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Abstract 
Phenylalanine ammonia-lyase (PAL) which is considered to be one of the main lines of cell acclimation against 
stress in plants, non-structural carbohydrates (NSC) accumulation and chlorophyll fluorescence parameters were 
quantified in two rice genotypes as a function of two temperature regimes: 22/30 °C (control) and 28/30 °C 
night/day (high night temperatures - HNT), imposed from heading to milk stage. The rice cultivars chosen were 
Nagina22 (N22) and BRS Querência (BRS-Quer), which are genotypes tolerant and sensitive to high 
temperatures, respectively. BRS-Quer genotype highlighted more sensitive responses maintaining higher PAL 
and peroxidase levels on seventh and twenty-first days after stress imposing. On the other hand, this genotype 
showed levels of fructose, glucose and sucrose decreasingly across stress period whether compared to N22. Both 
genotypes showed similarity for most of the chlorophyll fluorescence parameters. However, the photosynthesis 
induction curve highlighted that HNT caused decreases in some photochemical quenching of fluorescence as 
well as increases of non-phochemical quenching, affecting more prominently BRS-Quer genotype. N22 
maintained unaltered the spikelet sterility and 1000-grain weight across temperature regimes showing a 
consistent trend with its stem NSC accumulation during stress period. The higher availability of soluble sugars 
shown by N22 at the end of stress period could be unloaded in spikelet formation and grain fillings contributing 
in their lower sterility rate and greater 1000-grain weight stability across the environments. These results indicate 
that selecting genotypes with higher capacity to stem NSC translocation beyond accumulation at HNT could lead 
to more grain yield stability in future climate scenarios. 
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1. Introduction 

Abiotic and biotic stresses represent the major constraints that result in agricultural losses on the global scale and 
projected climate changes could increase their negative effects in the future (Brito et al., 2010, 2011, 2016; Diola 
et al., 2011, 2013; Weber et al., 2014; Guimarães et al., 2017). Recently, reports are highlighting via climate 
models predict an increasing frequency and intensity of heat waves and high temperature events throughout 
current century (IPCC, 2013; Becklin et al., 2016). Beyond of the predict impact of these extreme event on 
global population, remain unclear its influence on plant species distributions, productivity, carbon balance and 
physiological impact versus plant resilience capacity. In this sense, efforts and new strategies are imperative in 
the breeding program aiming to obtain new plant ideotypes for new climate scenarios.  

Rice (Oryza sativa L.) is one of the most relevant staple food for more than half of the world’s population (Fan et 
al., 2016). The grain rice production must be increased by 70% until 2050 to supply the growing demand for 
food, take into account the growth population and economic development (Godfray et al., 2010). Additionally, 
there is a consensus that in the future the high temperatures will become a bottleneck for crop yield and its 
stability. In this way, projected climate changes could increase its negative effects in the future (Tian et al., 2015; 
Fan et al., 2016). Although projected impact of climate change on crop yield has been extensively published in 
the last decade, yet are unexpressive studies that highlight the role of increase in nighttime temperatures on rice 
physiological response and, consequently, changes in the rice yield performance.  
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There were extensively reported that in the future, increases in CO2 concentration could lead to a better 
performance to photosynthesis and increases in carbohydrate metabolism enzymatic activity in the source (leaf) 
in the absence of other bottlenecks. In this way, higher non-structural carbohydrates (NSC) could be accumulated 
in the sink (grains) among crop plants. It could result in more cumulative product of increased tillers, panicles, 
spikelet per panicle and proportion of filled spikelets, besides to enhanced 1000-grain weight (Shimono et al., 
2009; Zhu et al., 2014). On the other hand, the negative effects from heat stress, especially during initial 
reproductive phase could lead to decrease the rice grain yield and its components, by increase the spikelets 
sterility rate, shorter grain filling period and disrupt the sink activity. Take into account the faster leaf senescence 
associated to accelerate photosynthesis reductions, decreasing in sucrose-starch conversion via enzymatic 
activity, could reduce the grain yield and the quality (Bahuguna et al., 2017; Chaturvedi et al., 2017; You et al., 
2017). 

