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Abstract 
Fifty actinomycetes were isolated from fifteen soil samples and were screened for their antagonism against 
fungal plant pathogens by dual culture assay, and one of the strain named AR10 was shown to be most effective 
in suppression of growth of plant pathogen. An antifungal compound of AR10 was extracted, and purified by 
TLC and HPLC. As a result of NMR and LC-MS analysis, the antifungal compound was identified as 
albocycline. AR10 suppressed Rhizoctonia damping-off of cucumber in infection control assay. The 16S rDNA 
sequence of AR10 shows high sequence similarity to those of genus Streptomyces, and the closest similarity was 
found in the sequence of S. lanatus NBRC 12787T with 98.7% similarity. However, the production of 
albocycline in Streptomyces closely related to AR10 in the phylogenetic tree has not been reported. Our finding 
suggests that AR10 can be a candidate for biological control agents. 
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1. Introduction 
Food shortage is one of the most critical problems in the world, and to solve this problem, it is necessary to 
improve and protect the crop production (FAO, 2012). Phytopathogens affect the growths and productivities of 
crop plants, and there are wide varieties of phytopathogens in the world. For example, Rhizoctonia solani is a 
plant pathogen which infects crops such as rice, tomato and cucumber, and the incidence of disease caused by 
this pathogen is rising annually (Jaiswal, Elad, Graber, & Frenkel, 2007; Chuping, Xuehui, Huafei, Xiaoyu, & 
Zhiyi, 2014; Chellemi, 2002). Fusarium oxysporum also causes wilt disease in more than 100 kinds of plants 
such as banana, melon, and tomato (Chikh-Rouhou et al., 2013; Ploetz, 2006; Brzezinska, Jankiewicz, & 
Walczak, 2013). To control both pathogens and hence the diseases that caused, many chemical fungicides have 
been developed and used. However, excessive use of chemical fungicides has some problems, such as 
environmental pollution, deteriorating human health, and development of drug-resistant pathogens/insects (Staub 
& Sozzi, 1984; Ando, 1991; Clevo & Clem, 2001). Therefore, biological control agents which reduce the 
negative impacts on the environment and ecosystems have attracted much attention as an alternative to the use of 
chemical fungicide.  

More than 70% of naturally occurring antibiotics have been isolated from different genus of actinomycetes 
(Prabavathy, Mathivanan, & Murugesan, 2006; Wang et al., 2013). Streptomycetes are known to produce much 
more antibiotics than actinomycetes in other genera, and are thought to have strong biocontrol activity against 
various phytopathogens. They also secrete extracellular hydrolytic enzymes such as chitinases and glucanases, 
which can degrade components in the cell walls of plant pathogens (Castillo et al., 2016; Sakdapetsiri et al., 
2016). However, in spite of these advantages, reports of biological control application by actinomycetes are less 
than those from other bacteria such as Pseudomonas or Bacillus.  

Haeder et al. (2009) reported that leaf-cutting ants were using actinomycetes to control its own nest environment. 
Leaf-cutting ants live in symbiosis with fungi of the genus Leucoagaricus, and the symbiotic fungi serve as a 
major food source for the ants, and this symbiotic relationship is threatened by another pathogenic fungi. 
Leaf-cutting ants use actinomycetes to protect the symbiotic fungi from infections by pathogenic fungi (Haeder 
et al., 2009; Oh, Poulsen, Currie, & Clard, 2009; Poulsen et al., 2003). This symbiotic relationship of leaf cutting 
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ants with actinomycetes are considered to be consistent with the concept of biological control application, and 
research on biological control using actinomycetes are considered to contribute to sustainable agriculture. 

In this study, actinomycetes with strong antifungal activity against plant pathogens were isolated as candidates 
for biological control strain from the soil around ant nest. These actinomycetes were tested for infection control 
test against plant pathogens, and a strain with the strongest antifungal activity was identified and characterized. 

2. Method 
2.1 Microorganisms 

Ant nest soil samples were obtained from different places in the Kinki area of Japan. Among the bacteria isolated 
from the samples, fifty strains of actinomycetes were selected, and incubated on albumin medium containing 
0.025% egg albumin, 0.1% glucose, 0.05% K2HPO4, 0.02% MgSO4·7H2O, 0.0004% Fe2(SO4)3, 1.5% agar, and 
50 mg/L cycloheximide at 24 °C for 12 days. Isolated colonies of actinomycetes were preserved and maintained 
on PDA (potato dextrose broth agar; Difco) medium at 24 °C. The plant pathogenic fungi used were laboratory 
stock, which had been obtained from the NARO Genebank [Bipolaris oryzae (MAFF 305382), Colletotrichum 
echinochloae (MAFF 305460), Colletotrichum orbiculare (MAFF 306685), Fusarium oxysporum (MAFF 
103038), Fusarium solani (MAFF 235170), Monilinia fructigena (MAFF 305640), Phytophthora infestans 
(MAFF 236324), and Rhizoctonia solani (MAFF 235846)]. They were incubated on PDA medium at 24 °C for 7 
days before use.  

