K, Ca, and Mg. Soil samples from all depths were analyzed for 
nitrate and exchangeable ammonium concentrations. Precipitation was collected on site (Table 3) throughout the 
growing season using an automated weather station (Campbell Scientific, Inc., Logan, UT). 

Chlorophyll meter readings for 10 ear leaves plot-1 were collected to determine N deficiency (Zhang et al., 2008) 
using a Minolta SPAD-502 (Konica Minolta Optics, Inc.) at VT (Abendroth et al., 2011). Ear leaves (10 plot-1) 
were collected at R1, dried, and analyzed for total N concentration by combustion using a total C:N analyzer 
(LECO, TruSPEC CN Analyzer, St. Joseph, MI). In 2012 and 2013, ear leaf N concentration and SPAD meter 
readings were determined prior to the onset of drought conditions (USDM, 2015).  

Plant populations were determined prior to harvest. Grain yield, moisture, and test weight were determined using 
a Wintersteiger Delta (Salt Lake City, UT) equipped with a HarvestMaster GrainGage (SBDS800, Juniper 
Systems Inc., Logan, UT). Grain yields were adjusted to 150 g kg-1 prior to subjecting data to ANOVA. Grain 
samples were collected and analyzed for N concentration by combustion using a total C:N analyzer (LECO, 
TruSPEC CN Analyzer, St. Joseph, MI). In 2013 and 2014, grain samples were also analyzed for protein, oil, and 



jas.ccsenet.org Journal of Agricultural Science Vol. 10, No. 6; 2018 

18 

starch concentration with a Foss Infratec 1241 Grain Analyzer (Eden Prairie, MN). Agronomic efficiency was 
calculated as (Y-Y0)/F where Y = grain yield of the harvested portion of corn with nutrient applied, Y0 = grain 
yield of corn with no nutrient applied, and F = amount of nutrient applied in order to determine the short-term 
impact of N on productivity (Dobermann, 2007; Fixen et al., 2014).  

 

Table 1. Selected management practices and application information in 2012, 2013, and 2014 

Field information 2012 2013 2014 

Previous crop Soybean Soybean Soybean 

Tillage No-till No-till No-till 

Planting date 2 April 2 May 9 April 

Hybrid DKC 62-97VT3 DKC 62-97VT3 DKC 62-97VT3 

Seeding rate (seeds ha-1) 79,000 81,500 81,500 

Fertilizer application dates    

     Pre-emergence 6 Apr. 7 May 10 Apr. 

     Maintenance  

     (N-P2O5-K2O in kg ha-1) 

12 Apr.  

(18-90-135) 

28 Nov. 2012  

(18-90-135) 

11 Apr. 

(22-90-157-22 S-2.2 Zn) 

Crop protection chemicals    

     Fungicide NA† NA 10 July, Azoxystrobin
‡
 (0.12 kg 

a.i. ha-1) + propiconazole (0.10 
kg a.i. ha-1) 

     Insecticide NA 22 May, Lambda-cyhalothrin 
(20 g a.i./ha) 

NA 

     Herbicide    

          Fall 15 Nov. 2011, Simazine (1.23 
kg a.i. ha-1) + glyphosate (0.53 
kg a.i. ha-1) + COC (2.34 L 
ha-1) 

17 Nov. 2012, Simazine (1.23 
kg a.i. ha-1) + glyphosate (0.53 
kg a.i. ha-1) + COC (2.34 L 
ha-1) 

NA 

          POST 11 May, Acetochlor (0.94 kg 
a.i. ha-1) + flumetsulam (0.03 
kg a.i. ha-1) + clopyralid (0.1 kg 
a.i. ha-1) + glyphosate (1.38 kg 
a.i. ha-1) 

14 May, Acetochlor (2.28 kg 
a.i. ha-1) + atrazine (2.25 kg a.i. 
ha-1) 

6 May, Acetochlor (2.65 kg a.i. 
ha-1) + atrazine (1.88 kg a.i. 
ha-1) + glyphosate (1.06 kg a.i. 
ha-1) + DAS (0.02 kg L-1) 

          Late POST 5 June, Glyphosate (1.55 kg a.i. 
ha-1) + mesotrione (0.09 kg a.i. 
ha-1) + DAS (0.02 kg L-1) + 
COC (2.34 L ha-1) 

22 May, Glyphosate (1.55 kg 
a.i. ha-1) + mesotrione (0.09 kg 
a.i. ha-1) + NIS (0.25% v/v) + 
UAN (2.34 L ha-1) 

11 June, Glyphosate (1.06 kg 
a.i. ha-1) + topramezone (0.02 
kg a.i. ha-1) + atrazine (0.25 kg 
a.i. ha-1) + DAS (0.02 kg L-1) 

Harvest date 24 Aug. 26 Sep. 6 Oct. 