Considering that starch represents 80-90% of final rice grain weight, the events involving since grain filling and 
final yield are associated to assimilates supplied by current photosynthesis and stem NSC remobilization 
capacity (Yoshida, 1981). During the vegetative phase and until heading, carbon assimilates are partially and 
temporally  stored in stems and leaf sheaths of plant’s rice as NSC which are sinked for all events involving 
since reproductive organ formation until grain development and maturation phase (Morita & Nakano, 2011; 
Zhang et al., 2016). For rice, there are studies showing that the stem NSC contribution to grain yield must reach 
28% (Yoshida, 1981; Pan et al., 2011). Besides, there are indications that stem NSC at full heading stage of rice 
can increase the grain ripening ratio in those plants submitted to heat stress, increasing its  grain yield stability 
(Morita & Nakano, 2011). For those plants submitted to drought at pre-anthesis stem NSC accumulation have 
highlighted its potential to buffer grain-filling in both wheat and rice (Yang et al., 2001; Saint Pierre et al., 2010) 
and also has been associated to tolerance to long-term partial submergence in rice (Kato et al., 2014). In this way, 
different strategies should be used by plants to respond to environment oscillations including those related to 
phenylpropanoids pathways.  

Phenylalanine ammonia-lyase (PAL) catalyzes the first step in the phenylpropanoid pathway, leading 
L-phenylalanine undergoes deamination to yield ammonia and trans-cinnamate (Dixon et al., 2002). Thus, 
flavonoids, isoflavonoids, anthocyanins, phytoalexins, anthocyanins and lignins biosynthesis are dependent of 
PAL activity (Pascual et al., 2016; Dempsey & Klessig, 2017). These compounds are involved in different events, 
which include plant defense against pathogens and predators, in the protection from UV irradiation and low 
temperatures responses (Dixon & Paiva, 1995; MacDonald & D’Cunha, 2007). In this way, the detection of 
different PAL activity in heat stress contrasting genotypes when submitted to high night temperature could lead 
to a new efforts aiming development/establishment of PAL activity as a biochemical marker suitable for 
physiological breeding phenotype aiming to obtain rice cultivars more tolerant to future climate scenarios.   

Although enormous quantities of studies involving projected impacts of climate change on crop yield has been 
extensively published in the last decade, yet there are gaps underling the rice physiological responses when 
plants are submitted to high night temperatures. Thus, this study evaluated the effects of high night temperature 
on PAL activity which is considered to be one of the main lines of cell acclimation against stress in plants, on 
NSC accumulation and chlorophyll fluorescence parameters in contrasting rice genotypes as a function of two 
temperature regimes. 

2. Material and Methods 
2.1 Plant Materials 

Two rice genotypes, a heat-tolerant Nagina22 (N22) and heat-sensitive BRS Querência (BRS-Quer) based in our 
previous trials, compounded our genetic plant materials for this study. These genotypes have showed similar 
cycle but significant differences for that grain weight and panicle size grown under field conditions.  

2.2 Growth Conditions and Treatments 

Rice plants were grown in pots (3.0 kg soil) and maintained within a greenhouse from sowing until plant heading 
stage (Figure 1A). After, half of plants from each genotype were taken to two growth chambers (Figure 1B) 
aiming to impose pre-defined treatments.  In the date, in order to ensure that the same sample was ever used for 
physiological non-destructive analysis, the youngest and expanded leaf was labeled. 
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the far-red light. Non-photochemical quenching (NPQ) quantified by ratio Fm/F’m – 1; effective quantum 
efficiency of PSII (Y(II)) defined as (F’m – Fs)/F’m; photochemical quenching (qP) defined as 1-(Fs-F’0)/(F’m-F’) 
and electron transfer rate (ETR) defined as PAR.ETR-factor.PPS2/PPPS.Y(II) (Baker, 2008). 

