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Abstract 
Jackfruit (Artocarpus heterophyllus Lam.) is an important food crop widely grown in the tropical region. 
However, little is known about sugar metabolism during fruit ripening of jackfruit. Here we examined sugar 
profiles (sucrose, glucose and fructose) and corresponding enzyme activities (SPS, E.C.2.4.1.14; SuSy, EC 
2.4.1.13; IV, EC 3.2.1.26) of four soft type and four firm type varieties of jackfruit during four stages of fruit 
ripening. We found that during fruit ripening, there was a rapid increase in contents of total soluble sugar and 
sucrose, whereas increases in glucose and fructose contents were much slower. Ratios of glucose versus fructose 
varied among different varieties and ripening stages but within the range of 0.9 to 1.2 in the ripe fruits. Five of 
these varieties exhibited markedly high levels of SuSy activity for sucrose synthesis at early ripening stage, and 
then decreased towards fully ripe stage. All soft type varieties exhibited a conspicuous peak of AIV activity and 
had overall higher AIV activities than NIV during ripening. The changing patterns for other enzymes varied 
among varieties. Our studies support the notion that sucrose was the major sugar species contributing to the fruit 
sweetness, followed by fructose and glucose. We also demonstrated that AIV and NIV were probably the primary 
enzymes responsible for sucrose hydrolysis during ripening, while SPS and SuSy were responsible for sucrose 
synthesis. We propose that during fruit ripening of jackfruit, glucose is released from starch hydrolysis, followed 
by sucrose hydrolysis leading to increase in both glucose and fructose contents. 
Keywords: jackfruit (Artocarpus heterophyllus Lam.), fruit ripening, sucrose metabolism, enzyme activity 

1. Introduction 
Jackfruit (Artocarpus heterophyllus Lam.) is a medium-sized evergreen tree belonging to the family Moraceae. It 
is reported to have originated in the Western Ghats region of India (Purseglove, 1968) and the rainforests of 
Malaysia (Ruehle, 1967). Due to its easy growth and tolerance to pests, diseases, high temperature and drought, 
jackfruit has been cultivated for centuries, e.g. 3000 to 6000 years in India (Preedy, Watson, & Patel, 2011), and 
is mostly grown in tropical or close to tropical climates, especially throughout south-east Asia where it is mainly 
consumed as fresh fruit or vegetable (Soepadmo, 1991; Wu et al., 2013). It has been predicted that jackfruit may 
play an increasingly prominent role in achieving food security in the populous Asia under future challenges from 
climate change. 

Jackfruit has the largest known tree-borne fruit, weighing as much as 50 kg each (Selvaraj & Pal, 1989), which 
generally is grouped into two types of soft flesh and firm (hard) flesh. The fruits are sweet and aromatic when 
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ripe, rich in carbohydrates (starch and various sugars), vitamins, dietary fiber and minerals, and can be eaten 
fresh when ripe or cooked as vegetable. Its large starchy seeds can also be cooked as food. Its fibrous fruit rind 
can be used as livestock feed. 

In spite of its obvious potential as a nutritious and healthy food staple, the popularity of jackfruit as a 
commercial crop is still lackluster, mainly due to its wide variation in fruit quality (Samaddar, 1985). Fruit 
ripening is one of the most important processes of fruit quality development. Previous studies have examined the 
free sugar distribution and compositions of fatty acids (Chowdhury, Raman, & Mian, 1997), carbohydrates 
(Rahman, Nahar, Jabbar, & Mosihuzzaman, 1999), aroma volatiles (Swords, Bobbio, & Hunter, 1978; 
Rasmussen, 1983; K. Wong, Lim, & L. Wong, 1992; Maia, Andrade, & Zoghbi, 2004), carotenoids and phenolics 
(Chandrika, Jansz, & Warnasuriya, 2005; Jayasinghe, Rupasinghe, Hara, & Fujimoto, 2006; Faria, Rosso, & 
Mercadante, 2009) from fruits of different jackfruit varieties, as well as antioxidant capacity and phenol content 
in jackfruit fruit pulp (Jagtap, Panaskar, & Bapat, 2010). For example, an early study found little changes in fruit 
total acidity during ripening (Bhatia, Siddapa, & Lal, 1955). A more recent study reported significant changes in 
acidity, color, total soluble solids and total sugars in ripening jackfruit (Ong et al., 2006). The inhibitor of the 
plant hormone ethylene, 1-methylcyclopropene, was found to significantly delay the ripening process and extend 
the shelf life for 8-12 days (Mata-Montes, Oca, Osuna-Garcia, & Hemandez-Estrada, 2007), implicating the role 
of ethylene in fruit ripening in jackfruit. Study on soft and hard types of jackfruit suggested that while both fruit 
types shared a similar ripening pattern, the soft type exhibited a greater extent of microscopic and chemical 
changes, which may contribute to its unique textural features (Rahman, Huq, Mian, & Chesson, 1995).  

