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Abstract 
Waterlogging is a major constraint on wheat (Triticum aestivum L.) production, especially in the Yangtze River 
Basin of China (YR). A container experiment was designed to investigate wheat-seedling growth and short-term 
recoveryin response to waterlogging. Cultivars commonly grown in theYR from three different decades, namely, 
Yangmai 1 (1970s), Yangmai 158 (1990s), and Yangfumai 4 (2010s), were selected. Seedling waterlogging 
significantly postponed leaf development, as well as decreased the number of tillers and adventitious roots per 
plant, seedling height, leaf area, specific leaf dry weight, shoot dry weight, root dry weight, and root/shoot ratio. 
After a 20-day recovery phase, the leaf stage, seedling height, and root/shoot ratio recovered to the control level, 
whereas the adverse effects of waterlogging on the number of tillers per plant, leaf area, and shoot dry weight 
intensified. Significant differences were found in seedling growth among the three wheat cultivars. Yangfumai 4 
showed the highest number of adventitious rootsper plant and the highest specific leaf dry weightbut the lowest 
seedling height, leaf area, and dry weights of shoots and roots. However, Yangfumai 4 showed the lowest 
percentage decrease in all growth parameters after both waterlogging and recovery. These results suggested 
thatimprovement inadventitious root numberper plant and specific leaf dry weight may be indicators ofresistance 
to waterlogging in wheat. 
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1. Introduction 
Waterlogging is amajor constraint on wheat yield and production worldwide and affects approximately 10-15 
million hectares (ha) of wheat globally, representing 15%-20% ofcultivated area annually (Setter & Waters, 
2003). More than 12% of the wheat planting area in Chinais located in the Yangtze River Basin (YR) (Cheng et 
al., 2012). In this area, precipitation normally exceeds the water requirement of wheat, and is irregularly 
distributed on spatial and temporal scales. Moreover, a rice-wheat rotation system is generally conducted in the 
YR, resulting inwater-saturated soil because of frequent rainfalls and excessive irrigation during the rice-growing 
season (Wu et al., 2015). Because of the increase of extreme climate eventsin the recent years, the frequency of 
rainfall intensity has increased and this increases the frequency of waterlogging (Schumacher & Johnson, 2006; 
Shao et al., 2013).  

The effects of waterlogging on wheat growth are diverse and complex. Multiple plant traits are affected, 
including the phenology, morphology, anatomy, nutrition, metabolism (e.g. an aerobic catabolism and anoxia 
tolerance), postanoxic damage, and recovery (Setter & Waters, 2003). At the agronomic level, typical responses 
to waterlogging include decreased plant height; inhibited antioxidant capacity of leaves and roots; relatively low 
levels of photosynthesis, respiration, and transpiration; and reduced growth of the roots and shoots; and reduced 
tillers, kernel number, and grain yield (Brisson et al., 2002; Jiang et al., 2006; Olgun et al., 2008; Hossain & 
Uddin, 2011). In addition, the severity of waterlogging’s unfavourable effectson wheat growth depends on 
several factors, such assoil and weather conditions (Setter & Waters, 2003), cultivars grown (Dickin et al., 2009; 
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Haque et al., 2012), cultivation technologies (Wu et al., 2013), growth stage of the plants (Shao et al., 2013; Wu 
et al., 2015), depth of water levels (Malik et al., 2001), and severity and duration of waterlogging (Collaku & 
Harrison, 2002; Malik et al., 2002).  

Thus far, most studies have investigated the effects on wheat growth responses during waterlogging, though the 
ability of wheat to recover after waterlogging has been considered to be equally important recently (Setter & 
Waters, 2003; Malik et al., 2001). The evaluation of the recovery after waterlogging includes the abilityof the 
plants to rapidly recover (Setter & Waters, 2003), growth conditions under a prolonged recovery period (Malik et 
al., 2001, 2002; Araki et al., 2012), and effects on final yield (Melhuishg et al., 1991; Musgrave, 1994; Dickin & 
Wright, 2008). Therefore, the physiological mechanisms for waterlogging tolerance must not only consider the 
effects of waterlogging on wheat growth but also consider the ability of the wheat to recover from it.  

In the YR, there has beenfive to six wheat cultivar renewals since the 1950s (Cheng et al., 2012), and the yield 
potential has achieved 9 tons per ha in field conditions (Ding et al., 2016). Grain yield improvements were 
mainly associated with single-spike yield increase, specifically improvement of the kernel number, and weight 
(Tian et al., 2011). While many studies that investigated the genetic gain in wheat cultivars were conducted in 
different wheat-growing regions under appropriate water conditions (Fischer et al., 1998), few studies focused on 
the responses and mechanisms of wheat cultivarsto waterlogging from different periods in the evolutionary 
process. 