2.5 Non-Structural Carbohydrates Determination (NSC) 

Plants from both genotypes and temperature regime were cut in the basal portion of the culm between 09:00 and 
10:00 h at seventh day after heading and at milk stage aiming quantify its NSC (total soluble sugar and starch in 
glucose). Five plants from each treatment were sampled for biochemical analyzes; this plants were separated into 
leaves, stem and panicles and immediately weighted and dried at 60 °C and subsequently stored. After, these 
samples were grounded (50 mesh); the extraction done in ethanol 80%, in water bath at 95 °C during 10 minutes, 
centrifuged at 2,500 rpm by five minutes. Total soluble sugar (TSS) determinations were carry out using 
supernatant extract and the starch was quantified in the residue remaining after soluble sugars extraction; the 
total sugars were extracted using phenol-acid and the starch in residue remaining, which was dried and further 
extracted using enzymatic hydrolyze and subsequently quantified via PGO enzyme addition (Chow & 
Landhausser, 2004). Glucose, fructose and sucrose determinations were carry out via gas chromatography 
(Streeter & Strimbu, 1998); the derivatization was done using HMKS:TMCS (3:1).  

2.6 Yield Components Measurements 

After the stress period, all genotypes were taken back to the greenhouse where were maintained until 
physiological maturity. After, some yield components were quantified harvesting each plant separately; the grain 
weight was adjusted to 14% moisture content; were quantified the panicle grain number, percentage of spikelet 
sterility, 10-panicle weight and 1000-grain weight. 

2.7 Statistical Procedures 

For biochemical and yield components, data were analyzed using a two-way ANOVA and when significant 
interaction was detected, unfold statistical procedures were done aiming to quantify the effects of each genetic 
background within each temperature regime (control and under heat stress) (SigmaPlot 13.0 - Systat Software 
San Jose). Subsequently, the Least Significant Difference (LSD) among the means was statistically analyzed 
using Student-Newman-Keuls test (p < 0.05). For chlorophyll fluorescence parameters, curves were constructed 
considering its standard errors for each measured point.  

3. Results 
Analysis of genotypes versus temperature regimes of the PAL and peroxidase enzymes detected significant 
statistical interaction (P < 0.001) on seventh and twenty-first days after stress imposing. Both genotypes 
submitted to temperature regimes not shown significant differences in their peroxidase levels at control condition, 
except when submitted to HNT on seventy and twenty-first days after heading phase when BRS-Quer showed an 
increase of 80% and 21% for this enzyme, respectively (Figure 2). For PAL enzyme, N22 showed higher level 
activity (93% higher than BRS-Quer) even when maintained under control conditions. 

Additionally, its activities levels were unaltered on the seventh and twenty-first days after stress imposing, 
suggesting some constitutive traits for N22 PAL stability across evaluated environment. On the other hand, there 
were an increase of 270% and 161% in PAL activity on seventh and twenty-first days for BRS-Quer, 
respectively. 
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available for secondary biosynthetic routes. Whether it’s true, then any environmental factor can trigger 
activation some pathway signal transduction lead to a response related to photosynthesis, growth and, 
consequently, primary metabolism could also affect the secondary metabolism (Ibrahim et al., 2012). Thus, 
occurrence of high night temperature can be considered one of these factors and in a future climate scenarios, the 
increase in global temperature as result of climate change could lead to changes in plant secondary metabolites 
biosynthesis altering the source-sink flow and consequently NSC accumulation and remobilization to grain 
filling; beyond plant capacity to respond to biotic and abiotic stresses could be altered. Based in allocation 
hypotheses new carbon-nutrient balance and growth differentiation balance are proposed (Herms & Mattson, 
1992) to predict the effects of infra and/or supra-optimal occurrence of environmental factors, where temperature 
oscillation also could be included. 

In this way, results obtained in this study suggest that unaltered PAL activities shown by N22 can contribute 
maintain unaltered some yield components such as spikelet sterility rate, grain per panicle and 1000-grain weight 
when submitted to high night temperature. In other way, BRS-Quer genotype which showed an increase of 8% 
and a decrease of 12% for spikelet sterility percentage and 1000-grain weight, respectively also showed the 
highest PAL activities values on seventh and on twenty-first day after stress imposing. 