Sweetness is a major determinant of edible quality of fruits, and depends largely on the type, composition and 
amount of sugars in fruit. In jackfruit, sucrose, glucose and fructose constitute the major proportion of free 
sugars (Chowdhury et al., 1997). It is well known that sucrose synthase (SuSy, EC 2.4.1.13) is a bi-functional 
enzyme that involves both sucrose synthesis and sucrose hydrolysis to glucose and fructose. Sucrose phosphate 
synthase (SPS, EC 2.4.1.14) and sucrose synthetic SuSy are generally considered the major players in sucrose 
synthesis using glucose-phosphate and triose-phosphate released from starch breakdown during fruit ripening. 
On the other hand, both SuSy and invertases (IV, EC 3.2.1.26) can catalyze sucrose hydrolysis to glucose and 
fructose. 

Although previous studies have examined changes in sugar contents during ripening of jackfruit (Chowdhury et 
al., 1997; Rahman et al., 1999; Ong et al., 2006), there is no published study that correlates sugar contents with 
responsible sugar metabolic enzymes during ripening process. In order to better understand the mechanisms 
underlying sucrose metabolism during jackfruit ripening, we investigated changes in enzyme activities of SPS, 
SuSy and IV along with sucrose, glucose, fructose and total soluble sugar accumulation during fruit ripening in 
both soft and firm varieties of jackfruit. Understanding of the biochemical kinetics associated with sugar 
accumulation during fruit ripening will help select, cultivate and breed better varieties of jackfruit to achieve its 
potential as a valuable major food and fruit crop for the near future. 

2. Method 
2.1 Plant Materials 

Eight varieties of jackfruit (Artocarpus heterophyllus Lam.) were obtained from a commercial farm in Zhanjiang, 
Guangdong province, China, including 4 varieties of soft type (12As, 12Cs, 13Bs and 13Ls) and 4 varieties of 
firm type (12E, 13D, 13K and 148-4). Mature fruits that produced a dull, hollow sound when tapped were 
collected from each variety and immediately transported to the laboratory at Guangdong Ocean University. 
Fruits were then allowed to ripen at ambient temperature (±28 C; 70-75% RH).  

For sampling, fruits were first grouped into four ripening stages, ripening stage I (mature fruit), ripening stage II 
(fruit pulp started to soften), ripening stage III (fruit pulp started to form aroma substances) and ripening stage 
IV (fully ripened), and then were cleaned and cut into two halves. The fruit bulbs from middle portion were 
deseeded and 10 samples weighing about 1 g each were collected. Three fruits at each stage were sampled for 
each variety. The sampled fruit pulps were stored in a freezer (-80 C) until further analysis. 

2.2 Determination of Sugar Contents 

Soluble sugars were measured according to Li, Liu, Zhu and Yang (2014b). Approximately 3 g pulp randomly 
mixed from 3 samples of each fruit was extracted three times in 4 ml 80% ethanol (v:v). Each time, homogenate 
was centrifuged at 4 C and 15,000×g for 10 min and supernatant was collected. Supernatant was then 
evaporated using a rotary vacuum evaporator (RE-2000A, PUNA, China) at 90 C to a final volume of about 1 
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ml, and then was added ultrapure water to make the final volume to 30 ml. Five milliliters of the solution were 
filtered through 0.45 μm filter membrane and stored in vials for further analysis. 

Contents of soluble sugars were analyzed by PerkinElmer Series 200 HPLC Systems equipped with a PE200 
refractive index detector and an AT-130 column oven (AUTO SCIENCE, China), using the CARBOSep 
CHO-820 Calcium column (Transgenomic, USA). Ultrapure water was used as a mobile phase and the flow rate 
was 0.5 ml/min. Ten microliters of the extracted sample were injected and the temperature of the column was 90 
C. Sucrose, glucose and fructose were identified by their retention times and quantified by comparing peak 
areas of the samples with standards. Data were expressed in g/100 g of pulp fresh weight. 

Total soluble sugar content was measured based on the anthrone method (Irigoyen, Emerich, & Sanchez-Diaz, 
1992). Five milliliters of 0.2% anthrone were added to 1 ml of the sample solution. The reaction was carried out 
in boiling water for 10 min, and terminated by incubating the mixture on ice for 5 min. Total soluble content was 
calculated by creating a standard curve using a standard glucose and was expressed in g/100 g fresh weight. 

