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Abstract 
The Studies have shown that nitrogen fertilization can mitigate the effects of saline stress on plants, however, the 
efficiency may vary according to the source of nitrogen used, specifically on the photosynthetic activity. In this 
context, the objective of this work was to evaluate the effect of different nitrogen sources on photosynthetic 
pigments and photochemical efficiency in soursop plants irrigated with distinct salinities. A randomized 
complete block design was used in a 4 × 4 factorial scheme, with the treatments corresponding to four levels of 
irrigation water salinity - ECw (0.5, 1.5, 2.5 and 3.5 dS m-1) and four sources of nitrogen (urea, ammonium 
sulfate, calcium nitrate and potassium nitrate), with three replications. The irrigation with saline water from 0.5 
dS m-1 inhibits the concentration of photosynthetic pigments and promotes damages in the photochemical 
efficiency of photosynthesis at 110 days after transplanting. The different sources of nitrogen do not cause 
changes in the levels of photosynthetic pigments, however, the fertilization with potassium nitrate mitigates the 
effect of saline stress on the photochemical efficiency, mainly in the water salinity of 3.5 dS m-1.  
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1. Introduction 
Soursop (Annona muricata L.) is one of the most cultivated species of the Annonaceae family in regions of 
tropical climate, where it adapts well to the edaphoclimatic conditions (Cavalcanti Junior et al., 2010), and the 
increasing demand for the pulp its fruit in internal and external markets has stimulated its exploitation by fruit 
growers (Rozane & Natale, 2014). 

In semi-arid regions, crop management depends on irrigation, in many cases with high-salinity water, which 
consists in the greatest limitation to the establishment of this fruit crop, compromising its nutritional balance, 
physiology, growth and production (Távora et al., 2004). 

Evaluation of photosynthetic pigments and fluorescence parameters allows to assess the effect of various types 
of stress on photosynthesis, including salinity, which reduces photosynthetic rate and electron transport, 
disorders driven by light through the emission of heat or fluorescence (Azevedo Neto et al., 2011; Baker, 2008), 
which are related to chlorophyll degradation by salt stress (Munns & Tester, 2008) and reduction in the 
absorption and use of light energy through photosystem II, during the photochemical reactions of photosynthesis 
(Baker, 2008).  

Nitrogen (N) has structural function in the plant, constituting amino acids, N bases, many enzymes and 
energy-transfer materials such as chlorophyll and proteins of the electron transport chain in chloroplasts (Taiz & 
Zeiger, 2013). In soursop, N deficiency directly affects physiology, with gradual loss of green color and 
premature fall of leaves, which often negatively affect crop growth and development (São José et al., 2014).  

Andrade Júnior et al. (2011) report that the increase in the dose of certain N fertilizers applied in a 
salinity-sensitive crop may lead to increment in its tolerance to salinity, with consequences in plant nutrition and 
physiology. However, special attention should be paid to the choice of the N source, especially when the use of 
saline water is inevitable, because most N sources available in the market are salts, which may increase soil 
salinity (Oliveira et al., 2010).  
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Ammonium sulfate and urea are the most used N sources in the Brazilian agriculture, possibly because of their 
lower cost and greater availability in the market (Binotti et al., 2010). However, there are reports that the 
fertilization with calcium nitrate and potassium nitrate reduces salt stress effects on plants (Andrade Júnior et al., 
2011; Fernandes et al., 2010).  

Hence, this study aimed to evaluate the effect of different N sources on the photosynthetic pigments and 
photochemical efficiency in soursop plants irrigated with solutions of different saline levels. 

2. Materials and Methods 
2.1 Experiment Localization and Treatments 
The experiment was carried out from August to December 2016 in a greenhouse, arc model (width = 12 m, 
length = 25 m and right-foot height = 4 m), covered with a 100 micron plastic film, having on the sides a shading 
screen of 50% luminosity, at the Center of Technology and Natural Resources (CTRN) of the Federal University 
of Campina Grande (UFCG), in Campina Grande-PB, Brazil (7°12′88″ S, 35°54′40″ O; 532 m). According to the 
climatic classification of Köeppen, adapted to Brazil (Coelho & Soncin, 1982), the climate of the region is of 
type Csa, which represents mesothermal climate, subhumid; average annual precipitation of 802.7 mm and 
average temperature of 23.5 °C (IMMET, 2017). 