The endosperm cell of rice contributes for more than 90% of the grain weight of a caryopsis. In this sense, the 
size of sink and/or low activity of enzymes involved in the carbohydrates metabolism could contribute to a low 
grain filling rate depending of their degree of sensibility to HNT. In our report, under optimum HNT the 
BRS-Quer genotype, which have a bigger panicle when compared to N22, showing a more sink strength with a 
decrease of 36% of stem starch concentration from heading to milk stage; in other way, when submitted to HNT 
its starch levels were unaltered during evaluated period. Results of different studies have indicated that activities 
of enzymes involved in the breakdown of sucrose in the sink could influence the sink activity and, consequently 
define the local concentration sucrose-starch rate, as result of unloading of sucrose from phloem (Ranwala & 
Miller, 1998; Liang et al., 2001). Besides, there is need to consider that SuSase is a main enzyme involved in the 
cleavage of sucrose in rice grains; because its importance in this event it have been considered as an important 
biochemical marker of sink activity (Kato, 1995; Liang et al., 2001; Zhang et al., 2014; You et al., 2016). In other 
way, AGPase has been also considered as a key enzyme participating in the starch synthesis, and its activity is 
associated with rate and quantity of starch synthesis (Ahmadi & Baker, 2001; Yang et al., 2004, 2017). AGPase 
at the early grain filling stage were decreased as result of supra-optimal temperatures (Ahmed et al., 2015); under 
other abiotic stress, as such water deficit, SuSase and AGPase had its activities levels influenced. The results 
suggest that the bigger capacity of N22 to maintain higher soluble sugar levels (fructose, glucose and sucrose) at 
milk stage can have contributed to their better yield component stability across night temperatures imposed. 

The photosynthesis induction curve highlighted that HNT caused small decreases in some photochemical 
quenching of fluorescence as well as tendency to increases of non-phochemical quenching, affecting more 
prominently BRS-Quer genotype. Nevertheless, these changes in photosynthesis performance observed only on 
seventh day of stress cannot explain the great differences found between two genotypes for its yield components 
as above discussed.  

Studies involving the approaches that aim quantify the heat-stress effects on rice physiological performance and 
their yield components and identification of genetic variability have become increasingly in last decade. 
However, few studies have concentrate efforts to evaluate rice biochemical/physiological responses under high 
night temperatures (Chaturvedi et al., 2017) and there are scarcity of information about rice plant responses 
when are submitted to high night supra-optimal temperatures. Different studies have suggested that the amount 
of NSC mobilization in the post-heading stem could result from sink strength and environment/management 
(Yang et al., 2000; Chen & Wang, 2008; Kim et al., 2011; Morita & Nakano, 2011; Li et al., 2017; Wada et al., 
2017). In other way, NSC level at maturity cannot be attributed to lower mobilization because additional 
photoassimilate re-accumulation can be result from its semi-perennial characteristics. Besides, accumulation, 
remobilization and re-accumulation of NSC in stem can be influenced by genotype, environment and genotypes 
environment interaction. In this sense, in the next step efforts will be concentrating to monitor enzymes activities 
involved in the phenylpropanoid pathway together with the NSC dynamics from heading until maturity phase in 
different organs, i.e. leaves, stem and spikelets in development aiming to elucidate these responses and define the 
more adequate organ and best phase to validate this approach as proxy for rice physiological breeding.  

In conclusion, the results indicate that high night temperature imposed from heading to milk stage can leading 
changes in source-flow-sink related attributes in contrasting genotype beyond modify PAL activity responses, 
lead to changes in nature of NSC accumulation and translocation. These changes could impact in plant secondary 
metabolites biosynthesis altering the source-sink flow and consequently NSC accumulation and remobilization 
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to grain filling. The data suggest yet that higher translocation capacity shown by N22 can contribute to their 
lower spikelet sterility rate and higher 1000-grain weight stability across the environments tested. These results 
suggests that the hypersensitive phenylpropanoid pathway activation shown by sensitive genotype should be 
taken into account and could serves as a starting point for new efforts aiming establish a biochemical traits as a 
potential marker in rice physiological breeding for future climate scenarios. 
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