Previous investigations observed that the grain yield after seedling waterlogging much lesser than that of the late 
growth stages (Wu et al., 2015), because waterlogging inhibited the growth of early tilling and disrupted the 
suitable establishment of the large spikes (Malik et al., 2002; Dickin et al., 2009), and it affected the long-term 
growth and physiology of the wheat (Malik et al., 2002). However, other studies foundthat seedling waterlogging 
did not significantly affect the grain yield because of thelong-term recovery after waterlogging (Cannell et al., 
1980; Dickin et al., 2009). The difference in the results above could be attributed to the different experimental 
environments or cultivar types. Therefore, the purpose of the present experiment conducted in the YR was to: (i) 
investigate the effects on seedling growth and short-term recovery after waterlogging, and (ii) determine whether 
the present cultivars have higher waterlogging tolerance compared withearly cultivars. The information provided 
in this study could contribute to the improvement of wheat production in the YR.  

2. Materials and Methods 
2.1 Plant Materials and Growth Conditions 

Experiments were conducted at the Agricultural Experiment Station (32°39′E, 119°42′N) of the Agricultural 
College of Yangzhou University, China. Three wheat (Triticum aestivum L.) cultivarscollected from different 
decades, the Yangmai 1 (1970s), Yangmai 158 (1990s), and Yangfumai 4 (2010s), that were widely extended and 
planted in the YR were used. 

Container experiments were performed under natural conditions of radiation and temperature. The 
meteorological data during the experiment, including temperature, sunshine. And precipitation accumulation, are 
shown in Figure1. Each of the plastic containers used were 26 cm wide at the top, 18 cm wide at the bottom, and 
26 cm deep, and contained 8 drainage holes (1 cm diameter) at the base. Before filling, fine soil for each 
container was prepared by sieving through a 5-mm mesh and then mixed with the following fertilizers: 3.6 g 
inorganic compound fertilizer (containing 15% N, 15% P2O5, and 15% K2O) and 0.83 g urea (containing 46% N). 
The soil was loamy clay and contained 9.62 g kg-1 organic matter, 79.95 mg kg-1 alkali hydrolysable N, 38.52 mg 
kg-1 Olsen-P, and 85.37 mg kg-1 exchangeable K. The soil was then watered to 5 L at the same rate of natural soil 
compaction (1.40 g cm-3). Each container was filled with 11 kg of soil. Aftertheseedlings weresowed in each 
container, an additional 1 kg of soil was used to cover them. The experiments were conducted without biotic 
stresses, and all the weeds were removed by hand. 

2.2 Experimental Design 

The experiments were based on a randomized split-plot design. The waterlogging and control treatments were 
primary plots, and the subplots were the three wheat cultivars from different decades. There were 6 treatments 
with 12 replicates. Thirteen seeds per pot were sown at a depth of 2-3 cm on November 3, 2014. Seedlings were 
then thinned to 10 plants per pot after germination (Zadoks growth stage GS11). Waterlogging treatments were 
applied for 10 days from November 20 (GS12) to November 30 (GS14). After waterlogging, seedling recovery 
conditions were observed for 20 days, and the seedling were then harvested on December 20 (GS15).  

The pots were placed into larger containers (98 cm × 76 cm × 67 cm) with a 0-2 cm layer of water above the 
surface of each pot during the entire period of the waterlogging treatment as described be de San Celedonio et al. 
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(2014). After the waterlogging treatment, the pots were retrieved from the containers and then placed in the field. 
The pots were allowed to drain freely before normal irrigation was reinstated. The control pots, from sowing to 
harvest, and the waterlogging pots before and after treatment were maintained at 80% of field capacity through 
irrigation (Bao, 2007). Volumetric soil water content of a 0-10 cm-layer of each pot was continuously monitored 
using a soil moisture-measuring instrument (TZS-1K, TOP Instrument, China). Irrigation was applied when 
necessary. 
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Figure 1. The daily mean, maximum, and minimum temperature and precipitation (A), and sunshine hours (B) 
during the experiment  

Note. WB and WE denote waterlogging treatment beginning and ending, respectively. 

 

2.3 Sampling and Measurements 

The morphology and the growth conditions of the seedlings were measured four times after the waterlogging 
treatment and after a 20-day recovery phase. Ten whole plants per pot, including the shoots and roots, were 
harvested and washed to determine the number of tillers per plant, number of adventitious roots per plant, and 
seedling height. The leaf stage of the mainstem was calculatedaccording to Haun (1973), where,  

Leaf stage = Number of visible leaves on the mainstem + (Length of youngest visible leaf/Length of second – 
Youngest visible leaf) 

Plants were divided into shoots (the visible leaf blade and stem) and roots. The leaf area was measured using a 
portable area meter (LI-3000C, LI-COR Inc., USA).  