Were studied 16 treatments arranged in a 4 × 4 factorial scheme, corresponding to four levels of irrigation water 
salinity – ECw (0.5; 1.5; 2.5 and 3.5 dS m-1) and four N sources (urea, ammonium sulfate – AS, calcium nitrate – 
CN and potassium nitrate – KN), distributed in randomized blocks, with three replicates, and the experimental 
unit consisted in a pot with one plant, totalizing 48 plots in the experiment.  

The N dose applied through the different fertilizers, as well as phosphate and potassium fertilizations, were 
based on the recommendations for pot experiments (Novais et al., 1991), using 100, 300 and 150 mg kg-1 of N, 
P2O5 and K2O, respectively. Phosphate fertilization was performed by incorporating single superphosphate to the 
soil in the planting hole, whereas N and K (potassium chloride) fertilizations were split into six applications in 
equal parts, by the dilution of each fertilizer in 150 ml of rainwater, manually applied in soil surface, starting 20 
days after transplantation (DAT), followed by applications every 10 days.  

Saline solutions with ECw of 0.5 and 1.5 dS m-1 were prepared by mixing rainwater (0.02 dS m-1) with water 
from the public supply system (1.7 dS m-1), whereas solutions with ECw of 2.5 and 3.5 dS m-1 were prepared 
through the addition of commercial iodine-free NaCl salts.  
2.2 Plant Material and Management of the Experiment 

The soursop variety ‘Nordestina’ was used in the experiment and its seedlings were obtained by sowing in 288 
cm3 plastic tubes containing substrate composed of soil and humus (2:1 proportion). The seedlings were 
transplanted 86 days after sowing, when they had four true leaves, fully expanded, to 22 dm3 pots containing 20 
kg of soil, whose physical and chemical characteristics (Table 1) were analyzed according to Claessen (1997).  

 

Table 1. Physical and chemical characteristics of the Fluvisol soil used in the experiment 

Textural Class 
Apparent (Bulk)  

density 

Total  

porosity 
O.M. N P 

Exchangeable cation 

Ca2+ Mg2+ Na+ K+ H+ Al3+ 

 ------ g/cm3 ------ ----------------- (%) ----------------- mg/100 g ---------------------- meq/100 g of soil -------------------

Clay loam 1.13 57.35 1.83 0.10 1.82 3.49 2.99 0.17 0.21 5.81 0.00 

Saturation extract 

pHps ECps Ca2+ Mg2+ K+ Na+ Cl- SO4
2- CO3

2- HCO3
- Saturation of soil 

 dS m-1 --------------------------------------------------- meq/L ------------------------------------------------- --------- % --------- 

5.32 0.61 1.75 3.50 0.42 2.37 2.50 absent 0.00 7.40 30.00 

SAR ESP Salinity Soil Class 

1.46 1.34 No saline Normal 

Note. O.M. = Organic matter; pHps = pH of saturated paste of the substrate , ECes = Electrical conductivity of 
the saturation extract of the substrate at 25 °C; SAR = Sodium adsorption ratio; ESP = Exchangeable sodium 
percentage; Ca2+ and Mg2+ extracted with KCl 1 M at pH 7.0; P, Na+ and K+ extracted with extractor Mehlich-1; 
O.M.: determined by wet digestion Walkley-Black method. 
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The planting pots had a layer of crushed stone (no 0) at the bottom, involved by a nonwoven geotextile (Bidim 
OP 30), connected to a drain and a hose (20 mm diameter), which allow to monitor the drained volume and 
estimate water consumption by the crop. 

Saline solutions began to be applied at 10 DAT and the different treatments were irrigated considering the 
estimate of crop water consumption, based on the drainage lysimetry principle (Bernardo et al., 2006), using as 
lysimeters, the pots of the experimental plots. At 60 DAT, a leaching fraction of 0.15 was applied based on the 
volume applied in this period, in order to minimize the accumulation of salts in the soil. 

