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Abstract 

This study was conducted to explore the effect of energy substrates in the culture medium during in vitro 
maturation of bovine oocytes. A modified TCM199 medium (M-7528) was used to mature bovine oocytes in vitro. 
Oocytes were supplemented with different pyruvate (0.1, 0.2, 0.4 mM) and glucose (1.5, 5.6, 20.0 mM) 
concentrations for 48 hours at 38.5 °C under 5% CO2 atmosphere with 95% humidity. Their maturity was checked 
at 24 and 48 hours. After 48 hours, the denuded oocytes were stained with fluorescent dye JC-1 and avidin-FITC. 
Fluorescent dye JC-1 is a membrane permeable to the cell and would indicates membrane activity or its 
organization. Fluorescence intensity of avidin-FITC determination using corrected total cell fluorescence (CTCF) 
expressed oxidative stress level. There is a significant contribution of energy substrates towards oocyte 
maturation. Pyruvate at 0.2 mM produced mature oocytes with a diameter of ≥ 120 μm, promoted oocytes 
maturation to metaphase II (MII) stage faster and reduced cell’s oxidative stress levels. In comparison, 5.6 mM 
glucose is the optimum concentration for glucose to reduce cell stress level. Unfortunately, this concentration 
only produced mature oocytes with a small diameter of up to 116 μm. All changes were significant at the level of 
p < 0.05. As a conclusion, pyruvate at 0.2 mM is the optimum concentration for in vitro maturation after taking 
cell’s stress level into consideration. 
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1. Introduction 

Recent growing interest in in vitro production is reflected by the extensive efforts that have been made to improve 
the in vitro systems for oocyte maturation and fertilization. Despite recent developments in the in vitro maturation 
(IVM) and in vitro fertilization (IVF), it is recognized that the developmental capacity of bovine IVM oocytes is 
inferior to that of the in vivo matured oocytes (Sirad & Blondin 1996). The low developmental competence of IVM 
oocytes is related to their quality at the beginning of maturation. Thus, the oocytes quality before IVM is the most 
important factor that determines the success of IVF and in vitro development of embryos. 

Cumulus-oocyte complexes (COCs) are routinely selected for IVM on the basis of the assessment of 
morphological features such as cumulus thickness and compactness, number of cumulus cell layers surrounding 
the oocytes and the homogeneity of ooplasm (Han et al., 2006; Ishizaki, Watanabe, Bhuiyan, & Fukui, 2009). 
Moreover, oocyte quality can be assessed by several methods including size and metabolic activity (Ebner, 
Moser, Sommergruber, & Tews, 2003; Pawlak, Renska, Pers-Kamczyc, Warzych, & Lechniak, 2011). With 
regards to oocyte size, some of the bovine oocytes acquired full meiotic competence when reaching a diameter 
of 100-115 μm. Oocytes with a diameter larger than 120 μm are commonly classified as fully competent to be 
fertilized successfully (Hunter 2000; Anguita, Jimenez, Izquierdo, Mogas, & Paramio, 2007; Pawlak, Renska, 
Pers-Kamczyc, Warzych, & Lechniak, 2011). Therefore, it is assumed that an oocyte displaying both good 
morphological features of COCs and a diameter ≥ 120 μm is categorized as good quality oocyte. 

In any culture medium, energy substrate is an important ingredient for the optimum in vitro development of 
embryos (Herrick et al., 2006; Tsuji et al., 2009). Among the most researched energy substrate are glucose and 
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pyruvate (Nandi, Kumar, Manjunatha, Ramesh, & Gupta, 2008). Glucose helps cumulus-oocyte-complex (COCs) 
to mature (Pries & Gardner, 2005), and is essential for cellular functions during oocyte maturation 
(Sutton-McDowall, Gilchrist, & Thompson, 2010). Pyruvate is a main energy substrate used directly for oocyte 
maturation and resumption of meiosis (Biggers, Whittingham, & Donahue, 1967; Roberts et al., 2004; Pries, 
Seidel, & Gardner, 2005; Sutton-McDowall, Gilchrist, & Thompson, 2010). This metabolic activity plays a crucial 
role in oocyte quality because glycolytic activity in mature oocytes is correlated with increased embryo 
development (Krisher, 2004). Thus, level of both substrates can have a profound effect on oocyte maturation and 
adequate levels of glucose and pyruvate are important for progression of meiosis to metaphase II. Hence, 
understanding energy substrate metabolism of the oocyte throughout IVM may aid in optimizing maturation 
condition.  

