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Abstract 
The present study outlines the synthesis of a new microcarrier for anchorage-dependent animal cell cultures. The 
new microcarriers were synthesized from the cross-linking soybean starch microspheres followed by 
modification with 2-diethylaminoethyl (DEAE). Furthermore, 5 g/100 mL of wet microspheres DEAE-soybean 
starch microspheres were applied in the adhere cell culture, with an inoculation density 2.0 × 105 cells/mL of 
BHK-21, Marc-145, and MDCK cells. The cells were shown to grow well in the DEAE-soybean starch 
microcarrier, with BHK-21 cells showing a higher cell density after 144 h (2.5 × 106 cells/mL) compared to cells 
grown on the commercial product Cytodex 1 (2.2 × 106 cells/mL). These starch microcarriers have a potential 
application in anchorage-dependent animal cells culture, due to its low cost and its simple process. 

Keywords: soybean starch, starch microspheres, microcarrier, adhere animal cell culture 

1. Introduction 
Most animal cells cultures in vitro require wall anchorage to attach and grow (Freshney, 2010). Microcarrier is 
non-toxic, non-rigid and transparent microspheres of uniform density, on which allows the growth of adherent 
cell cultures. The microcarriers suspends in the culture medium, increasing the density of microcarriers will 
increase the cell density. Thus, the application of the microcarriers is advantageous to the cell mass culture and 
harvesting. Currently, Microcarriers are widely used in the biological pharmaceutical field, including in the 
production of vaccines, recombinant protein drugs, monoclonal antibodies, cytokines and their receptors, and 
other medical biological products (Rodrigues et al., 2013; Costa et al., 2013; Ting et al., 2014; Stich et al., 2014; 
Park et al., 2014; Nienow et al., 2014).  

In 1967, the first microcarrier Sephadex A-50 for cell culture was developed by Van Wezel (van Wezel, 1967) 
using 2-diethylaminoethyl (DEAE) then, several microcarrier materials have been developed, including 
glucan(van Wezel, 1967), cellulose (Paris et al., 1983), chitosan (Chen et al., 2006), glucomannan (Sun et al., 
2010) and polymer molecules (Reuveny et al., 1983; Gumusderelioglu et al., 2013; Zuhlke et al., 1993; Cer et al., 
2007). The commercial microcarrier products in the market are GE Cytodex I, II and III, Cytopore, and 
Cultispher G. All these products are expensive, limits their application in the pharmaceutical industries. Thus, to 
develop an inexpensive microcarrier for animal cell culture using easily acquired polymeric raw materials has a 
great potential.  

Starch is a cheap and accessible biological material widely used in food, medicine, textiles, and other industrial 
applications. The structure of starch, with its large number of hydroxyl groups, can easily undergo chemical 
modification of its backbone, and has thus become a potential polymer for the development of new microcarrier 
materials. Starch microspheres with a large porous surface area and accessible reactive groups such as hydroxyls 
(Delval et al., 2005) have therefore been used as drug carriers (Björses et al., 2011; Edman et al., 1992) and 



jas.ccsenet.org Journal of Agricultural Science Vol. 9, No. 8; 2017 

92 

adsorbents (Yuan et al., 2015; Song et al., 2004). The structure of these microspheres makes it possible for 
chemically modification of starch backbone according to the necessary requirements. Furthermore, DEAE is 
well known as a surface modifier substance for microcarriers. 

The present study describes the synthesis of new starch microsphere as an natural polymer microcarrier and 
explores its preliminary application in adherent cell cultures. Starch microspheres were synthesized by coupling 
with DEAE through ion exchange leading to the preparation of starch microsphere microcarriers suitable for 
adherent cell growth. The starch microcarriers were used to grow suspension cultures of Baby Hamster Syrian 
Kidney (BHK-21), Marc-145, and MDCK cells. GE product Cytodex 1 was used as the microcarrier for the 
control group. The suitability of DEAE-soybean starch microspheres as microcarriers was evaluated through cell 
growth curves, through the cell growth profile, and the observation of morphological characterization by Giemsa 
and Hoechst 33258 staining. 