Note. †Abbreviations: COC, crop oil concentrate; DAS, Diammonium sulfate; NA, None applied; NIS, nonionic 
surfactant; POST, postemergence; UAN, urea ammonium nitrate. 
‡Acetochlor (2-chloro-2’-methyl-6’ethyl-N-ethoxymethylacetanilide); atrazine (2-chloro-4-(ethylamino)-6-
(isopropylamino)-s-triazine); azoxystrobin, methyl (E)-2-{2-[6-(2-cyanophenoxy) pyrimidin-4-yloxy]phenyl}-3-
methoxyacrylate; clopyralid, 3,6-dichloro-2-pyridinecarboxylic acid, monoethanolamine salt; diammonium 
sulfate ((NH4)2SO4); flumetsulam, N-(2,6-difluorophenyl)-5-methyl[1,2,4]triazolo-[1,5-a]pyrimidine-2-
sulfonamide; glyphosate (N-(phosphonomethyl)glycine); lambda-cyhalothrin, [1a(S*),3a(Z)]-(±)-cyano-(3-
phenoxyphenyl)methyl-3-(2-chloro-3,3,3-trifl uoro-1-propenyl)-2,2-dimethylcyclopropanecarboxylate; 
mesotrione (2-[4-(Methylsulfonyl)-2-nitrobenzoyl]cyclohexane-1,3-dione); propiconazole, 1-[[2-(2,4-
dichlorophenyl)-4-propyl-1,3-dioxolan-2-yl]Methyl]-1H-1,2,4-triazole; and simazine, 2-chloro-4,6-
bis(ethylamino)-s-triazine; topramezone, [3-(4,5-dihydro-3-isoxazolyl)- 2-methyl-4-(methylsulfonyl)phenyl] (5-
hydroxy-1-methyl-1H-pyrazol-4-yl) methanone 
 

2.3 Statistical Analysis 
Data from all years showed a rate response to UAN rates, but the response was affected by the amount and 
timing of rainfall each year (Table 3). Enhanced-efficiency N products such as nitrification inhibitors typically 
perform at rates of N where loss can be detected in plant measurements and ultimately yield (Frye et al., 1989; 
Malzer et al., 1989). Therefore, data were sorted by N rate and subjected to individual ANOVA using PROC 
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GLM (SAS, 2014). Nitrification inhibitor means were separated using Fisher’s Protected LSD (P = 0.1) to 
determine differences among nitrification inhibitor treatments at specific N rates. In the absence of a significant 
interaction, data were combined over years. Quadratic regression analysis (Cerrato & Blackmer, 1990) was 
performed using best-fit analysis determined with SigmaPlot (Vers. 8.02, SPSS Inc., Chicago, IL), and 
significance was determined using SAS (2014). A linear regression analysis evaluated the relationship between 
grain N and protein concentration, and significance was determined using SAS (2014). 

 

Table 2. Soil test information from 0 to 15 cm in 2012, 2013, and 2014. Soil nitrate (NO3-N) and ammonium 
(NH4-N) concentration at three depths on 6 April 2012, 1 May 2013, and 9 April 2014 

Soil test information Soil depth 2012 2013 2014 

pH (0.01 M CaCl2) 0-15 cm 5.9±0.2† 6.1±0.1 6.0±0.2 
Bray 1-P (kg ha-1) 0-15 cm 29.9±21.1 72.6±13.1 40.0±5.2 
K (kg ha-1) 0-15 cm 228±31 430±38 228±53 
Ca (kg ha-1) 0-15 cm 4834±307 4753±438 4026±726 
Mg (kg ha-1) 0-15 cm 585±94 573±56 453±99 
CEC (cmolc kg-1)‡ 0-15 cm 14.9±1.3 14.8±1.2 12.4±1.8 
OM (g kg-1) 0-15 cm 33.0±2.9 31.8±1.5 26.2±1.9 
NO3-N (mg kg-1) 0-15 cm 9.5±1.5 16.1±2.8 15.3±5.7 
 16-30 cm 4.9±0.4 7.7±1.1 9.2±2.1 
 31-46 cm 5.0±0.5 8.0±1.3 7.6±1.7 
NH4-N (mg kg-1) 0-15 cm 3.9±0.3 4.5±1.1 3.1±0.5 
 16-30 cm 3.7±0.7 5.0±1.4 5.2±0.8 
 31-46 cm 4.5±0.7 7.9±1.8 6.2±0.9 

Note. † Standard deviation. 
‡ Abbreviations: CEC, cation exchange capacity; OM, organic matter. 

