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Abstract 

This paper presents a classification of agricultural production systems that we believe characterises the complex 
interface between agriculture and the landscapes in which they are managed. Farmers have a choice about how 
they will manage their land, either to exclude inherent environmental complexity or to engage with it, mindful of 
risks associated with their approach. Adding to this complexity is the interplay between key natural, social, 
human, physical and financial resources in agricultural systems, highlighting the importance of extending 
sustainability principles to aspects of ecology, economics and culture. Decisions about agricultural systems hinge 
on a balance of productive outcomes, on sensitivity to the issues of environmental complexity, on economic 
grounds including the access to resources, and the socio-cultural needs of the community in which the farmer 
participates. Further, farm managers will make a choice that both satisfies and suffices (satisfices) against 
production, ecological efficiencies and resilience outcomes when choosing which food production system to 
adopt. In this paper, these complexities are analysed against five different agricultural systems on an ecological 
continuum; from biologically simple industrial systems that minimise interaction with the natural environment, 
to ecologically complex systems that are closely engaged with their environment. Production viability is a 
necessary consideration to maintain farming operations but is not sufficient if operational capacity is to be 
achieved in the long term. This analysis finds that it is also necessary to work with ecological, economic and 
social complexities, satisficing against productivity, ecological efficiency and inherit system resilience. No one 
particular farming systems is appropriate in all cases. The farmer’s choice may apply a mix of the five different 
agricultural systems described, allowing for the blending of these attributes in order to sustain rural landscapes.  

Keywords: agricultural systems, ecological complexity, sustainability, rural landscapes 

1. Introduction 

1.1 Integrating Ecology and Agricultural Science 

Environmental systems are a set of relationships between agents of the biological community interacting with the 
climate, topography and geology within a discrete interconnected natural world. Nature can be viewed as a 
complex system of interacting functionality and feedback loops. Farm systems are managed, open systems with 
the purpose to transform variable environmental inputs into a satisfactory flow of product (Kaine & Cowan, 
2011). While agriculture is heavily dependent on the natural environment, some agricultural practices succeed 
through environmental manipulation.  

Landscapes are the visible features of an area of land (Oxford English Dictionary, 2016). Often considered in terms 
of their aesthetic appeal, they are influenced by soil, land use, topography, geography, and weather and climate 
cycles. Landscapes are varied and have many descriptions including rural, wilderness, urban, coastal, and 
mountainous. Their description provides a point of reference and sense of place for communities and for the 
maintenance of culture. At the landscape scale, examples of agricultural practices that manipulate the 
environment include modifications such as physically altering the landscape as seen with terracing, or via 
isolation across landscapes such as the use of greenhouses to support a warmer microenvironment.  

Ecology deals with complexity ranging from species to populations, to communities, through to ecosystems and 
landscapes. With increasing levels of integration and interactive complexity is a corresponding decreasing level 
of scientific understanding (Krebs, 2001). The conversion of the natural environment with its inherent 
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self-organising adaptive character, to one that reduces variability through a managed process to maximise the 
production of a limited number of crops or species, will generally simplify the landscape if a narrower range of 
fauna and flora is produced. Agriculture disrupts the previously self-organising ecological balance of order and 
disorder on the landscape (Parrott, 2010). Human intervention, for example, from farming will see complexity 
reduced towards an ordered regularity. Ongoing management intervention is required to maintain landscape 
system order with the aim to support food production. A disturbance to the system, for example, from a landslide, 
will see complexity reduced as a non-ordered regularity is imposed. When the interventions to manage the 
system are abandoned, landscape complexity will adjust to a point between order and non-order as demonstrated 
in Figure 1 and Image 1.  

 

 

Figure 1. Measure of ecological complexity 

 

A complex adaptive ecological system will find equilibrium of regularity at a satisficed point of higher 
complexity. A disturbance to the system, for example, from a landslide, will see complexity reduced as a 
non-ordered regularity is imposed. Human intervention, for example, from farming will see complexity reduced 
towards an ordered regularity (Adapted from Parrott, 2010).  
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2.2 Industrial Agriculture 

Industrial agriculture is characterised by industrial techniques inspired from production engineering, the aim of 
which is to maximise productivity using principles of industrial efficiency and cost reduction. Two factors 
differentiate an industrial system. The first is the sheer scale of the operation where the concepts of mass 
production lower costs and maximise output. The second is that they are independent of many ecosystem 
services. To manage their size, typically such operations are structured as companies, controlled by professional 
managers with hired experts, and owned by shareholders who are not directly involved in the running of the 
business. Off farm inputs are high. Chemicals, fertiliser, fuel for machinery, hired labour, grain to replace pasture 
for livestock and water are all imported to support operational intensity. Examples of industrial agricultural 
techniques include cattle rearing through feedlots, battery hens for egg laying, greenhouse production where 
exposure to the environment and ecosystem services is restricted, and intensively farmed irrigated broad acre 
cropping. There is a high use of machinery, from seed planting to milk processing. Some practices have been 
criticised for being harmful to animals, as well as exposing humans and the environment to the risk of chemical 
contamination (Horrigan et al., 2002; Halteman, 2011; Gagliardi & Pettigrove, 2013). Some breeding of 
industrially farmed cattle such as the Belgian Blue for example, has been so intense that in an effort to maximise 
the meat of the animal, the reproductive functions have been compromised requiring the cow to undergo a 
caesarean operation to give birth (Wheeler et al., 2003; Bassett, 2009; Kolkman et al., 2010).  