2. Materials and Method  
2.1 Materials 

Soybean starch (commercial), machine oil (15w-40, Shell, USA), 2-(Diethylamino) ethyl chloride hydrochloride 
(99%, Aladdin, China), all other chemical reagents were ordinary analytical reagents. BHK-21, Marc-145, and 
MDCK cells were from the ATCC (USA). Dulbecco’s modified Eagle medium (DMEM) were from Gibco. 
Newborn Calf Serum (NBCS) was from Lanzhou Minhai biotechnology Co., Ltd (China). Cytodex 1 
microcarriers were from GE Healthcare (Uppsala, Sweden). BHK-21, Marc-145, and MDCK cells were cultured 
in DMEM supplemented with 10% NBCS. The cells were cultivaed at 37 °C in a humidified atmosphere with 
5% CO2. 

2.2 Methods 

2.2.1 Synthesis of Soybean Starch Microsphere (CSM) 

The soybean starch microspheres were synthetized through two processes. The water phase was 15 g of soybean 
starch powder in 200 mL of distilled water, heated to the gelatinization point while stirring. Then a 6 M NaOH 
solution was then added until pH 14 the solution was then cooled to room temperature. The oil phase was 1000 
mL, machine oil (50 %, v/v) and isooctane (50 %, v/v), and 2% span-80. Water phase was slowly added to oil 
phase during continuously stirring for approximately 20 minutes at 500 rpm. 

Polyethylene-glycol-diglycidyl-ether (20 ml) was added whilst mixing, and the crosslinking reaction was 
allowed to continue for 6 hours. Following the completion of the crosslinking reaction, the solution was left to 
stand until phase separation was observed. The oil layer was removed and the lower sediment was washed with a 
2% op-10 emulsifier solution and then pure water 2 to 4 times. Soybean starch microspheres with diameters 
between 120 and 200 m were then sieved and used for further modification. 

2.2.2 Synthesis of DEAE-Soybean Starch Microspheres (DEAE-CSM) 

Sieved soybean starch microspheres (wet microspheres; 10 g) were added to 20 mL of 4.5 mol/L sodium 
hydroxide solution and stirred for 10 min; 20 mL of 3.5 mol/L 2-(Diethylamino) ethyl chloride hydrochloride 
solution were then added and the mixture was heated to 60 °C with continuous stirring at 300 rpm for 4 hours. 
Following the reaction, phosphate buffered saline (PBS; without potassium, calcium, or magnesium ions) was 
added the microspheres were washed 2 to 4 times with water until the pH was neutral. 

2.2.3 Spinner Flask Culture 

BHK-21, Mark-145, and MDCK cells were thawed and cultured in a T75 cell culture flask. DMEM with 10% 
NBCS were used. Linked DEAE-soybean starch microspheres (DEAE-CSM) microcarriers (5 g wet 
microspheres) were placed into a conical flask and washed three times with PBS. The microcarriers were 
autoclaved in 30 mL PBS before use. Cells were grown in 50 mL cultures in 125 mL spinner bottles (Techne, 
UK) and maintained at 37 °C. DEAE-CSM and Cytodex 1 microcarriers, prepared according to manufactures 
instructions, were used at a density of 5 g/100 mL (wet microspheres) and inoculated with 20 mL 2.0 × 105 
cells/mL. The initial attachment of cells was performed in a half working volume (50 mL), as follows: 5 min of 
stirring at 35 rpm followed by 30 min of non-stirring, for a total duration of 6 h. After this continuous stirring, 45 
RPM, was used. After 24 hours 50 mL of medium were added and 3 mL samples were retrieved for cell counting 
every 24 h for 8 days.  
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2.2.4 Observation of Cell Morphology 