2.3 Variables Measured 

Effects of treatments on plant physiology were evaluated at 110 DAT, based on the photosynthetic pigments: 
chlorophyll a (CHLa), chlorophyll b (CHLb), total chlorophyll (CHLtotal), carotenoids (CAR), chlorophyll 
a/chlorophyll b ratio (CHLa/CHLb) and total chlorophyll/carotenoids ratio (CHLtotal/CAR), besides chlorophyll 
fluorescence, including: maximum fluorescence (Fm), variable fluorescence (Fv), quantum efficiency of 
photosystem II (Fv/Fm) and basal quantum yield of photosystem II (Fo/Fm). 

Photosynthetic pigments were determined in the fifth fully expanded leaf, from the apical bud to the base of the 
plant. A cork borer was used to collect a plant tissue disc from the middle third of the leaf blade, with area of 
3.14 cm2. After that, the material was chopped and immersed in 6 cm3 of acetone at 80% in 10 cm3 glass 
containers, where the samples remained in full darkness for 48 hours in a refrigerator at temperature of 8 °C to 
extract the pigments from the supernatant. Subsequently, contents of chlorophyll a, chlorophyll b, total 
chlorophyll and carotenoids were quantified through spectrophotometry with absorbance (A) readings 
respectively at the wavelengths of 663, 646 and 470 nm, using 80% acetone as blank, according to Equations 1, 
2, 3 and 4, following the methodology of Lichtenthäler (1987): 

CHLa = 12.21 × A663 – 2.81 × A646                             (1) 

CHLb = 20.13 × A646 – 5.03 × A663                             (2) 

CHLtotal = 17.3 × A646 + 7.18 × A663                          (3) 

CAR = (1000 × A470 – 1.82 × CLa – 85.02 × CLb)/198                (4) 

The data were obtained in mg L-1 and, based on the leaf disc area (3.14 cm2) and on extract dilution in 6 cm3 (6 
mL) of 80% acetone, CHLa, CHLb and CAR contents were transformed to units of mass per m2 (g m-2). 

Photochemical efficiency was measured through chlorophyll a fluorescence parameters, using the Handy PEA 
device (Hansatech), by attaching leaf clips to the third fully expanded leaf, from the apex to the base of the plant, 
which remained for 30 minutes to dark adapt the leaves before the readings. Basal quantum yield of photosystem 
II (Fo/Fm) was established by the ratio between Fo and Fm (Rohácek, 2002). 

2.4 Statistical Analysis 

The obtained data were subjected to analysis of variance by F test at 0.05 and 0.01 probability levels. In cases of 
significance, regression analysis was used for the factor saline levels and means comparison test (Tukey) for N 
sources, using the statistical software SISVAR/UFLA (Ferreira, 2011). The regression model was selected 
considering the best fit based on the coefficient of determination (R2).  

3. Results and Discussion 
Irrigation water salinity had significant effect (p < 0.01) on the contents of CHLa, CHLb, CHLtotal, CAR, 
CHLa/CHLb and CHLtotal/CAR (Table 2). However, there was no significance of N sources or significant 
interaction (p > 0.05) between the factors irrigation water salinity and N sources for the studied variables. 

Increment in irrigation water salinity negatively affected the contents of photosynthetic pigments in soursop 
leaves, leading to linear reductions of 15.72, 10.40, 14.44, 9.00, 7.88 and 7.84% in CHLa, CHLb, CHLtotal, 
CAR, CHLa/CHLb and CHLtotal/CAR (Figures 1A, 1B, 1C, 1D, 1E and 1F), respectively, per unit increase in 
ECw. 
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reduction in zeaxanthin formation, structural pigments of the carotenoids, possibly causing decrease in CAR 
content (Freire et al., 2013; Munns & Tester, 2008).  

Under these conditions, light harvesting efficiency may be reduced because these pigments capture energy at 
different wavelengths and transfer it to the reaction center, which effectively acts in the photochemical reactions 
of photosynthesis (Freire et al., 2013). In addition, plant vulnerability to oxidative stress increases, because 
carotenoids also act as antioxidant agents, protecting membrane lipids of reactive oxygen species in plants 
exposed to salinity (Falk & Munné-Bosch, 2010).  

