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Abstract 
Altough the sugarcane crop had a huge world importance the planting system stil the same since the 
development, needing changes to increase the procution potential. So, the objective of this study was to assess 
the effect of sugarcane bud chip encapsulation on the initial growth of seedlings. To provide informations for a 
new planting system, using small stem pieces of sugarcane to produce the seedlings. Two experiments were 
conducted in a completely randomized design. In the first, bud chip encapsulation was assessed with six 
concentrations of sodium alginate (0, 10, 20, 30, 40, and 50 g L-1) cross-linked with 300 mM calcium chloride, 
with the encapsulated chips being kept in a greenhouse. In the second experiment, the capsules resulting from the 
different sodium alginate concentrations were tested for the dry mass adhered to the bud chip, moisture, swelling 
index, biodegradability, and solubility. Emergence greater than 70% was obtained at sodium alginate 
concentrations of 0, 10, and 20 g L-1. The 30, 40, and 50 g L-1 concentrations inhibited seedling emergence and 
initial growth; however, when the capsule was removed, the bud chips formed viable seedlings. Encapsulation 
inhibited emergence because the capsule acts as a physical barrier; however, encapsulation may be used for bud 
chip preservation. The study of new capsules and encapsulation methods may enable the ex vitro production of 
synthetic sugarcane seeds. 

Keywords: propagation, Saccharum sp., sodium alginate 

1. Introduction 
Sugarcane (Saccharum sp.) is a perennial crop, traditionally propagated by axillary bud proliferation, requiring 
18 to 20 t ha-1 of stalks for its cultivation. In the conventional tillage system, the use of stalks has plant protection 
limitations and has led to the development of the Pre-Sprouted Seedlings (PSS) system by the Agronomic 
Institute of Campinas (Instituto Agronômico de Campinas-IAC; Landell et al., 2013). PSS uses only the 
3-cm-long axillary bud region containing the reserves, termed the bud chip, to obtain seedlings that will be 
grown in the field. This ensures the health and homogeneity of the sugarcane field and reduces the consumption 
of raw material for planting to approximately 2 t ha-1 (Gomes, 2013). Because this method is currently in demand, 
several studies are being conducted to enable faster production of the seedlings with greater vigor (Gírio et al., 
2015).  

The synthetic seed method is conventionally applied to propagules smaller than 1 cm in vitro, which are taken to 
the field after acclimatization. Studies on the formation of synthetic sugarcane seeds are being conducted to 
optimize the planting system of this crop (Passarin, Fernandes, & Perticarrari, 2014). 

Encapsulation is a method used to form synthetic seeds of plant propagules under in vitro conditions to increase 
propagule viability and resistance to adverse environmental conditions (Hung & Trueman, 2011). Currently, 
sodium alginate cross-linked with calcium chloride is the most commonly used reagent for synthetic seed 
formation, and the optimal concentration of these products varies with the study species. Although this is a 
promising technology in plant propagation, its use is limited to in vitro environments, short-term storage, and 
cryopreservation (Sharma, Shahzad, & da Silva, 2013). 
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The biofilm moisture content was determined in 4-cm2 circular film incubated in an oven at 105 °C for 24 hours 
and assessed by gravimetry. 

The swelling index was determined based on the method proposed by Almeida, Prestes, Pinheiro, 
Woiciechowski, and Wosiacki (2013) with modifications. Accordingly, 2.7-cm2 circular film samples were 
removed and dried at 65 °C to constant weight. Then, the samples were immersed in an Erlenmeyer containing 
50 mL distilled water for 40 minutes. After this period, the samples were removed with tweezers and placed 
between filter paper sheets for 1 minute. The hydrated films were reweighed. The swelling index (Si) was 
calculated using the following equation: 

Si = (wf – wi)/wf × 100                               (2) 

where, wf is the final weight of the hydrated film, and wi is the initial weight of the dry film. 

Film biodegradability was determined according to Martucci and Ruseckaite (2009) with modifications. The 
films were cut into circles with an area of 4 cm², dehydrated in an oven at 65 °C to constant weight (wi) and 
packed in gauze with nine threads per cm². Then, the film samples in gauze were placed at a depth of 2 cm in 
pots with Bioplant® substrate, which served as a degradation medium, and were kept in a greenhouse for 15 days 
under the same conditions as those used in the previous tests. At the end of this period, the film-containing 
gauzes were removed from the pots with tweezers and rinsed in running water. Then, the samples were dried at 
65 °C to constant weight. The percent biodegradability was determined using the following equation: 

WL (%) = (wf – wi)/wi × 100                            (3) 

where, wi is the initial dry weight of the film, and wf is the dry weight remaining after 15 days of 
biodegradation.  