(1) Cells for Giemsa Staining on the Microcarriers 

Microcarrier cultures (1 mL) were transferred to a sample tube, after 5 min the supernatant was removed. 
Samples were washed twice with calcium-and magnesium-free PBS buffer. Fixation buffer (PBS buffer: 
methanol mixture = 1:1; 1 mL) was added for 2 min and the supernatant was removed after 5 min. Methanol (2 
mL) was then added and the samples were incubated for 10 min. Giemsa staining concentrate (Sigma, US) was 
diluted 10 times in PBS buffer and 2 mL were added to the sample tube, after mixing they were incubated 2 min. 
The microcarriers were washed with pure water five times and a few drops were placed in concave slides and 
observed in an inverted phase contrast microscope (IX51-FL, Olympus China co., Ltd.). 

(2) Cells for Hoechst 33258 Staining on the Microcarriers 

Microcarrier cultures (1 mL) were transferred to a sample tube after 5 min the supernatant was removed. 
Samples were washed three times with 0.9 % saline. Fixation medium (acetic acid: methanol = 1:3; 2 mL) was 
then added. After 5 min, the supernatant was removed and a new addition of 2 mL of fixation medium was made. 
After 10 min the fixation liquid was discarded and the samples were washed three times with 0.9% saline, 
followed by the addition of 2 mL Hoechst 33258 (Sigma, US) (1 g/mL). The mixture was left in dark 
conditions for 10 to 15 min at room temperature. The dyeing liquid was removed and the samples were washed 
three times with 0.9% saline and observed in a fluorescent inverted microscope (CK40-32, Olympus China co., 
Ltd.).  

(3) Cell Growth Curve 

The samples were collected daily to monitor cell growth. The cell morphology was observed using an inverted 
microscope, the cell density was determined using the crystal violet nuclei-staining method. Briefly, 1 mL of a 
well-mixed sample was washed twice with PBS, then treated with 1 mL of 0.1 mol/L citric acid containing 0.1% 
crystal violet and incubated for 24 h at 37 °C. The released nuclei were counted using a hematocytometer. The 
Data were reported as mean ± standard deviation of duplicated experiments. 

(4) Characterization of the Soybean Starch, Starch Microsphere, DEAE-Soybean Starch Microsphere 

The surface morphology of the soybean starch microsphere was observed using an optical microscope and 
scanning electron microscopy (SEM). For SEM observation, dry soybean starch microspheres (CSM) and 
Cytodex 1 microspheres were coated with platinum under vacuum using an ion sputter (JFC-1600, JEOL) and 
observed with a JSM-5600LV SEM (JEOL, Japan). An X’Pert PRO (PANalytical, Netherlands) X-ray 
diffractometer was used to measure the solid X-ray diffraction (XRD) diagram using CuKα (λ = 0.154 nm) 
radiation at 36 kV and 20 mA, and a 3-50° 2θ scan range at 4°/min. Fourier transform infrared (FTIR) 
spectroscopy was performed on a Nicolet-5700 (Nicolet, USA) spectroscope in the mode of attenuated total 
reflectance for a wavelength range of 4000-500 cm-1.  

3. Results and Discussion 
3.1 Characteristics of the Starch Microcarriers 

3.1.1 Morphological Image Analysis 

Figures 1a and 1b show the SEM images of soybean starch, CSM. Natural soybean starch is amorphous or ovoid, 
with a smooth surface, uneven grain size and a few small particles are spherical (Hoover & Ratnayake, 2002; 
Ratnayake et al., 2002). However, the starch CSM showed a regular spherical shape and a uniform particle size, 
with a rough and porous surface with an increased specific surface area, indicating that crosslinking occurred 
during the emulsion reaction. Figures 1c and 1d show the morphology of CSM and DEAE-CSM particles 
observed with an optical microscope, indicating a regular shape and a uniform particle size distribution. 
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Figure 4. 
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