Genetically modified organisms (GMO) are organisms and products derived from organisms that are produced 
through techniques in which the genetic material has been altered in a way that does not occur naturally by 
mating and/or natural recombination (FAO, 2001a). While GMO and the science supporting it have been 
controversial (Devos et al., 2008; Waltz, 2009; Bawa & Anilakumar, 2013), genetic modification has provided 
pest, herbicide and drought resilient crop varieties (Morris, 2011; Vencill et al., 2012). Although only on the cusp 
of commercial availability, genetically modified laboratory science has enhanced the genetic improvement of 
livestock with an aim to further increasing productive output, taste and resistance to disease (Wheeler et al., 2003; 
McColl et al., 2013; Laible et al., 2015). The use of GMO supports production efficiency by reducing costs and 
increasing yields.  

Industrial agriculture has contributed to food price reduction by using all the benefits of the “green revolution” of 
selective plant breeding and added soil property enhancements of nitrogen, phosphate and potassium to increase 
yields and subsequent food supply. Countries which have harnessed their ability to produce food surpluses by 
employing the methods of industrial agriculture have used their comparative advantage to export produce to 
nations with a food production deficit relative to the importing country’s population needs. When the price of the 
imported food is lower than that of food that can be grown locally, the small-scale food producers, processors, 
local traders and consumers are negatively impacted (Windfuhr, 2005). 

2.3 Conventional Agriculture 

Conventional agriculture enjoys high capital investment in the land and in some supporting technologies in order 
to achieve intergenerational sustainable land stewardship investment. Several farm and production enterprises 
help to diversify risk. In the developed world, conventional agriculture will foster the availability of ecosystem 
services and use the technologies provided by precision agriculture. These include chemicals to reduce invasive 
plants and crop pests, both artificial and natural fertilisers, and natural breeding innovations for livestock (Dale 
et al., 2013). While some conventional farmers will embrace GMO, others will reject such commitments to avoid 
both royalties to seed producers and/or to avoid the remotely yet potentially unknown long-term health concerns 
of society and therefore the market’s consequential reluctance to purchase (Morris, 2011). Farm labour can be 
either hired or extended family members. The degree of farm mechanisation can also vary. 

It is in the realm of conventional farming that the blurring of farming methods to achieve sustainable practices is 
most noticeable, as many conventional farmers will experiment with different farming methods. While farmers 
tend to be conservative and sceptical about alternative farming methods, when a higher yield can be realised over 
a longer time frame at a lower cost or with increased benefit, there will be a gradual change in techniques 
(Pannell, 1999; Klerkx et al., 2010). These include: no-till farming (Montgomery, 2007; Roger-Estrade et al., 
2010; Figuerola et al., 2012; Lal, 2013); cycling crop rotations to include nitrogen-fixing plants such as legumes 
(de Ponti et al., 2012); mixing crops to support natural pest management and integrated pest management using 
indigenous natural enemies (Watson et al., 2005; Boisclair & Estevez, 2006; Deguine et al., 2008; Xu et al., 
2011); leaving post-harvest crop stubble residue in the soil to reinforce soil structure (Blanco-Canqui & Lal, 
2009); encouraging soil organic complexity (Carter, 2004; Bronick & Lal, 2005; Barrios, 2007); leaving land to 
fallow to restore the chemical and biological fertility of the soil (Lal, 2011; Malezieux, 2012); mixed livestock 
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and cropping where one compliments the other (Millar & Badgery, 2009; Fisher et al., 2012); and supporting 
practices of evergreen agriculture to maintain soil moisture content (Blanco-Canqui & Lal, 2009; Powlson et al., 
2011). Such changes in techniques help to stabilise and increase yields and return carbon to the soil, which 
further increases yield (Malezieux, 2012). These practices embrace a more sustainable trajectory of landscape 
stewardship, have the potential to protect against system shocks but, as with industrial agriculture, are still reliant 
on external inputs to achieve high yields.  

2.4 Certified Organic Farming 

Certified organic farming has a history of regulation (Rigby & Caceres, 2001; Vogl et al., 2005) with a total of 283 
organic certification bodies operating worldwide across 170 countries (Willer & Lernoud, 2015). It is the inputs 
and processes that narrowly define organic agriculture along three broad management practices; denial or 
reduction in the use of chemical pesticides and inorganic fertilisers, sympathetic management of non-cropped 
habitats, and support to mixed farming practices (Hole et al., 2005). The FAO provides a more detailed definition 
but follows the three broad themes above. Definitions for organic agriculture can vary across different countries. 
Biotic pest denial programs are often included, but in the absence of herbicide use, the removal of invasive plant 
species is more labour intensive. Natural fertilisers are encouraged however, depending on the certifying bodies 
in various countries, soil fortification is permitted (FAO, 2001b). For meat and dairy products to be certified 
organic, rules on pasture time remain strict, with the use of growth hormones and antibiotics denied. Organically 
grown animal feed is required and the application of synthetic fertilisers for that feed is prohibited (Hafla et al., 
2013). Depending on the size of the operation, labour can be either hired or can be a mix of owners/families and 
hired labour. The use of machinery will also be mixed depending on the size and intensity of the organic farm.  

Certified organic food production occupies only 1 per cent of global agricultural land with studies and scientific 
research in organic systems overwhelmingly represented in developed countries. In developing countries, the 
lack of access to labour markets, storage and distribution infrastructure, certification authorities and insurance 
can prohibit farmer and scientific collaboration (Willer & Lernoud, 2015). However, the OECD has found that 
the variable costs of fossil fuels, irrigation water and other resources can encourage the pursuit of more efficient 
farming systems (OECD, 2013). With the more efficient use of inputs and lower production costs in organic 
farming (de Ponti et al., 2012; Seufert et al., 2012) and with a higher price potential for organically certified food, 
organic farming can be a notably more profitable venture than industrial and conventional agriculture, 
particularly for smaller farms (Delbridge et al., 2013; Crowder & Reganold, 2015). 