2.2 Antifungal Activity of Actinomycetes 

Antifungal activity of isolated fifty actinomycetes against plant pathogens were evaluated by dual culture assay. 
A single agar plug of 0.7-cm diameter, cut from the edge of actively growing fungal mycelium, was placed on 
the perimeters of the PDA plate at a distance of 1.5 cm, and then an actinomycete was inoculated on the opposite 
of the fungal mycelium. Plates were incubated for 3-4 days at 24 °C. The antifungal activity of the compound 
purified by HPLC was assayed against R. solani by disk diffusion test. The paper disks were placed at PDA plate 
and treated with 200 μg of purified compound.  

2.3 Extraction of Antifungal Compound 

The AR10 was cultivated on PDA medium at 24 °C. After 7 days of incubation, the colony was transferred into 
the 800 mL PDB medium and incubated at 1,000 rpm for 10 days. After incubation, 800 mL of ethyl acetate was 
added to the culture solution for extraction. The extraction was repeated three times, and the resulting organic 
layers were combined (ca. 2.4 L) and evaporated. The dried residues were used for TLC analysis. 

2.4 TLC Analysis 

Crude extracts were subjected to TLC (Silica gel 60 F254; Merck Milipore) using toluene: ethyl acetate: acetic 
acid (16:4:1) as a solvent and observed under UV light at 254 nm. After TLC analysis, TLC plates were cut into 
5 fractions and used for bioautography test. The cut TLC plates were placed on the perimeters of the PDA plate 
at a distance of 1.5 cm, and then R. solani was inoculated on the opposite of the TLC plate. PDA plates were 
incubated for 3-4 days at 24 °C. 

2.5 Identification and Characterization of Antifungal Compound 

Crude extract was applied to preparative TLC under the same condition described above (section 2.4). TLC 
fractions containing antifungal compounds were dissolved in methanol, and used for HPLC separation.  

HPLC-UV analysis was performed using a JASCO LC-2000 system equipped with an Inertsil ODS-3 column 
(4.6 mm i.d. by 150 mm; GL Science) at a flow rate of 1.0 mL/min. For separation, a mixture of 50% 
acetonitrile/water were used as mobile phase, and the antifungal compound was detected by absorbance at 254 
nm.  

LC-MS analysis was performed using a QTrap (AB SCIEX) system with an Inertsil ODS-3 column (2.1 mm i.d. 
by 150 mm; GL Science) at a flow rate of 0.2 mL/min. For separation, distilled water and acetonitrile were used 
as mobile phase, and a linear gradient of 30-80% acetonitrile was applied. The mass spectrometer analysis was 
performed using ESI+ mode, using [M+H]+ = 309.5 amu as the qualifier ion.  

Chemical structure of the purified antifungal compound was determined by NMR analysis. The purified 
antifungal compound was dissolved in Chloroform-d (CDCl3) and then subjected to spectral analysis. NMR 
spectra were recorded on a Anova-600 (BRUKER Bio Spin) operating at 600 MHz and the data obtained were 
the following:  
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1H-NMR δ: 0.84 (3H, d, J = 6.9 Hz, 12-Me), 1.13 (1H, m, H-11), 1.17 (3H, d, J = 6.4 Hz, 13-Me), 1.19 (1H, m, 
H-11’), 1.40 (1H, m, H-12), 1.49 (3H, s, 4-Me), 1.60 (3H, s, 8-Me), 1.80 (1H, m, H-10), 2.10 (1H, m, H-10’), 
3.26 (3H, s, 7-OMe), 4.03 (1H, d, J = 6.2 Hz, H-7), 4.51 (1H, dq, J = 6.4, 8.5 Hz, H-13), 5.24 (1H, t, J = 6.3 Hz, 
H-9), 5.61 (1H, dd, J = 6.2, 16.2 Hz, H-6), 5.73 (1H, dd, J = 0.5, 16.2 Hz, H-5), 5.83 (1H, d, J = 15.4 Hz, H-2), 
6.84 (1H, d, J = 15.5 Hz, H-3).  
13C-NMR δ: 13.9 (8-Me),15.6 (12-Me), 17.8 (13-Me), 24.6 (C10), 26.9 (4-Me), 34.2 (C11), 39.0 (C12), 56.9 
(7-OMe), 73.0 (C4), 75.5 (C13), 84.8 (C7), 115.3 (C2), 129.1 (C9), 130.6 (C6), 135.9 (C5), 136.5 (C8), 154.8 
(C3), 166.3 (C1).  