Deleterious effect of salt stress on the contents of CHLa, CHLb, CHLtotal and CAR at ECw levels from 0.5 to 
4.5 dS m-1 have been observed in passion fruit (Cavalcante et al., 2011; Freire et al., 2013) and tomato (Tatagiba 
et al., 2014). 

According to the analysis of variance summary (Table 3), there was significant interaction (p < 0.05) between the 
factors irrigation water salinity and N sources for Fm, Fv, Fv/Fm and Fo/Fm.  

 

Table 3. Summary of the analysis of variance analysis of variance for maximum fluorescence (Fm), variable 
fluorescence (Fv), quantum efficiency of photosystem II (Fv/Fm) and basal quantum yield of photosystem II 
(Fo/Fm) in soursop plants, ‘Nordestina’ variety, irrigated with solutions of different saline levels and fertilized 
with different nitrogen sources at 110 days after transplantation 

SV 
Mean Square 

FD Fm Fv Fv/Fm Fo/Fm 

Salinity (S) 3 34979.139** 28678.611** 0.004480** 0.005622** 

Nitrogen Sources (NS) 3 10884.528** 5878.778** 0.001424** 0.001672** 

Interaction S*NS 9 5119.287* 3513.167* 0.000504* 0.000510* 

Blocks 2 6496.271ns 2000.146ns 0.000290ns 0.000581ns 

Residue 30 2140.160 1328.057 0.000227 0.000230 

CV (%)  6.55 7.47 2.19 4.85 

Note. ns, non-significant; *, ** significant at p ≤ 0.05 and p ≤ 0.01; SV = Sources of variation; FD = Freedom 
degree; CV = coefficient of variation. 

 

In the follow-up analysis of water salinity levels for each N source (Figure 2A), Fm linearly decreased by 5.32 
and 5.61% per unit increase in ECw in plants fertilized with urea and ammonium sulfate (AS), respectively. For 
plants fertilized with calcium nitrate (CN), Fm data fitted best to the quadratic model, with maximum value 
(772.1 electrons quantum-1) obtained at ECw of 1.2 dS m-1. In plants fertilized with potassium nitrate (KN), the 
Fm of chlorophyll a was not affected by the increment in irrigation water salinity, showing mean value of 746.5 
electrons quantum-1.  

According to the follow-up analysis of N sources for each level of irrigation water salinity (Figure 2B), 
significant difference was found in Fm between the different sources only in plants irrigated using solutions with 
higher saline levels (2.5 and 3.5 dS m-1). For the irrigation with ECw of 2.5 dS m-1, highest Fm values (750 and 
740 electrons quantum-1) were caused by the fertilization with calcium nitrate (CN) and potassium nitrate (KN), 
whereas plants subjected to ECw of 3.5 dS m-1 showed maximum Fm (709.7 electrons quantum-1) under KN 
fertilization. 
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Nitrogen and potassium are essential nutrients in the photochemical reactions of photosynthesis (Taiz & Zeiger, 
2013) and may have great influence on soursop, because they are the most absorbed in its initial growth stage 
(São José et al., 2014). Nitrogen is present in chlorophyll molecules, responsible for the capture and transfer of 
energy to the reaction centers, and also composes the protein complexes that act on the transport of electrons in 
the thylakoid membrane, such as the cytochrome b6f complex and plastocyanin, which acts in the electron 
transfer between PSII and PSI, and the enzymes Fd and FNR, which use the ejected electrons to form the 
reducing agent NADPH used in the carboxylation reactions (Taiz & Zeiger, 2013). Potassium becomes essential 
in the catalysis of the enzymes involved in electron transfer (9Fd and FNR), because it acts as enzyme activator 
(São José et al., 2014). 

4. Conclusions 
Irrigation water salinity from 0.5 dS m-1 decreases the contents of photosynthetic pigments and photochemical 
efficiency in soursop plants, ‘Nordestina’ variety, at 110 days after transplantation. 

Fertilization with different N sources does not cause alterations in the contents of photosynthetic pigments, but 
the use of potassium nitrate mitigates the salt-stress effect on photochemical efficiency, particularly evidenced at 
water salinity of 3.5 dS m-1. 
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