2.5 Traditional Farming 

Traditional farming systems are systems that demonstrate many centuries of an interactive relationship between 
communities and their natural landscape, engaging low intensity methods that predate the technologies, breeding 
varieties and soil enhancing stimulants and plant breeding programs of the “green revolution”. There is evidence 
to suggest that traditional agriculture is generally well integrated with the environment and involves management 
practices that do not overly exploit the natural carrying capacity of the land (Bignal & McCracken, 2000; 
Heckman, 2013). These landscapes are typically organised in a pattern reflecting lower valleys for cropping, 
slopes for pasture, and hilltops for natural habitat (Fischer et al., 2012). Techniques also follow traditional 
methods, such as the use of green manures and worm humus for soil fertiliser, the free range grazing of livestock, 
rain-fed irrigation or channel fed diversion from streams and rivers, the recycling of organic waste, the use of 
either on-farm livestock or energy dependant machinery for power, and labour from those who live on the farm 
either as the landowners and their families or as tenant farmers. More than 1.3 billion smallholder farmers in 
developing countries alone are directly involved in some form of traditional farming (Dasgupta et al., 2014).  

2.6 Agro-Ecology 

While definitions may vary according to different practitioners (Wezel et al., 2014), agro-ecology tends to be 
based on the application of principles drawn from biology rather than prescriptive recipes of methodology 
(Rosset et al., 2011). Agro-ecology is a farming method that intentionally includes functional biodiversity across 
time and space even inviting nature to add plant and animal life to the landscape to maintain biodiversity 
(Chappell & LaValle, 2011). Diversity allows for function to be managed. Agro-ecology attempts to mimic 
nature by incorporating the complexity of natural systems into farming. Trees can be planted with no food crop 
value, but instead may be carefully selected to attract predator insects, which feed on the insects that eat food 
crops (Bigger & Chaney, 1998; Grasswitz & James, 2009; Woltz et al., 2012). The traded benefit is better 
recycling of nutrients into the soil, improved soil organic health, lower cost inputs, and produce variety per 
hectare (Lal, 2011; Altieri et al., 2012). Native ecosystems are time-proven survivors, so it is rational to imitate 
their useful traits, including their productivity, pest resistance and their ability to conserve nutrients (Ewel, 1999). 
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3. System Viability 

3.1 Sustainability Concepts in Agriculture 

The implications concerning unsustainable practices have been useful for motivating change, however when 
applied to agriculture, practices to enable change need to be practical. These are characterised as literal, system 
oriented, quantitative, predictive, stochastic and diagnostic (Hansen, 1996). Any attempt to create sustainable 
rural landscapes needs to understand and incorporate the properties of measurable complex interactions where 
functional elements can be identified and any interventions can be predicted to have practical application. 

Many definitions for sustainable agriculture follow from the principles of sustainability and sustainable 
development given earlier (FAO, 2014; USDA, 2007). Some list criteria that, if met, are presumed to meet the 
definition. These itemise, for example, no chemical contamination of the environment, no soil loss, a limited 
impact on wildlife biodiversity, and reduced dependence on water and non-renewable resources such as fossil 
fuel energy and mined phosphate. Other definitions of sustainable agriculture are principle guided, listing 
prudent use of renewable and/or recyclable resources, and integrating pest management, soil nutrient retention, 
and minimum tillage to protect the integrity of natural systems. These extend to quality of life improvements for 
individuals and communities supporting profitable enterprise (FAO, 2014). It is also argued that the principles 
should not discount the contribution of technologies or practices on ideological grounds, such as incorporating 
the use of GMO, provided they improve productivity and do no harm to the environment (Pretty et al., 2006). A 
sufficient definition would define sustainable agricultural systems as those that can nutritionally sustain present 
societies without denying future generations the same benefits.  

Beyond food production is the broader food supply system. Here, consideration is given to food miles (the distance 
travelled from farmer to consumer); the price paid to the farmer verses the price paid by the consumer to the 
retailer; the use of energy to produce food; and the involvement of society in the growing, processing and 
consumption choices of food.  

Agricultural systems are best evaluated against a range of environmental, economic and social goals that reflect 
the view of diverse groups in society through better public policy that does not threaten the integrity of the 
natural world (Kornegay et al., 2010; Dovers & Hussey, 2013). Sustainable agricultural systems are thus part of 
the economic and social development that protects and enhances the natural environment and social equity 
(Diesendorf, 2000; Pretty, 2008). The US National Academy of Sciences has reported that for any agricultural 
system to be sustainable it must produce adequate volumes of high-quality food, enhance the natural resource 
base and environment, be financially viable, and contribute to the wellbeing of farmers and their communities 
(Kornegay et al., 2010; NRC, 2010; Reganold & Wachter, 2016). Therefore to achieve sustainable rural and 
agricultural landscapes, practical applications must integrate elements of production, environmental, economic 
and socio-cultural viability.  

3.2 Production Viability 

All the systems described in this paper are productively viable. With a focus on productivity, industrial and 
conventional agriculture tend to out yield certified organic, traditional and agro-ecological systems. The high use 
of off-farm inputs in industrial and conventional agriculture supports an increase in production over and above 
the latter systems, which tend to use a higher proportion of on-farm or locally sourced inputs.  