2.6 Identification of Actinomycete AR10 

Phylogenetic analysis based on 16S rDNA sequence and morphological observation was done as follows. 
Bacterial 16S rRNA genes were PCR-amplified with primers 9F (5’-GAGTTTGATCCTGGCTCAG) and 1510R 
(5’-GGCTACCTTGTTACGA). The 16S rRNA gene sequences determined were compared with those retrieved 
from DNA database of APORON DB-BA 11.0 (Techno Suruga Lab., Shizuoka, Japan) and 
GenBank/EMBL/DDBJ using a BLAST homology search, and phylogenetic tree was constructed to ascertain the 
phylogenetic position of the actinomycete strain AR10. Phylogenetic trees were generated by the 
neighbor-joining method. Gene sequencing and phylogenetic analysis were carried out at Techno Suruga Lab., 
Co., Ltd. (Shizuoka, Japan). 

2.7 Infection Control Assay of Isolated Actinomycete Strain AR10 against R. solani 

Cucumis sativus L. (cucumber) was used for infection control test. Seeds were soaked in 70% ethanol for 10 sec, 
sterilized with 1% NaClO for 10 min, and finally rinsed three times with sterile distilled water. Sterilized seeds 
were germinated under dark conditions for 3 days on water agar plate. The germinated seeds were then 
transferred to agripot containing water agar medium (agar; 0.8%), with 3 seeds in one pot. AR10 was cultured in 
PDB medium at 24 oC, 1,500 rpm (stirred culture) for 3 days. Mycelia of AR10 were collected by centrifugation 
and then resuspended by 0.01 g mycelia/100 μL of culture broth. Resulting mycelia solution was spread in the 
agripot just before transplant of germinated seeds. Five days after the transplant, the infection assay was carried 
out by placing 0.7-cm-diameter agar plugs of plant pathogens onto the center of agripots. Biocontrol effect was 
assessed after the plants were grown in growth chamber for 12 days at 24 oC, 12 h light/dark condition.  

3. Results and Disscusion 
This study was aimed to evaluate the antagonistic potential of actinomycetes isolated from the soil around the ant 
nests, and there was a great deal of antagonistic actinomycetes in the soil samples. The antifungal activities of 
actinomycetes against R. solani were investigated using in vitro dual culture assays. Of the fifty strains tested, 
seventeen strains were found to be moderately effective and five strains showed strong antifungal activities. The 
five strains were named AR1, AR2, AR3, AR4, AR10, and applied to assay for antifungal activity against eight 
phytopathogenic fungi. As shown in Table 1, AR10 was most effective in antagonistic suppression against 
phytopathogenic fungi in the dual culture assay. AR10 showed inhibitory effect on all plant pathogens except P. 
infestans. In particular, AR10 showed inhibitory effect on C. echinochloa and F. oxysporum, which suggested 
that the presence of antifungal compound(s) different from other actinomycetes.  

 

Table 1. Antifungal activity of actinomycetes against plant pathogens on PDA 

Plant pathogens 
Inhibition zone index* 

AR1 AR2 AR3 AR4 AR10 
Bipolaris oryzae +++ +++ +++ +++ +++ 
Colletotrichum echinochloae + + - + ++ 
Colletotrichum orbiculare ++ +++ +++ ++ +++ 
Fusarium oxysporum - - + - + 
Fusarium solani ++ ++ ++ ++ ++ 
Monilinia fructigena + ++ ++ ++ ++ 
Phytophthora infestans - - + - - 
Rhizoctonia solani ++ ++ ++ - + 

Note. * inhibition zone index; -, < 10 cm2 ; +, 10-20 cm2; ++, 20-30 cm2; +++, > 30 cm2. 

 

To extract and detect the antifungal substance from AR10, the extracts of the strain were fractionated by TLC 
analysis. Bioautography was used to assess the activity of the compounds present in the TLC (Figure 1). 
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