Solubility was assessed based on Almeida et al. (2013) with modifications. For this purpose, the initial weight of 
a 2.7-cm2 circular film sample was measured, then dried at 65 °C to constant weight. The weighed and dried 
samples (wi) were placed in Erlenmeyer containing 50 mL of water under magnetic stirring at 130 rpm at room 
temperature for 24 hours. The resulting suspensions were filtered, and the residues were placed in an oven at 
105 °C for 24 hours to determine the final weight (wf). The solubility of the film was expressed as the percent 
solubilized weight over the dry weight.  

2.4 Statistical Analysis 

The experimental design was completely randomized. Six concentrations of sodium alginate were tested with six 
10-plant replicates. Five concentrations of sodium alginate were tested with four replicates to characterize the 
capsules. 

The data were subjected to the Shapiro-Wilk normality test. Qualitative data were subjected to analysis of 
variance, and the means were compared by the Tukey test at 5% probability using Sisvar 5.6 software (Ferreira, 
2011). Quantitative data were subjected to regression analysis using the SigmaPlot 11.0 software. 

3. Results 
3.1 Effect of Encapsulation on Bud Chip Growth 

The sodium alginate concentration had a negative linear effect on the percent emergence and emergence speed 
index of sugarcane bud chips. These results suggest that sodium alginate capsules reduce the initial plant growth 
because they work as a barrier to emergence (Figure 3). 
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Figure 5. Regression analysis of number of leaves (a), stem diameter (b), plant length (c), shoot length (d), and 
longest root length (e) of seedlings of Saccharum sp. L., cultivar CTC 4, encapsulated with different 

concentrations of sodium alginate, 31 days after planting 

 

The emerged sugarcane plants encapsulated with 30, 40, and 50 g L-1 sodium alginate lacked physiological 
quality for seedling production and did not differ significantly in SDM, RDM, or DMtotal—with 0.34, 0.10, and 
0.44 g, respectively—at 31 days after emergence. The concentrations of 0, 10, and 20 g L-1 did not differ 
significantly in SDM (1.17), RDM (0.62), or DMtotal (1.80) 59 days after planting; thus, growth was similar at 
these concentrations, regardless of the use of the sodium alginate. 

Viability, assessed after removing the capsule and replanting the non-emerged bud chips from the 30, 40, and 50 
g L-1 concentrations, showed no significant difference in percent emergence or emergence speed index, with 
mean values of 59.71% and 0.55, respectively. The emerged plants with capsule had 17.83% emergence and 0.08 

00000 1010101010 2020202020 3030303030 4040404040 5050505050

N
um

be
r 

of
 le

av
es

0.0
1.5

2.0

2.5

3.0

3.5

4.0

4.5(a)
y = 4.03 - 0.04x;  R² = 0.98* 

Sodium alginate (g L-1)
00000 1010101010 2020202020 3030303030 4040404040 5050505050

St
em

 d
ia

m
et

er
 (m

m
)

0
7

8

9

10

11

12(b)
y = 10.38 - 0.04x;  R² = 0.96* 

Sodium alginate (g L-1)

0 10 20 30 40 50

Pl
an

t l
en

gt
h 

(c
m

)

0
30
35
40
45
50
55
60
65
70
75
80

(c)
y = 63.92 - 0.46x;  R² = 0.76* 

Sodium alginate (g L-1) Sodium alginate (g L-1)
00000 1010101010 2020202020 3030303030 4040404040 5050505050

Sh
oo

t l
en

gt
h 

(c
m

)

0
20

25

30

35

40

45

50
(d)

y = 42.30 - 0.36x;  R² = 0.88* 

Sodium alginate (g L-1)
00000 1010101010 2020202020 3030303030 4040404040 5050505050

L
on

ge
st

 r
oo

t l
en

gt
h 

(c
m

)

0
10

15

20

25

30
(e)

y = 25.29 - 0.65x + 0.01x²;  R² = 0.82* 



jas.ccsenet.

ESI (Figur
removed. 

 

Figure 6. P
with ca

 

Analysis 
concentrat
length, and
root dry m

3.2 Charac

In the asse
alginate co
and the hi
effect as a 

 

 

 

 

 

 

 

 

 

 

org 

re 6). This dem

Percent emerge
apsule and afte

si

of the biome
tions with a me
d 39.00 cm pl

mass, or total dr

cterization of t

essment of the
oncentration. T
ghest BCAFD
mechanical ba

monstrates tha

ence and emer
er removing the
ignificant diffe

etric variables
ean of 1.94 lea
lant length. Th
ry mass with m

the Biofilm Us

e films, the va
The capsule fo

DM (0.656 g) w
arrier to root g

Journal of A

at the capsule p

rgence speed in
e capsule (with
erences accord

s showed no 
aves, 4.74 mm 
hese concentra
mean values of

sed for Encaps

ariables BCAF
ormed with 10
was observed 

growth (Figure

Agricultural Sci

110 

preserves the a

 

ndex (ESI) of 
hout capsule). 