Previous reviews of the literature suggest that traditional and certified organic farming production yields average 
80 per cent of contemporary conventional agriculture with a large standard deviation of 21 per cent. On-farm 
nutrient availability and crop rotations with nitrogen fixing crops will influence the variability as will management 
systems and site characteristics (de Ponti et al., 2012; Seufert et al., 2012). These variations can be as close as 5 
per cent for rain-fed legumes and perennials on weak-acidic to weak-alkaline soils, only 13 per cent when best 
practices are employed in certified organic agriculture and 34 per cent lower on sites where both conventional 
and certified organic practices are most comparable (Seufert et al., 2012). Another study of 114 small-scale farms 
across 24 African countries found that traditional farming practices outperformed chemical-intensive 
conventional farming. In addition, the study found strong environmental benefits such as improved soil fertility, 
better retention of water in the soil and system resilience to drought (UN, 2008).  

In some cases, certified organic agriculture can give a close yield comparison to conventional agriculture, which 
has controversially contributed to the idea that certified organic and traditional farming methods could substitute 
for industrial and conventional agricultural systems (Knoblauch et al., 1990; Badgley et al., 2007). Although 
techniques have improved certified organic farming output in developed countries, certified organic farming 
alone with its lower production yields is unlikely to witness universal adoption. Based on ninetieth century 
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farming methods that were effectively traditional farming systems, production output would have only supported 
a population of up to 4 billion (Connor, 2008). 

The careful application of traditional farming and agro-ecology has the ability to increase yields in developing 
countries. To explore this, a study was conducted of 286 agricultural sustainability projects using traditional 
systems across 57 developing countries. These countries were predominantly in Latin America, Africa and Asia, 
and involved 12.6 million chiefly smallholder farmers on a total of 37 million hectares, which is a land footprint 
slightly larger than Germany. The study found an average yield increase of 79 per cent across a very wide variety 
of systems and crop types. One-quarter of the projects reported a doubling of yield (Pretty et al., 2006).  

Comparing developed world studies with developing world studies can be problematic. Studies by proponents of 
agro-ecology suggest that agro-ecology, as practiced in peasant communities in the developing world, 
particularly in Latin America, can out-yield conventional monocultures yet recognise that in the wealthier 
developed world, farmers using slower responsive traditional farming practices such as measured biological pest 
control techniques will not be in a position to compete with the application of more immediate chemical pest 
controls used in conventional systems (Rosset et al., 2011; Altieri et al., 2012).  

Three years is an accepted period of time required to switch to a certified organic system of food production 
(Dimitri & Oberholtzer, 2009; ACOS, 2013). During any transition period to a traditional, certified organic, or 
agro-ecological system, productivity is expected to be low. While this is often attributed to an adjustment in soil 
health to an improving microbiological community (Tu et al., 2006; Leithold et al., 2015), there is evidence to 
suggest that it is not just soil that assists in greater yields over time, but also applied management techniques 
(Martini et al., 2004).  

3.3 Environmental Viability 

In order to qualify as sustainable, open farming systems must be environmentally viable and enhance the 
resource base, particularly in relation to ecosystem services. Agriculture benefits from ecosystem services, but to 
encourage a stabilising feedback relationship with its environment, ideally it should also contribute to ecosystem 
service provision at both a landscape level, and particularly in terms of soil management.  

Soil is likely the most complex biological community (Barrios, 2007; Havlicek, 2012). Vegetation cover and 
surface leaf-litter shields the soil environment from the effects of direct raindrop impact, of water moving over 
the landscape, from wind that can dry out then blow loose soil from the landscape, and from direct baking 
sunlight (Abel et al., 1997; Helfrich et al., 2008; Villegas et al., 2010). Vegetation cover helps to give soil its 
structure (Nielsen et al., 2011) enabling soil microbial activity to thrive (Plequezuelo et al., 2009; An at el., 2013; 
Fanin et al., 2014) creating a feedback loop by enhancing soil’s ability to support plant growth. The healthier the 
soil microbial community, the healthier the environment in which plants can prosper (Schmidt et al., 2011; Singh 
et al., 2011).  

Although soil communities may be robust, relationships between diversity and stability need to be considered in 
developing a predictive understanding of the response to environmental shocks (Girvan et al., 2005). If the desire 
is to achieve the highest possible yield in the short term, crops will require high volumes of off-farm fertiliser. 
This imbalance of additional phosphate and nitrogen tends to switch off microbial facilitated input and cycling 
activities that contribute to the symbiotic relationship with root nodules, mycorrhizae (fungal and plant root 
interaction), and proteoid roots (cluster roots that enhance nutrient uptake). Over time, this degrades soil’s 
natural productivity. If the resilience and efficiency of a natural system are to be imitated, unnaturally high 
nutrient inputs will need to be reduced, resulting in a less productive but a more biologically sustainable yield 
(Ewel, 1999).  

Preserving the integrity of natural systems extends beyond soils to landscapes. Encouraging an interactive 
natural environment with agriculture, either with intercropping or incorporating natural and farming landscapes, 
has been identified as an opportunity for further research (Letoureau & Bothwell, 2008). Such practices maintain 
and sustain landscapes to support on-going production (Wratten et al., 2012; Woltz et al., 2012). For example, 
progressive farmers will keep some land as a natural landscape to support bees and predator insects. Bee 
populations and other pollinators will naturally help to pollinate crops (Kevan & Phillips, 2001; Kremen et al., 
2002; Brown & Paxton, 2009). Where biological diversity in the insect population can co-exist, predator insects 
can be used instead of insecticides to consume those insects that are attracted to crops (Boisclair & Estevez, 2006; 
Xu et al., 2011). The higher prices charged for certified organic produce is often justified on the basis that 
financial flows to farmers is in part to compensate for the maintenance of ecosystem services or avoiding 
techniques which damage natural ecosystems (Reganold & Wachter, 2016).  
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3.4 Economic Viability  