Mitochondria are double membrane organelles that play a fundamental role in the cell and mitochondrial 
dysfunction. It has been linked with several pathologies, including infertility (Wallace, 1999; Ramalho-Santos et 
al., 2009). Mitochondria’s vital role in the oocytes metabolism is to provide ATP for fertilization and 
preimplantation embryo development. The rate of oocyte respiration depends on two major factors: (i) the 
efficiency of conversion in the oocyte cytoplasm of metabolic precursors such as glucose to pyruvate, and (ii) the 
efficiency of the mitochondria matrix in the conversion of pyruvate to ATP (Wilding et al., 2001; Vellila, 
Gonzalez, Vidal, Izquierdo, & Panamio, 2006; Ramalho-Santos et al., 2009). JC-1 (5,5’6,6’-tetrachloro-
1,1’3,3’tetraethylbenzimidazolycarbo cyanine iodide) is a fluorescent dye which accumulates in mitochondria 
and one of the most specific stains currently used to detect mitochondrial membrane potential for oocytes 
(Smiley et al., 1991; Wilding et al., 2001; Blerkom & Davis, 2007; Thompson, Lane, & Gilchrist, 2007). Due to 
this, JC-1 can be used as an indicator of mitochondrial activity.  

It is estimated that 85-90% of a cell’s oxygen is consumed by mitochondria in oxidative phosphorylation. Due to 
high usage of oxygen, potentially harmful reactive oxygen species (ROS) such as superoxide radicals, hydroxyl 
radicals and hydrogen peroxide are generated in abundance (Sugino, 2005, 2006; Ramalho-Santos et al., 2009). 
Past studies have indicated that mitochondria are the major ROS generator, with 0.2-2% of the oxygen taken up by 
the cell is converted to ROS (Ramalho-Santos et al., 2009).  

Oxidative stress occurs as a consequence of the excessive production of reactive oxygen species and impaired of 
antioxidant defence mechanism. According to Sugino (2005), ROS in oocytes are produced within the follicle, 
especially during the ovulatory process. Studies have indicated that oxidative stimulation plays an important 
physiological role in maturation in which it promotes oocyte maturation and follicular wall rupture within the 
follicle. However, when unregulated the excessive production of ROS may lead to an increased risk of poor oocyte 
quality (Tamura et al., 2007; Ramalho-Santos et al., 2009). Hence, the present study would like to determine the 
relationship between oxidative stress level and mitochondrial activity in matured oocytes. Intrafollicular 
concentrations of 8-hydroxy-2’-deoxyguanosine (8-OHdG) were used as a sensitive indicator of DNA damage. As 
a biomarker of oxidative stress, 8-OHdG was measured through the use of avidin conjugated-fluorescein 
isothiocyanate (FITC) (Struthers, Patel, Clark, & Thomas, 1998). 

In summary this study was designed to: (1) determine if COCs diameter is a good reflection of oocyte maturation; 
(2) determine the optimum glucose and pyruvate concentration for mitochondrial activity in matured oocytes; and 
(3) determine the optimum glucose and pyruvate concentration for oxidative stress levels in matured oocytes.  

2. Material and Methods 

2.1 Oocyte Collection 

Bovine ovaries were obtained at a local abattoir and transported to the laboratory in sterile 0.01 M 
Phosphate-Buffered Saline (PBS), pH 7.4 at 37 °C. Transportation was done within 3 hours after sacrifice. After 
the ovaries were washed twice in sterilized PBS solution, cumulus-oocyte complexes (COCs) were obtained from 
the ovaries by a slicing method. COCs having four to five layers of intact cumulus cells and homogeneous 
cytoplasm were then rinsed thrice in PBS medium containing 5% (v/v) calf serum, 10,000 IU Penicillin and 10 mg 
of Streptomycin. They were then used for later experiment.  