 

3. Results and Discussion 
3.1 Precipitation 
The first year of this research was classified as an extreme drought (2012), and the second a severe drought 
(2013) (USDM, 2015). Precipitation was nearly 200 mm below average, primarily during grain fill in July (Table 
3), which reduced overall yields (< 3.1 Mg ha-1) in 2012 (Figure 1). In 2013, temperatures during pollination 
were favorable (data not presented) for high yield potential, but only 48 mm of rain fell in July and none in 
August (Table 3), which resulted in small seed size (visual observation). In 2014, precipitation (Table 3) and air 
temperature (data not presented) through the summer months were favorable for high yields. Although claypan 
soils are highly productive, they can be susceptible to extreme weather conditions that limit yield (Nelson & 
Smoot, 2012; Buckley et al., 2010). The maximum corn yields in the absence of a nitrification inhibitor were 
determined to be at 166 kg N ha-1 in 2012, 248 kg N ha-1 in 2013, and 237 kg N ha-1 in 2014 (Figure 1), which 
was affected by precipitation during the growing season (Table 3).  

 

Table 3. Monthly precipitation average (10-year) and precipitation during the growing season at Novelty in 2012, 
2013, and 2014 

Month 10-year average† 2012 2013 2014 

 ----------------------------------------------- mm ---------------------------------------------------

Apr. 104 119 194 106 

May 134 63 261 26 

June 133 57 92 225 

July 109 19 48 51 

Aug. 110 76 0 164 

Sep. 90 90 79 175 

Total 680 483 674 747 

Note. † Averaged from 2000 to 2011. 
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potential compared to DCD (Gabrielson & Epling, 2016). Grain yields were greatest in the nontreated control 
(8.71 Mg ha-1) and were similar to pronitridine at 18.8 L ha-1 and nitrapyrin in 2013 during a moderately yielding 
year when N was probably not limiting due to summer drought conditions. In the high-yield environment of 
2014, nitrapyrin and pronitridine at 9.4 L ha-1 increased yields 0.44 to 0.5 Mg ha-1 compared to the nontreated 
control at 135 kg N ha-1, which indicated the benefit of a nitrification inhibitor in such production environments 
when N rates were reduced. This was similar to other research when a reduced rate of UAN was applied with 
nitrapyrin (Habibullah et al., 2017). In 2014, nontreated UAN amounts (Table 5) needed to be increased to 147 
kg N ha-1 (8%) and 151 kg N ha-1 (11%) in order to obtain yields similar to pronitridine at 9.4 L ha-1 and 
nitrapyrin, respectively (Figure 1). The increase in the yield may be due reduced gaseous N loss in the presence 
of the nitrification inhibitors (Bronson et al., 1992; Zaman et al., 2009; Chen et al., 2010; Halvorson et al., 2010; 
Carneiro et al., 2010; Khalil, 2011; Di & Cameron, 2012; Burzaco et al., 2013; Omonode & Vyn 2013). This 
could be because spring conditions generally were wet (Table 3), gaseous N losses in claypan soils as high as 
30% have been reported (Wilkison et al., 2000), and summer conditions were favorable for high yields. Similar 
effects between nitrapyrin and pronitridine were expected as Martin et al., (1994) reported finding similar effects 
of nitrapyrin and DCD on total inorganic soil N.  
 
Table 4. Corn response to nitrification inhibitors with urea ammonium nitrate when N amount was 67 kg N ha-1. 
Data were combined over years in the absence of a significant interaction 

Nitrification 

inhibitor 
SPAD 

Ear 

leaf N 
Population Moisture 

Test 

weight
Yield 

Grain N Grain N

removal

Agronomic 

efficiency† 
Protein‡ Oil‡ Starch‡

2012 2013 2014

  g kg-1 No. ha-1 g kg-1 kg hL-1 Mg ha-1 -------- g kg-1 -------- kg ha-1 kg kg app.-1 g kg-1 g kg-1 g kg-1 