ding to the Tuk

significant d
stem diameter

ations also had
f 0.72, 0.54, an

sulation 

FDM and swel
0 g L-1 sodium
at 50 g L-1. T

e 7).  

ience

ability of the p

bud chips of S
Different lette
ey test at 5% p

difference amo
r, 12.65 cm lon
d no effect on
nd 1.25, respec

lling index inc
m alginate had 
The increase in

plant to grow 

Saccharum sp. 
ers above the c
probability 

ong the 30, 4
ngest root leng

n the paramete
ctively.  

creased linearl
the lowest (0

n the BCAFDM

Vol. 10, No. 4;

after the capsu

 L., cultivar C
columns indica

40, and 50 g
gth, 27.15 cm s
ers shoot dry m

ly with the so
.034 g) BCAF
M shows the f

2018 

ule is 

 

TC 4, 
ate 

g L-1 
shoot 
mass, 

dium 
FDM, 
film’s 



jas.ccsenet.org Journal of Agricultural Science Vol. 10, No. 4; 2018 

111 

 
 

 
 

 

Figure 7. Analysis of the bud chip-adhered film dry mass (BCAFDM) (a), swelling index (b), moisture content 
(c), biodegradability (d), and solubility (e) of films with different concentrations of sodium alginate used for 

Saccharum sp. L. bud chip encapsulation 

 
4. Discussion 
Encapsulation is a micropropagation method widely used for synthetic seed formation, and it can also be used 
for plant propagule conservation (Rai, Asthana, Singh, Jaiswal, & Jaiswal, 2009). However, the application of 
this method in the field is still underexplored. This is the first report of sugarcane bud chip encapsulation with 
sodium alginate in an ex vitro environment. Sodium alginate acted as a physical barrier and reduced sugarcane 
seedling emergence. 

(a)

10 20 30 40 50

BC
A

FD
M

 (g
)

-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

y = -0.163 + 0.02x;  R² = 0.95* 

Sodium alginate (g L-1)

(b)

10 20 30 40 50

Sw
el

lin
g 

in
de

x 
(%

)

0

500

1000

1500

2000

2500

3000
y = -782.83 + 53.30x;  R² = 0.74* 

Sodium alginate (g L-1)

10 20 30 40 50

M
oi

st
ur

e 
co

nt
en

t (
%

)

0
75

80

85

90

95

100(c)
y = 97.80 - 0.27x;  R² = 0.59* 

Sodium alginate (g L-1)

(d)

Sodium alginate (g L-1)
10 20 30 40 50

Bi
od

eg
ra

da
bi

lit
y 

(%
)

0
20

25

30

35

40

45
y = 41.73 - 0.38x;  R² = 0.96* 

(e)

Sodium alginate (g L-1)

10 20 30 40 50

So
lu

bi
lit

y 
(%

)

0
10

15

20

25

30

35

40
y = 32.40 - 0.33x;  R² = 0.90* 



jas.ccsenet.org Journal of Agricultural Science Vol. 10, No. 4; 2018 

112 

The effect of sodium alginate concentration on the emergence of micropropagated synthetic seeds of Rauvolfia 
serpentina L. Benth. has also been reported and is associated with the synthetic seed firmness provided for by 
high sodium alginate concentrations (Gantait, Kundu, Yeasmin, & Ali, 2017). The capsule formed by 30, 40, and 
50 g L-1 sodium alginate cross-linked with calcium chloride may have had a tegument effect, preventing water 
absorption by the bud chip and causing mechanical resistance to root and shoot growth (Müller, Gibbert, Binotto, 
Kaiser, & Bortolini, 2017). 

The in vitro synthetic seed conversion into plants was affected by the composition of the sodium alginate 
solution and by the formulation of the sowing substrate, which may have additional nutrients, growth regulators, 
and protective agents (Faria, Costa, Londe, Silva, & Ribeiro, 2014; Verma, Agarwal, Dubey, Solomon, & Singh, 
2013). Another key factor for synthetic seed conversion into plants is the use of different concentrations of 
sodium alginate. 

Under in vitro conditions, the decline in the synthetic seed conversion into plants is attributed to extreme 
concentrations of sodium alginate and calcium chloride. The concentrations currently used for several species are 
30 g L-1 sodium alginate and 75 mM calcium chloride (Gantait et al., 2017). Because it is a physical barrier, the 
capsules prepared at the highest sodium alginate concentrations are an obstacle to root sprouting; although 
sodium alginate protects the propagule, the capsule also prevents its growth (Lambardi, Benelli, Ozudogru, & 
Ozden-Tokatli, 2006). 