While an agricultural system must be mindful of the environment in which it sits, it is important to note that 
there is a difference between productive viability and economic viability. The dynamics of fragile rural 
economies are at risk, as is the continuing degradation of existing farmland from intensive practices (Das, 2002; 
Cullather, 2010). As less labour is required on the farm, fewer services are required in rural societies, which 
contribute to rural depopulation (Hamblin, 2009; Berglund et al., 2014). While a system such as industrial and 
conventional agriculture employs fewer people and achieves a higher productive capacity, alternative systems 
and approaches can offer stronger economic credentials. As such, maximising profit per hectare is a better goal 
for the farmer than to maximise production (Gardiner & Reid, 2010).  

The profitability of certified organic systems as alluded to earlier is worthy of further attention. Factors that 
increase the costs of certified organic farming include the cost of additional labour intensity, the reduction of 
income during the three-year transition period, and the lower yields achieved when compared with industrial or 
conventional yields. To their benefit, farmers of certified organic produce can charge a price premium and save 
on input costs via the reduced reliance on non-renewable resources and off-farm inputs (Reganold & Wachter, 
2016). Research combining the findings from 40 years of studies covering 55 crops across five continents 
concluded that despite its lower yield output and not accounting for externalities or ecosystem services, certified 
organic farming was significantly more profitable than conventional agriculture by a factor of between 22 to 35 
per cent (Crowder & Reganold, 2015). Another review of 88 studies with 458 data pairs found that while yields 
could be higher, gross margins for certified organic farmers in mostly developed countries were 51 per cent 
higher (Te Pas & Rees, 2014).  

3.5 Socio-Cultural Viability 

Following the end of World War II, the shift towards industrialisation of agricultural activities has witnessed 
greater mechanisation to replace human labour, intensification associated with an increase of product per hectare, 
and specialisation in cropping or animal production. These developments have been underpinned with 
improvements in science and technology. By streamlining agricultural techniques along the practises of 
industrial efficiency, processes and techniques have led to standardisation, which has led to a loss of farm and 
landscape diversity, which has reduced resilience. New science and technology is called upon to find solutions 
(Hardeman & Jochemsen, 2012). Specialisation in agriculture has required genetic manipulation to maximise 
production and resistance to disease and insect predation to support broad scale agriculture. The build-up of 
herbicide and pesticide residues in humans has triggered health concerns (Smith-Spangler, 2012; Vieweger & 
Doring, 2015). The increase in the scale of agriculture has created oversupply, making food cheap and 
undervalued in industrial societies with a reduced financial return to farmers, thus threatening their livelihood. 
Farming is a distinct socio-economic sector where the impact of the application of industrial processes has been 
overlooked (Hardeman & Jochemsen, 2012).  

In this historical context, the value of socio-cultural viability to achieve sustainable rural and agricultural 
landscapes has been underestimated. Legal systems support individual property rights and intellectual property 
rights over the rights of communities as a whole (Hamblin, 2009). This has been evident, for example, in South 
Africa where communities struggle to protect issues of collective ownership (Thornton, 2009; Bennett et al., 
2010), and in Latin America where with little compensation, the scientific community exploits the knowledge of 
indigenous communities, which has been acquired over millennium (Zerda-Sarmiento & Forero-Pineda, 2002). 
The scientific research and attention being given to Australian native rice, which was domesticated by Australia’s 
Aboriginal people over thousands of years, follows a similar theme (Pascoe, 2014).  

In rural communities, farming remains a way of life as the basis of employment identity, cultural anchoring, and 
social cohesion. In developed countries, the adoption of industrially efficient processes, scientifically proven 
techniques, and technologically engaged machinery has removed much of the socio-cultural fabric of rural life as 
rural areas continue to depopulate (Hamblin, 2009; Berglund et al., 2014). There is a risk that socio-cultural 
issues can be forgotten on ideological grounds in the drive to production efficiency (Hardeman & Jochemsen, 
2012).  

On a positive note, the socio-cultural viability on communities of certified organic and traditional farming has 
led to an increase in economic development and, through direct contact between farmers and consumers, 
particularly at farmers’ markets, has fostered greater civic participation, higher levels of volunteerism, and 
engagement in local politics (MacRae et al., 2007; Goldberger, 2011; Obach & Tobin, 2014). Certified organic 
farming, with its higher use of labour, has supported rural employment and increased cooperation between 
farmers (Halloran & Archer, 2008; Reganold & Wachter, 2016). Farmers in poorer nations also benefit when 
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their certified organic produce is exported to wealthier nations in Europe and North America who are willing to 
pay a price premium on certified organic food. The downside of pursing this export opportunity is that it risks 
denying local consumers from being able to purchase these foods. This has an impact on the socio-cultural 
viability of these communities (Willer & Lernoud, 2015; Reganold & Wachter, 2016).  