Non-treated 49.4 23.9 72,620 177 71.6 7.73 12.87 10.01 10.57 82 36.0 73.0 34.1 742 

Pronitridine  

at 9.4 L ha-1 

49.7 24.5 69,650 180 71.6 7.89 12.44 11.18 10.43 86 41.6 74.1 34.2 742 

Pronitridine 

at 18.7 L ha-1 

47.9 23.4 71,380 181 71.5 7.71 12.11 9.80 11.31 84 38.9 73.3 34.8 741 

Nitrapyrin 49.0 24.0 70,150 175 71.8 7.98 12.66 9.51 10.94 85 40.3 73.4 34.6 741 

LSD (P = 0.1) NS NS NS NS NS NS --------- 0.91 --------- NS NS NS NS NS 

P > F 0.29 0.29 0.62 0.74 0.82 0.40  0.04  0.76 0.76 0.93 0.87 0.93 

Note. † Calculated as: kg grain produced kg N-1 applied (Fixen et al., 2014). 
‡ Protein, oil, and starch concentrations were determined in 2013 and 2014. 

 

Table 5. Corn response to nitrification inhibitors with urea ammonium nitrate when N amount was 135 kg N ha-1. 
Data were combined over years in the absence of a significant interaction 

Nitrification 

inhibitor 
SPAD 

Ear 

leaf N 
Population Moisture 

Test 

weight

Yield 
Grain N

Grain N 

removal

Agronomic 

efficiency† 
Protein‡ Oil‡ Starch‡

2012 2013 2014

  g kg-1 No. ha-1 g kg-1 kg hL-1 ------ Mg ha-1 ------ g kg-1 kg ha-1 kg kg app.-1 g kg-1 g kg-1 g kg-1 

Non-treated 52.2 26.55 72,870 175 72.1 2.83 8.71 14.32 11.78 98 29.8 79.7 35.1 737 

Pronitridine  

at 9.4 L ha-1 

51.5 24.76 70,890 174 72.6 3.03 7.94 14.76 11.94 100 31.0 77.9 33.3 741 

Pronitridine  

at 18.7 L ha-1 

51.7 25.50 69,650 174 72.4 2.92 8.34 14.44 11.77 99 30.0 79.5 34.4 739 

Nitrapyrin 52.1 26.03 71,140 172 72.5 2.93 8.32 14.82 11.85 101 31.5 80.9 34.9 737 

LSD (P = 0.1) NS 1.01 NS NS NS --------- 0.44 -------- NS NS NS NS NS NS 

P > F 0.66 0.03 0.27 0.93 0.50  0.06  0.92 0.82 0.82 0.33 0.40 0.36 

Note. † Calculated as: kg grain produced kg N-1 applied (Fixen et al., 2014). 
‡ Protein, oil, and starch concentrations were determined in 2013 and 2014. 

 

3.4 UAN at 202 kg N ha-1 
Urea ammonium nitrate at 202 kg N ha-1 had corn ear leaf SPAD meter readings at R1 that showed UAN treated 
with nitrapyrin had greener ear leaves than pronitridine at 9.4 L ha-1, but values were similar to pronitridine at 
18.7 L ha-1 and the nontreated control (Table 5). However, ear leaf N concentration was greatest (27.2 g kg-1) 
with pronitridine at 9.4 L ha-1. Nitrification inhibitor treatments had similar plant populations at harvest (P = 
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0.99), grain moisture (P = 0.88), test weight (P = 0.74), grain N concentration (P = 0.60), grain N removal (P = 
0.46), agronomic efficiency (P = 0.45), protein (P = 0.95), oil, (P = 0.79), and starch (P = 0.79) concentration. 
Grain yield for the nitrification inhibitors was ranked pronitridine at 9.4 L ha-1 (9.02 Mg ha-1) = pronitridine at 
18.7 L ha-1 (9.01 Mg ha-1) = non-treated (8.94 Mg ha-1) ≥ nitrapyrin (8.63 Mg ha-1). Differences between 
pronitridine and nitrapyrin might be due to differences in the longevity of these products in the soil or the ability 
to affect ammonia volatilization (Fox & Bandel, 1989; Aita et al., 2014; Frame, 2017). Yield data indicate that 
adequate N was supplied to the crop for high yields at 202 kg N ha-1 or greater, and no advantage was observed 
when adding a nitrification inhibitor when compared to the nontreated control.  
 