2.3 Enzyme Activity Assay 

Sucrose phosphate synthase (SPS), sucrose synthase (SuSy) and invertase (IV) extractions and assays were 
conducted by using methods modified from Hubbard, Huber, and Pharr (1989). Frozen sample (~1 g) was 
ground in a cold mortar and pestle in 5 ml extraction buffer containing 100 mM Tris-HCl (pH 7.0), 5 mM MgCl2, 
2 mM EDTA-Na2, 2% glycol (v/v), 5 mM DTT (dithiothreitol), 0.2% bovine serum albumin and 2% (w/v) 
polyvinylpyrrolidone 40, and centrifuged at 4 C and 10,000 rpm for 30 min. Three ml of the supernatant were 
dialysed for 12 hr against 4-hourly changes of 25 mM Tris-HCl buffer (pH 7.0) containing 2.5 mM MgCl2, 1 
mM EDTA-Na2, 1% glycol (v/v) and 2.5 mM DTT. All the enzyme extraction was carried out in triplicate, and 
assays were performed in triplicate on each extract (9 measurements in final per fruit sample).  

SuSy sucrose synthesis activity was measured in 1 ml reaction mixture containing 0.4 ml reaction buffer [100 
mM Tris-HCl (pH 7.0), 10 mM fructose, 5 mM magnesium acetate, 5 mM DTT], 0.1 ml 10 mM UDP-glucose, 
0.05 ml freshly desalted extract and 0.45 ml ultrapure water. Measurement for SPS activity in saturated 
conditions was carried out in 1 ml reaction mixture containing 0.4 ml reaction buffer [100 mM Tris–HCl (pH 
7.0), 10 mM fructose-6-P, 5 mM magnesium acetate, 5 mM DTT], 0.1 ml 10 mM UDP-glucose and 0.05 ml 
freshly desalted extract. Reaction mixtures were incubated at 30 C for 10 min and then terminated by placing 
reaction tubes in boiling water for 3 min. The released sucrose was measured based on the anthrone method 
(Irigoyen et al., 1992). Data were expressed in mg sucrose produced per hour per gram of fresh pulp. 

The SuSy sucrose hydrolytic activity was measured in 1 ml reaction mixture containing 0.4 ml reaction buffer 
[100 mM Tris-HCl (pH 7.0), 100 mM sucrose, 10 mM UDP], 0.05 ml freshly desalted extract and 0.55 ml 
ultrapure water. The neutral IV activity was measured by adding 0.2 ml desalted extract to 0.8 ml reaction buffer 
made of 80 mM potassium acetate buffer (pH 7.0) containing 100 mM sucrose. The acid IV activity was 
measured by adding 0.2 ml desalted extract to 0.8 ml reaction buffer made of 80 mM potassium acetate buffer 
(pH 4.5) containing 100 mM sucrose. Reaction mixtures were incubated at 37 C for 1 hr and stopped by boiling 
for 3 min. The amount of reducing sugars produced from sucrose was determined using 3,5-dinitrosalicylic acid 
method (Luchsinger & Cornesky, 1962). Data were expressed in g reducing sugar produced per hour per gram 
of fresh pulp.  

2.4 Statistical Analysis 

Data collected was subjected to one-way analysis of variance (ANOVA) using the SPSS statistical software 
(version 13.0, USA). 

3. Results 
3.1 Changes in Sugar Contents during Fruit Ripening of Jackfruit 

During fruit ripening, all eight jackfruit varieties exhibited a trend of increase in contents of total soluble sugar, 
sucrose, glucose and fructose (Figure 1). Very minute amounts of total soluble sugar and free sugars were 
detected in unripe fruits (stage I). The contents of glucose and fructose were found to be lowest in the unripe 
fruit, ranging from 0.1% (148-4) to 0.3% (12E), and 0.004% (148-4) to 0.18% (13Bs), respectively. When fully 
ripening (stage IV), contents of these two sugars gradually increased, ranging from 1.3% (13Ls) to 3.3% (12E) 
for glucose and from 1.3% (13Ls) to 3.3% (12E) for fructose (Figure 1). The sucrose and total soluble sugar 
contents were also lowest in unripe fruit (stage I), ranging from 0.2% (13D) to 1.9% (12Cs) and 0.7% (13Ls) to 
2.9% (12Cs), respectively. However, as the fruits reached full ripening stage IV, the contents of sucrose and total 
soluble sugar were significantly increased, ranging from 10.6% (13Ls) to 15.5% (13D) and from 15.0% (13Ls) 
to 25.1% (12E), respectively (Figure 1). 
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varieties of tomato (Klann, Chetelat, & Bennett, 1993), watermelon (Yativ, Harary, & Wolf, 2010) and banana 
(Fils-Lycaon et al., 2011; Choudhury, Roy, & Sengupta, 2009) have been characterized as predominantly 
sucrose- or hexose-accumulating. Our study (Figure 1) clearly shows an abundant accumulation of sucrose in the 
ripening fruits of all 8 varieties, suggesting that jackfruit is most likely a sucrose accumulator. 