While industrial agriculture has arguably taken the community out of food production (Bignal & McCracken, 
2000), traditional farming and agro-ecology are culture centric. Traditional farming systems tend to be structured 
for social outcomes, supporting a way of life in traditional rural communities; for example for community 
cohesion in Mexico (Pulido & Bocco, 2003), infusing religion and tradition in Syria (Alhamidi et al., 2003) or 
with support for a more traditional lifestyle to achieve ecosystem services for human wellbeing in developed 
countries in Scandinavia and Japan (Berglund et al., 2014). The European Union (EU) for example, encourages 
farmers to conserve biodiversity by engaging in a minimum five-year program to protect and enhance the 
environment on their farmland. Under the EU’s Common Agricultural Policy, the Agri-Environmental Program 
subsidises farmers for the provision of environmental services, including integrated farm management and 
organic agriculture. This extends to the preservation of landscape and historical features such as hedgerows, 
ditches and woods in order to meet a social demand for environmental outcomes provided by agriculture. 
Twenty-two per cent of the expenditure for rural development in the EU is associated with this program (EU, 
2015). Although there is an acknowledged community preference for maintaining traditional farming landscapes 
(Kaltenborn & Bjerke, 2002; Howley et al., 2012), maintaining traditional farming as an aesthetic benefit with its 
perceived connection with nature has been criticised as being an expensive luxury in developed countries when 
productive output is low and government subsidies are required to maintain the landscape (Fischer et al., 2012). 

The attributes of agro-ecology are rated highly for socio-cultural viability. It is akin to the targeted social 
outcomes of traditional farming where the sharing of knowledge between farmers contributes to a collective 
future. It is based on social processes that value community participation and community-oriented outcomes, 
which promote self-reliance, cooperation, and empowerment to meet regional food needs (Altieri & Toledo, 
2011). Based on the principles and science of ecology, agro-ecology is a social movement taking concepts of 
food security to food sovereignty where the broader community participates in the food production system. 
Agro-ecology has been used to facilitate system change when coupled with an understanding of how change 
occurs in society (Gliessman, 2013).  

So important is the socio-cultural viability of agriculture that some urban neighbourhoods, far removed from any 
form of food production, have sought to come together to create a greater sense of local community around 
agriculture. Community supported agriculture, where urban food gardens are jointly farmed by the local 
residents, is an attempt for socially isolated city-dwellers to reconnect with society through farming (Anderson, 
2008; Sumner et al., 2010; Alkon & Mares, 2012).  

4. A Broader Landscape Perspective 

4.1 Satisficing for Productivity, Efficiency and Resilience 

Stability refers to the tendency of a system to return to a position of equilibrium when disturbed (Ludwig, 2002). 
The relationship, or trade-off, among the attributes of resilience, efficiency and productivity to achieve stability 
is a key feature of dynamic self-organising complex systems. To satisfice, refers to the activity within a system 
that both satisfies and suffices (Simon, 1957; Brown, 2004). Thus, the interactions of the system with the 
external environment will determine how productivity, efficiency and resilience are satisficed, that is, to be 
sufficiently balanced to satisfy on going stability. Some farmers are shifting to a more holistic land management 
orientation in order to improve productivity, to work more efficiently with nature, and to build in resilience to 
shocks, demonstrating that to trade between productivity, efficiency and resilience is not a zero-sum gain 
(Glendining et al., 2009). At play is the attempt to collectively satisfice these properties.  

The move from traditional farming systems to industrial and conventional systems in the last half-century has 
witnessed a quest for higher yields, emphasising the pursuit of productivity over efficient cooperation with natural 
systems and the inherent resilience in complex systems. These issues raise questions concerning the sustainability 
of landscapes to support continued intensive food production activity (Filson, 2004; Borlaug, 2007; Gibson et al., 
2007; Gomiero et al., 2011).  

There are two reasons why it is unlikely that the precise mimicking of natural ecosystems will produce the yields in 
farming systems that incorporate complexity as the high yield achieved by conventional and industrial agriculture. 
The first is that the bulk of the biomass in natural systems plays a role in sustaining the protective structure of the 
ecosystem. To harvest significantly from the system is to deviate from the order of the natural structure and risk the 
system’s resilience. The second reason for potentially lower yields concerns the presumed evolutionary trade-off 



jas.ccsenet.org Journal of Agricultural Science Vol. 10, No. 2; 2018 

35 

between reproduction and permanence (Ewel, 1999). Yet there is evidence, as provided earlier, to suggest that a 
high level of productivity can be achieved from farming which follows the principles of complex systems 
oriented agriculture. 

Efficiency in the context of a complex system can be viewed as the energy utilised by the system as a fraction of 
the incident energy (Butzer & Endfield, 2012). Thus, efficiency is defined as the lowest quantity of energy (effort) 
input to create the greatest quantity of output. This definition of efficiency in an agricultural context can be 
contentious. Is it efficient to simplify the farming process, allowing for straightforward yet repetitive tasks to be 
applied to a broader landscape to create process efficiencies, or is it efficient to work with nature by building in 
landscape complexity, allowing the farmer to “tinker” with cooperative ecological efficiencies to support 
production? Until recently, conventional agricultural processes which encompassed those of the green revolution, 
were judged efficient by the theories of economic and industrial optimisation aimed at maximising short-term 
yields and profits (Weiner, 2003). Ecological energetics suggests a relationship between energy returned on 
energy invested (EROEI) (Tomlinson et al., 2014). For the purposes of this discussion, the application of 
efficiency is related to the effort required to maintain the farming system as an ordered system against the 
tension with natural ecological energetics, which moves the system towards ecological complexity.  

For managed landscapes, resilience can be observed when the system is managed by robust practices that 
demonstrate capacity to recover from disturbances or unanticipated surprises, retaining its basic structure and 
viability (Foley et al., 2011; Walker & Salt, 2012). The preservation of ecosystem complexity and function in 
managed landscapes can in many cases aid in mitigating the effects of extremes in weather, and enhancing vital 
services such as water retention. For example, evergreen agriculture, which involves the integration of trees into 
annual food crop systems throughout the year, provides a relationship between vegetation functionality and the 
variance of surface temperature. This indicates a positive correlation between complex biodiversity and 
dissipative capacity of incoming stress, in this example, from heat from direct sun exposure (Schneider & Kay, 
1994; Garrity et al., 2010; Norris et al., 2012).  