2.2 In vitro Maturation 

The IVM medium used was a tissue culture medium 199 (with 25 mM HEPES, Earl’s salts, L-glutamine and 2 mg 
mL-1 sodium bicarbonate; Sigma) modified by the addition of 4 mg mL-1 bovine serum albumin and gentamicin 50 
µg mL-1. Each 10 to 20 oocytes were then cultured in100µL of maturation solution under mineral oil. Ten oocytes 
per mineral oil drop was incubated for 48 hours at 38.5 °C under 5% CO2 atmosphere with 95% humidity. Oocytes 
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were checked for maturity at 24 and 48 hours. After 48 hours, oocytes were denuded mechanically from cumulus 
cells in modified phosphate-buffered saline supplemented with 1 mg/ml hyaluronidase.  

2.3 JC-1 Staining 

The fluorescent dye JC-1 (5,5’6,6’-tetrachloro-1,1,3,3’-tetraethylbenzimidazolcarbocyanine iodide, Molecular 
Probes, USA) was used to measure the activity of mitochondria. A stock solution of JC-1 was made at a 
concentration of 1 mg/ml in dimethyl sulfoxide. Fresh staining solution (10 µg/ml) was prepared by diluting the 
stock solution in warm (37 °C) culture medium supplemented with 10% calf serum. For each 10 oocytes, 50 µl of 
fresh JC-1 solution was immediately applied to a slide. They were then placed in an incubator for 30 min. A Partec 
CyScope fluorescence microscope was used for all experiments. An Argon laser was used to produce the 
excitation laser line at 472 nm, and emission wavelengths were separated by a 500 nm dichroic mirror followed by 
analysis in a photomultiplier after further filtering through a 536 nm band pass filter (green emission). Images were 
processed by using Videology and Image-J software. 

2.4 Avidin-FITC Staining 

Fluorescent assessment of avidin-FITC was used for detection of 8-OHdG (Struthers, Patel, Clark, & Thomas, 
1998). The denuded oocytes were washed in PBS after fixing with 2% (w/v) paraformaldehyde (in PBS at pH 7.4) 
for 15 min. Then, oocytes were washed in warm PBS twice. They were later fixed and permeabilized with ice-cold 
methanol for 15 min. They were washed twice with PBS and then the oocytes were chemically blocked for 10 min 
at room temperature in 300 µl PBS containing 10% (w/v) NGS (normal goat serum). The blocking solution was 
washed off with PBS containing 0.2% (w/v) NGS. For each 10 oocytes, 50 µl of avidin-conjugated FITC solution 
(suspended 1:200 in PBS) was immediately applied to a slide, which was then incubated for an hour at room 
temperature. A Partec CyScope fluorescence microscope was used for all experiments. An Argon laser was used to 
produce the excitation laser line at 470 nm, and emission wavelengths were separated by a 500 nm dichroic mirror 
followed by analysis in a photomultiplier after further filtering through a 550 nm band pass filter. Images were 
processed by the Videology and fluorescence intensities were analysed by the Image-J software (Burgess et al., 
2010; Gavet & Pines, 2010; Potapova, Sivakumar, Flynn, Li, & Gorbsky, 2011).  

2.5 Experimental Design 

Experiment 1: COCs and oocyte size measurement.  

COCs and oocyte diameter was measured using Image-J software after the images were processed by Videology 
for CyScope microscope connected to an USB CCD camera. A mean of two measurements for each COCs and 
oocyte diameter was made perpendicular to each other.  

Experiment 2: Determination of optimum glucose and pyruvate concentration for mitochondrial organization in 
matured oocytes. 

A minimum of 60 oocytes were matured in each group of IVM media with four different glucose concentrations 0, 
1.5, 5.6 and 20.0 mM, respectively (modification of Hashimoto, Minami, Yamada, & Imai, 2000) and four 
different sodium pyruvate concentrations 0, 0.1, 0.2 and 0.4 mM. Each group had undergone an incubation period 
and stained with JC-1 fluorescent probes. Mitochondrial organization pattern and activity in matured oocytes were 
factored-in during statistical analysis.  