Direct sowing of synthetic seeds and their formation under non-aseptic conditions is important for the 
propagation of widely cultivated commercial species. This method shortens the acclimatization required for in 
vitro cultures and allows the handling and transport of propagules. However, studies on nonsterile synthetic seed 
formation and their direct sowing must be adapted to each species. The success of large-scale synthetic seeds 
requires sowing under non-aseptic conditions, which shortens acclimatization, and removing organic compounds 
from both the encapsulation matrix and the substrate fertigation to avoid contamination, as performed in the 
present study (Hung & Dung, 2015). 

The use of synthetic seeds for commercial propagation of plant species is uncommon. Nyende, Schittenhelm, 
Mix-Wagner, and Greef (2005) report that in vitro precultivation of synthetic potato seeds is necessary for 
success in the field because direct sowing in the field had less than 18% emergence. No difference in sugar yield 
was found after 12 months of field cultivation when synthetic seed-acclimatized sugarcane plants were compared 
to macropropagated plants derived from pregerminated three-bud propagules and from single-node auxiliary 
buds (Nieves et al., 2003). These results demonstrate that precultivation is an alternative for the production of 
seedlings with good field performance and that nutrient solutions added to the growth medium stimulate the 
initial plant growth. 

Considering that sugarcane propagules should be immediately planted after field cutting to avoid the 
deterioration of the material, encapsulation enabled a considerable emergence rate after capsule removal and 
replanting (Jain, Solomon, Shrivastava, & Chandra, 2010). This demonstrates that encapsulation is also viable 
for short-term sugarcane storage because, even under greenhouse conditions, it preserved 59% of the bud chips 
for 59 days after sowing in substrate. Encapsulation with sodium alginate reduces microbial activity in 
propagules and the respiration and transpiration of the plant material; therefore, encapsulation may be used for 
conservation and may facilitate logistics processes for sugarcane germplasm exchange (Mannozzi et al., 2016). 

The swelling index was lower at 10 and 20 g L-1 and higher at 50 g L-1 sodium alginate, and this is important to 
assess the water absorption capacity of the film (Figure 7). The higher swelling index in films with higher 
sodium alginate concentrations may result from lower cross-linking at higher concentrations, thus leading to a 
higher number of molecules available to interact with water (Almeida et al., 2013). The crosslinking process is 
very important for synthetic seed formation, and the optimal concentration should be determined for each study 
species (Javed, Alatar, Anis, & Faisal, 2017). 

The characteristic moisture content, biodegradability, and solubility decreased linearly with the sodium alginate 
concentration (Figure 7). Moisture content decreased with the increase in sodium alginate concentration; the 
mean moisture was 93.21% at 10 and 20 g L-1 sodium alginate, and the lowest moisture, 80.86%, was observed 
at 50 g L-1 sodium alginate. This decrease in moisture likely occurred because the higher concentration of 
alginate molecules reduced the available water content (Jaramillo, Seligra, Goyanes, Bernal, & Famá, 2015). 
Moisture is a key factor for plant growth because it enables cell expansion and consequently plant growth. 

Biodegradability was highest at 10 and 20 g L-1 and lowest at 50 g L-1 sodium alginate. The biodegradation 
process is affected by the interaction between the sodium alginate biofilm and water and by the film size and 
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shape (Laycock et al., 2017). Molecules interact strongly due to the higher concentration of sodium alginate, 
thereby reducing the biodegradability (Deepa et al., 2016; Emadian, Onay, & Demirel, 2017). 

The mean solubility of the sodium alginate concentrations was 22.61%. This parameter is important because it 
affects the biodegradability of films and is directly related to their ability to interact with water. The low 
solubility of sodium alginate films is related to crosslinking with calcium chloride; thus, these films have lower 
solubility in water than hydroxypropylmethylcellulose films (Rotta et al., 2009). The optimal film for synthetic 
seed formation should have high solubility in water, which enables their biodegradability and, therefore, their 
plant growth. 

This pioneering study showed that synthetic seed formation with concentrations of up to 50 g L-1 sodium alginate 
is not viable. However, the study of new encapsulation agents and methods for synthetic sugarcane seed 
formation will help develop innovative planting techniques, which may benefit the sugarcane industry, as there 
are many products for encapsulation and, therefore, for synthetic seed formation. In addition, the use of sodium 
alginate to encapsulate bud chips may be an alternative for short-term storage, enabling logistics processes and 
subsequent propagule planting. 

5. Conclusion 
Sodium alginate reduced sugarcane bud chip emergence and initial growth but can be used to preserve the 
physology quality. The nonviability of encapsulation for synthetic sugarcane seed formation may result from the 
characteristics of the sodium alginate capsules. New studies evaluating capsules with high swelling index, 
moisture content, biodegradability, and solubility should be performed. These capsules should also be studied to 
enable short-term sugarcane storage and logistics processes. 
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