4.2 Maintaining Agricultural Harmony in Landscapes 

There is no doubt that the adoption of what has become traditional agriculture has replaced what was once a 
natural environment. It is possible however for agricultural activities to increase landscape biodiversity, and 
diverse examples over several millennia can be found in the Mediterranean basin, in the Chihuahuan Desert in in 
Mexico, and in Australia. Around the Mediterranean, farming activities have increased the biodiversity of the 
landscape to a greater degree than likely existed when the landscape was in its original oak woodland character 
at the commencement of the Holocene (Blondel, 2006). Indeed, one recent study has found in a mountain area 
near metropolitan Barcelona, Spain. The abandonment of traditional farm land, where peasant farmers once 
shaped the capacity of the landscape to host biodiversity, has seen the transition to a forested landscape lose its 
biodiversity (Otero et al., 2015). A further example can be found in Chihuahuan Desert in Mexico, a region now 
engaged in traditional agriculture. The increase in biodiversity from farming is evident from the paleontological 
record in the changing vegetation and loss of mega-fauna in the last 10,000 years to the pre-Columbian 
landscape (Janzen, 1986). Similar paleontological and archaeological records have been found in Australia where 
the loss of mega-fauna and evident human intervention has changed the natural landscape over the last 40,000 
years as Aboriginal Australians modified the environment to provide a park-style landscape to provide abundant 
food resources for ease of hunting, gathering, and farming (Flannery, 1994; Gammage, 2011; Pascoe, 2014).  

Traditional farming is still practiced in many developing countries where the cost to do otherwise is prohibitive 
and existing practices have been sustained for many generations. In some developed countries, traditional 
farming is viewed as a lifestyle choice, often willingly supported with public funds to maintain a “cultural” 
landscape seen to be in harmony with nature (Berglund et al., 2014). Nevertheless, there is an element of 
resilience at work with traditional farming systems. By remaining within the natural carrying capacity of the 
landscape and staying well below the thresholds of production or efficiency frontier possibilities, natural 
complexity interactions are free to act within managed boundaries.  

4.3 Setting Landscapes Aside for Conservation 

Land sparing for conservation, the aim of which is to separate agricultural land from land set aside for 
biodiversity conservation, may be defined as high yielding food production on a small land footprint. Land 
sharing for conservation, the aim of which is to share agricultural land with land set aside for biodiversity 
conservation, may be defined as low yielding, wildlife-friendly food production on a large land footprint 
(Kremen, 2015). Although agro-ecology is ideally placed to incorporate wildlife-friendly farming (Kremen, 
2015), some conventional farmers are preserving and even integrating some areas for natural wildlife in order to 
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broaden biodiversity with an eye to intergenerational landscape management (Scherr & McNeely, 2008). The 
agricultural intensification and land-sparing relationship is an important priority for sustainability science (Rudel 
et al., 2009).  

The EU’s Agri-Environmental Program cited earlier encourages environmentally favourable extension of 
farming, management of low-intensity pasture systems, and conservation of high-value habitats and their 
associated biodiversity (EU, 2015a). One quarter of farmers in Australia are incorporating vegetation 
management to include either the planting of, or encouraging the regrowth of native vegetation, with 20 per cent 
of respondents fencing native vegetation to prevent degradation (ABARES, 2014). While there is some 
complimentary benefit to preserve natural habitat adjacent farming land, there will be a loss of farm productivity. 
A study in southwest Ghana and northern India found that when sharing agricultural land for biodiversity 
conservation, more species where negatively affected by agriculture than benefited from it. Land sparing was 
found to be a better alternative for both agricultural yields and biodiversity conservation (Phalan et al., 2011). A 
UK study on a single crop type of winter cereals has suggested that biodiversity conservation efforts are best 
focussed on low-productivity agricultural systems or land not suitable for agriculture (Gabriel et al., 2013).  

4.4 Integrating and Enhancing Landscapes 

Definitions of sustainability are outcomes oriented. Many farmers employing conventional agricultural practices 
are adopting sustainable practices by recognising soil microbial dynamics, minimising soil disruption with 
minimal or no-till seed planting, rotating crops to ensure nitrogen-fixing plants replenish nutrients, giving up 
productive land to plant trees to act as wind breaks, and employing drip irrigation to conserve water resources. 
For example, a 2009 survey of US farmers found that 60 per cent of respondents were undertaking various forms 
of sustainable farming, with 50 per cent using no till farming techniques and 45 per cent using a form of crop 
rotation or crop diversification strategies (RaboBank, 2009). More recently, the Australia report cited above 
found that 66 per cent of respondents were engaging in minimum tillage or cultivation and that 55 per cent were 
using cover crops, inter-row crops or mulching techniques, with 80 per cent incorporating organic matter to 
enhance soil fertility (ABARES, 2014).  

The narrow scope of certified organic farming, defined only by its inputs (or absence of certain inputs), prohibits 
this system as being automatically defined as sustainable. However, recent studies suggest that certified organic 
farming has a positive effect on biodiversity compared with conventional farming, particularly in homogeneous 
landscapes, but the effect size varies with the species group and the crop studied. It depends on the type of 
landscape surrounding the farm. As an example, certified organic farming increases bee diversity by enhancing 
flower availability when influenced in a landscape context (Kremen et al., 2002; Holzschuh et al., 2007). The 
biodiversity gains are typically found locally but studies reveal little about contributions to regional biodiversity 
conservation with the impact being greater in landscapes with higher land-use intensity than those supporting 
less intensive land-use methods (UN, 2005; Gomiero et al., 2011; Winqvist et al., 2012; Schneider et al., 2014; 
Tuck et al., 2014).  