The difference between contents of total soluble sugar and free sugar (sucrose, glucose and fructose) among 
different varieties may be related to the process of cell wall decomposition during fruit ripening, which causes 
the release of saccharides (Rees, Dixon, Pollock, & Franks, 1981; Rahman et al., 1995) as well as residual 
soluble starch stored in vacuole and plastids. Previous studies reported a wide range of glucose vs fructose ratio, 
from 0.5 to 42, in ripe fruits for both soft and firm type varieties (Rahman et al., 1995; Chowdhury et al., 1997; 
Rahman et al., 1999; Ong et al., 2006). We found that the glucose:fructose ratio for the 8 jackfruit varieties tested 
ranged from 0.9 to 1.2, suggesting a similar content for these two sugars. Therefore, we believe that the 
glucose:fructose ratio is probably ripening stage- and variety-specific rather than type (soft or firm) specific. 

Sugar accumulation during fruit ripening probably results from increased starch hydrolysis and decreased 
respiration-associated sugar breakdown, as reported in guava (Bashir & Abu-Goukh, 2003), jackfruit (Li et al., 
2014a; Rahman et al., 1995), mangoes (Simäo et al., 2008; Castillo, Kruger, & Whatley, 1992) and banana (S. 
Chacon, Viquez, G. Chacon, 1987; Garcia & Lajalo, 1988). A likely scenario during fruit ripening of jackfruit is 
that glucose is first accumulated from starch hydrolysis, followed by glucose and fructose accumulation as a 
result of sucrose hydrolysis. This is supported by the facts that more glucose than fructose was measured at 
ripening stage I in all varieties we tested (Figure 2B). When fruits reached the stage of fully ripe, starch 
hydrolysis finished and sucrose hydrolysis caused the molar ratio of glucose versus fructose to be close to one as 
observed in our study. 

A direct correlation between sucrose accumulation and increased enzyme activity of SPS has been reported for 
typical climacteric fruits tomato (Yelle, Chetelat, Dorais, De Verna, & Bennett, 1991; Dali, Michaud, & Yelle, 
1992) and muskmelon (Hubbard, Pharr, & Huber, 1989), but not for banana (Fils-Lycaon et al., 2011). Our study 
did not find such a clear correlation for most of the jackfruit varieties tested (Figures 1 and 3). Considering that 
SPS activity in most of the jackfruit varieties was lower than SuSy sucrose synthetic activity (Figure 3), we 
propose that SuSy is the major enzyme contributing to sucrose synthesis and accumulation during fruit ripening, 
whereas SPS may play a minor role, at least for the jackfruit varieties we have tested. However, the precise 
biochemical mechanism for sucrose accumulation in jackfruits is still unknown. 

Among the three enzymes responsible for sucrose hydrolysis, AIV was more active than NIV and NIV was more 
active than SuSy throughout the four ripening stages (Figures 3 and 4), suggesting AIV probably serving a 
primary role, followed by NIV, in hydrolyzing sucrose in jackfruit during fruit ripening. One interesting 
observation was a conspicuous peak AIV activity during fruit ripening of soft varieties, but not so obvious for 
firm varieties (Figure 4). Since the AIV enzymes in our study were extracted using the gentle conditions without 
adding salt and thus were most likely a vacuolar form, we speculate that the AIV peak activity observed only in 
soft type jackfruit (Figure 4) could be the cell wall bounded AIV form, released by cell wall degradation during 
fruit ripening of soft type jackfruit (Li et al., 2014a; Rahman et al., 1995), which is not likely to occur actively in 
the firm type jackfruits. 

In conclusion, the results of this study support the conclusions that sucrose is the major sugar contributing to 
sweetness of jackfruit, followed by fructose and glucose. Although the glucose:fructose ratio varies during 
ripening process, it reaches close to one in ripe fruits. Our study also reveals that among the enzymes examined, 
AIV is more active than NIV for sucrose hydrolysis, while SuSy probably plays a more important role than SPS 
in sucrose synthesis and accumulation during fruit ripening. We propose that in early stages of fruit ripening, 
glucose is released from starch hydrolysis followed by sucrose hydrolysis that contributes to increase in levels of 
both glucose and fructose. In ripe fruit, while sucrose is still the dominant form of the free sugar, its elevated 
hydrolysis results in almost equal amount of glucose and fructose.  
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