Table 6. Corn response to nitrification inhibitors with urea ammonium nitrate when N amount was 202 kg N ha-1. 
Data were combined over years in the absence of a significant interaction 

Nitrification 

inhibitor 
SPAD

Ear 

leaf N 
Population Moisture

Test 

weight
Yield Grain N

Grain N

removal

Agronomic 

efficiency† 
Protein‡ Oil‡ Starch‡

  g kg-1 No. ha-1 g kg-1 kg hL-1 Mg ha-1 g kg-1 kg ha-1 kg kg app.-1 g kg-1 g kg-1 g kg-1 

Nontreated 54.1 26.6 71,140 178 72.5 8.94 12.32 109 25.3 85.9 34.2 736 

Pronitridine at 9.4 L ha-1 52.6 27.3 71,140 175 72.6 9.02 12.70 112 26.6 85.6 34.8 733 

Pronitridine at 18.7 L ha-1 54.2 26.5 71,380 175 72.6 9.01 12.49 111 26.3 85.2 33.7 736 

Nitrapyrin 55.5 26.2 70,890 177 72.6 8.63 12.54 107 24.4 86.2 34.4 735 

LSD (P = 0.1) 1.8 NS NS NS NS 0.33 NS NS NS NS NS NS 

P > F 0.07 0.49 0.99 0.88 0.74 0.09 0.60 0.46 0.45 0.95 0.79 0.79 

Note. † Calculated as: kg grain produced kg N-1 applied (Fixen et al., 2014). 
‡ Protein, oil, and starch concentrations were determined in 2013 and 2014. 

 
3.5 UAN at 270 kg N ha-1 
Slight differences among nitrification inhibitors were observed for test weight and starch concentration with 
pronitridine at 9.4 L ha-1, nitrapyrin, and the nontreated control having similar test weights and starch 
concentrations when N was applied at 270 kg N ha-1 (data not presented). All of the corn response parameters 
that were evaluated were similar among nitrification inhibitors with UAN at 270 kg N ha-1 (data not presented). 
This amount of N was excessive to detect differences among nitrification inhibitors, in keeping with other 
nitrification inhibitor research throughout the U.S. (Fox & Bandel, 1989; Frye et al., 1989; Malzer et al., 1989). 
In well-drained soils of the mid-Atlantic, a nitrification inhibitor did not increase N fertilizer efficiency or yield 
(Fox & Bandel, 1989). However, nitrapyrin has increased yields 22 to 33% in waterlogged conditions (Ren et al., 
2017). DCD has been reported to leach in some instances (McCarty & Bremner, 1989) while temperature and 
amount could affect nitrification (Di & Cameron, 2004). This could affect the efficacy of this nitrification 
inhibitor, but the leaching capabilities and effects of environmental conditions on the fate of pronitridine have 
not been reported. In claypan soils, we would expect limited deep leaching, could be affected by the prevalence 
and intensity of rainfall (Blevins et al, 1996). Differences in decomposition rate of DCD and nitrapyrin based on 
soil type (Bronson et al., 1989) could affect the crop response observed, but comparisons with pronitridine have 
not been reported. In a recent meta-analysis of enhanced efficiency fertilizers for corn management systems, 
nitrapyrin or NBPT plus DCD combined with UAN showed no significant effect (P = 0.84) on corn yield data 
(Cook et al., 2015). However, nitrapyrin and DCD have reduced N2O emissions 20 to 90% (Chen et al., 2010; Di 
& Cameron, 2012; Halvorson et al., 2010; Carneiro et al., 2010; Khalil, 2011; Burzaco et al., 2013; Omonode & 
Vyn, 2013), which can enhance the efficiency of a UAN application.  
3.6 Protein and Grain N Concentration 
Since N treatments included a range of amounts, this provided an opportunity to evaluate relationship between 
grain N concentration, which was determined chemically, and protein, which was determined with NIR for all 
treatments in 2013 and 2014. This linear relationship (grain N concentration = 0.1409 × protein concentration) 
indicated that NIR could provide a good estimate (R2 = 0.75) of grain N concentration with a more cost-effective, 
safer, and quicker determination (Figure 2). A standard factor of 6.25 has been used to calculate protein 
concentration based on N content in the grain, which can be affected by other N compounds (FAO, 2003). Grain 
protein N content has ranged from 13 to 19%, which has a conversion factor of 0.13 to 0.19 (FAO, 2003) where 
our conversion factor (0.1409) for corn produced over several N rates was within this range. Therefore, 
calculating N uptake based on protein amount could be a useful tool for evaluating the efficiency of N treatments, 
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