What is surprising is the finding that the yield from integrating plant species verses a mono-cropping approach, 
produces a harvest over time that is only marginally below that produced by conventional systems, without 
trading resilience. These results have been found from practices in countries such as Cuba, Brazil, the 
Philippines and the African countries of Zambia, Malawi, Niger, and Burkina Faso (Garrity et al., 2010; Altieri et 
al., 2012). Thus, when agriculture is viewed as applied ecology, this shifts perspectives to see agricultural 
strategies in terms of trade-offs rather than improvements (Weiner, 2003). The philosophy of integrated farming 
contributes to these effects as complexity is built into farming systems by mimicking nature (Roling & 
Wagemakers, 1998; Lemaire et al., 2014). Such an approach would suggest integrating and enhancing landscapes 
may trade-off some productivity in the short term, but will lead to more sustained production in the long term. 
Certainly, the ecological management of agro-ecosystems that addresses energy flows, nutrient cycling, 
population-regulating mechanisms and system resilience can lead to the redesign of agriculture at a landscape 
scale (Pretty, 2008).  

5. Discussion 

As well as being productive, agriculture must be ecologically, economically, and culturally viable (Chapin et al., 
2009). The food production systems described here: industrial agriculture, conventional agriculture, certified 
organic farming, traditional farming and agro-ecology; have varying yields of productive output according to 
their farming techniques and the application of the five input factors of soil, water, capital, energy and labour. Yet 
not all these systems will support sustainable rural and agricultural landscapes when environmental, economic 
and socio-cultural viability must also be considered.  
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Industrial agriculture will maximise production utilising concepts of industrial efficiency with less consideration 
of landscape resilience or environmental impact. Conventional agricultural practices continue to adapt to 
incorporate environmentally sensitive practices to minimise ecosystem disturbance with a view to maintaining 
productive output. Certified organic and traditional farming have also been shown to contribute to positive 
environmental and ecosystem outcomes but have gone further to demonstrate an increase in socio-cultural 
viability. Certified organic farming in particular has been shown to be economically beneficial with higher 
profits on a lower yield threshold when compared with conventional agriculture. Agro-ecology sets out in the 
first instance to achieve environmental and socio-cultural viability yet produce sufficient yield output to remain 
productively viable. 

From a landscape perspective, those systems which tend to integrate natural systems such as traditional farming 
and agro-ecology will contribute to a sustainable landscape environment with a minimum of human effort 
against ecosystems that naturally incorporate more complexity. At only 1 per cent of global agricultural land use, 
there is also an opportunity for greater application of certified organic farming techniques, particularly when 
certified organic farming has been identified as a better contributor to human health, the environment, farmer 
profitability and socio-cultural cohesion (Crowder & Reganold, 2015). However, with organic farming’s lower 
productive output and the need to feed more than 7 billion people, it would be naïve and simplistic to suggest 
that the entire globe should ignore the benefits of the productive output from conventional and industrial 
agriculture.  

Even though approximately one-third of all the edible food produced is never consumed (FAO, 2011), the 
demand on food systems is set to increase, giving impetus to highly productive systems. Sustainable 
conventional agriculture may be a necessary compromise. When farming techniques substitute for the shortfalls 
in the self-organising complex adaptive character of natural systems by integrating and enhancing natural 
systems to create harmony with landscapes, landscapes can remain sustainable provided human intervention 
remains alert to system stability. Landscape sustainability is improved when conventional agriculture, with its 
higher productive output, sets aside land for conservation and better targets the use of water, fertiliser and pest 
controls.  

It is no coincidence that the adoption of agricultural systems that rely heavily on external inputs such as 
industrial and conventional agriculture are the systems most observed in developed countries where the broader 
economy is more complex, labour costs are high, supply chains are reliable, and financial transactions are 
facilitated with technology and given the protection of the law. Traditional farming and agro-ecology has been a 
successful choice for food production in countries where the supply of external inputs is unreliable, labour costs 
are not prohibitive, freight and transport is expensive, the lack of cold storage encourages food to be consumed 
soon after harvest or slaughter and closer to where it is produced, where rural populations support social 
cohesion, and where the long term viability of natural systems are essential to nurture and support the inputs 
used for local food production.  

6. Conclusion 

When production, environmental, economic and social viability interplay, there is no single global sustainable 
agricultural solution to achieve and maintain sustainable landscapes. Proposed is a combination of all the types 
of agriculture, blending the best of the agricultural systems and of environmental conservation, encouraging 
debate on “terraculture”, defined as farming for a whole planet (Foley et al., 2011). This would include a blend 
of certified organic and other innovative farming systems such as integrated farming techniques, mixed crop and 
livestock, hybrid organic-conventional agriculture, grass-fed livestock production, and systems yet to be trialled, 
to offer a better landscape solution (NRC, 2010; Leifeld, 2012; Reganold & Wachter, 2016). To some extent, 
conventional agriculture in developed countries is embracing these methods. This direction takes a complex 
systems approach that seeks productive outcomes with efficiency in working with nature, which supports 
resilience to unexpected weather events or supply chain disruption. In the long run, the farmer’s choice to 
determine which food production system to adopt will hinge on a balance of productive outcomes, on sensitivity 
to the issues of environmental complexity, on economic grounds including the access to resources, and the 
socio-cultural needs of the community. A mix of all these attributes will be needed to support sustainable rural 
landscapes.  
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