Experiment 3: Determination of optimum glucose and pyruvate concentration for oxidative stress level in matured 
oocytes. 

A minimum of 60 oocytes were matured in each group of IVM media with four different glucose concentrations 0, 
1.5, 5.6 and 20.0 mM, (modification of Hashimoto, Minami, Yamada, & Imai, 2000) and four different sodium 
pyruvate concentrations 0, 0.1, 0.2 and 0.4 mM. Each group had undergone an incubation period and stained with 
avidin-FITC fluorescent probes. Corrected total cell fluorescence (CTCF) was used to determine the level of 
fluorescence in a given region (oocyte) and this fluorescence intensity expressed the oxidative stress level. The 
method of calculation is, CTCF = Integrated density – (Area of selected cell × Mean fluorescence of background 
readings) (Burgess et al., 2010; Gavet & Pines 2010; (Burgess et al., 2010; Gavet & Pines, 2010; Potapova, 
Sivakumar, Flynn, Li, & Gorbsky, 2011).  

2.6 Statistical Analysis 

All oocytes were randomly distributed within each experimental group and each experiment was repeated at least 
three times. All percentage data were subjected to arc-sine transformation before statistical analysis. Statistical 
analyses were carried out using Pearson Correlation test and two-way analysis of variance (ANOVA). For the 
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2010; Deldar et al., 2011). In this present study, a similar trend of development of glucose was observed. By 
culturing bovine oocyte (COCs) in medium containing lower concentration (1.5 mM) or higher concentration (20 
mM) of glucose, the resumption of meiosis and completion of maturation to metaphase-II stage was vastly reduced. 
Similar pattern was also observed by Chang, Dale, and Moley (2005) which had reported that maternal diabetes 
and hyperglycaemia have adversely affected oocyte maturation (Chang et al., 2005). This had led to poor 
developmental competence. 

The present study demonstrated that supplementation of pyruvate 0.1 mM and 0.2 mM in maturation medium 
significantly reduced the oxidative cell’s stress level in oocytes. Addition of 0.4 mM pyruvate in maturation 
medium had not significantly reduced the oxidative cell’s stress level in oocytes compared to control. This results 
supported recent observation that pyruvate had a bi-functional role both as an energy substrate and as an 
antioxidant (Nandi, Kumar, Manjunatha, Ramesh, & Gupta, 2008). Hashimoto, Minami, Yamada, and Imai (2000) 
reported that glucose during oocyte maturation had increased the contents of reactive oxygen species in oocytes, 
decreased glutathione levels and impaired the developmental competence of oocytes. Furthermore, previous 
studies have suggested that the toxic effect of ROS generated had caused a negative feedback of cell respiration 
and disruption of mitochondrial organization. All this had resulted in precocious resumption of nuclear maturation 
(Barnett, Clayton, Kimura, & Bavister, 1997; Sutton-McDowall, Gilchrist, & Thompson, 2010). Conversely, 
present study found that addition of glucose in maturation medium had significantly reduced the oxidative cell’s 
stress level in oocytes compared to control maturation medium.  

Taken together, these data suggest that supplementation of 0.2 mM pyruvate in maturation medium of bovine 
oocytes will produce matured oocytes with a diameter ≥ 120 μm. Moreover, the oocyte will not shrink as 
observed with the addition of glucose. Resumption of meiosis will also occur thus allowing the oocytes to 
mature to metaphase II (MII) stage much faster. Oocytes supplemented with pyruvate recorded lower oxidative 
stress levels.  

On the other hand, the addition of 5.6 mM glucose in the maturation media would only enhance the oocyte 
maturation rate but not deliver other additional benefits as done by pyruvate. Further understanding on glucose 
metabolism during oocyte maturation may lead to improved IVM culture conditions, as well as an involvement in 
planning of treatment for diabetic or obese women with low fertility (Pasquali et al., 2007). 

In conclusion, results obtained in the present study demonstrated that 0.2 mM pyruvate is the optimum 
concentration for mitochondrial organisation while taking into consideration oxidative stress levels of matured 
bovine oocyte. 
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