The dry weight of each component was determined after drying at 70 ºC to constant weight. Parameters for the 
morphology and growth condition of the seedlings were calculated as follows: 

Specific leaf dry weight (mg cm-2) = Leaf dry weight (mg plant-1)/Leaf area (cm2 plant-1) 

Root/shoot ratio = Root dry weight (mg plant-1)/Shoot dry weight (mg plant-1) 

2.4 Statistical Analysis 

Each variable was subjected to two-way analysis of variance (ANOVA) under a split-plot design using a 
statistical package (DPS 7.05). Treatment mean differences were separated by the least significant difference in a 
significant level of 0.05 test. To assess the difference among the cultivars of each treatment, the percentage 
change of the seedling growth traitsunder waterlogging condition in comparison with that of the control were 
calculated.  

3. Results 
3.1 Leaf Stage 

As shown in Tables 1 and 2, the leaf stage of the waterlogged wheat was significantly lower than that of the 
non-waterlogged control plantby up to 5%, but the former quickly recovered after 20 days. No significant 
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differences among the cultivars were observed, and no interaction between the waterlogging treatments and the 
cultivars was apparent. 

3.2 Tillers and Adventitious Roots per Plant 

The number of tillers per plant of the waterlogged wheat was significantly reduced by approximately 6% after 
waterlogging and approximately 18% after recovery (Tables 1 and 2). Significant differences were found among 
the three cultivars from different decades. Cultivar Yangmai 1 had the highest number of tillers per plant after 
waterlogging, but it had the lowest number of tillers per plant after recovery, demonstrating that the tiller 
occurrence in Yangmai 1 was the slowest during the recovery phase. During the waterlogging treatment, 
Yangmai 1 showed the highest percentage decrease in the number of tillers per plant after both the waterlogging 
and the recovery relative to the other cultivars.  

Waterlogging significantly decreased the number of adventitious roots per plant by approximately 15% after 
waterlogging and approximately 13% after recovery (Tables 1 and 2). Significant differences in the number of 
adventitious roots per plant were found among the cultivars. The number of adventitious roots per plant was 
highest in Yangfumai 4, and its percentage decrease in the same cultivar was lowest after both the waterlogging 
and the recovery. 

 

Table 1. Analysis of variance forseedling growth traits after waterlogging and recovery 

Seedling growth traits 

Source of variation 

After waterlogging After recovery 

T C T×C T C T×C 

Leaf stage 67.69* 0.01ns 0.01ns 7.56ns 0.05ns 0.05ns 

Number of tillers per plant 16.30* 30.92** 1.01ns 68.15* 88.45** 17.77** 

Number of adventitious roots per plant 51.56* 252.40** 0.06ns 26.33* 136.36** 0.04ns 

Seedling height (cm) 20.61* 34.46** 0.22ns 2.32ns 74.68** 0.36ns 

Leaf area (cm2 plant-1) 60.82* 31.32** 0.79ns 124.71** 7.29* 1.45ns 

Specific leaf dry weight (mg cm-2) 29.33* 2.79ns 1.39ns 41.43* 5.71* 1.12ns 

Shoot dry weight (mg plant-1) 2084.46** 168.80** 2.34ns 18.81* 73.24** 10.10** 

Root dry weight (mg plant-1) 180.06** 591.06** 63.21** 921.73** 60.58** 14.44** 

Root/shoot ratio 129.56** 10.50** 2.79ns 6.95ns 3.71ns 0.32ns 

Note. T = waterlogging treatments; C = cultivars; * = Significant difference at P ≤ 0.05; ** = Significant 
difference at P ≤ 0.01; ns = significant difference. The number indicates F value.  

 

Table 2. Effect of waterlogging treatments on the leaf stage, number of tillers per plant, and number of 
adventitious roots per plant of different cultivars 

Treatments Cultivars 
Leaf stage 

Number of tillers  
per plant 

Number of adventitious
roots per plant 

AW AR AW AR AW AR 

Control Yangmai 1 4.00 5.20 1.80 2.80 1.27 3.10 

Yangmai 158 4.00 5.20 1.50 3.00 1.64 3.92 

Yangfumai 4 4.00 5.20 1.50 2.93 2.02 4.22 

Waterlogging Yangmai 1 3.83 5.10 1.70 2.30 1.08 2.73 

Yangmai 158 3.80 5.15 1.47 2.62 1.42 3.51 

Yangfumai 4 3.80 5.16 1.49 2.71 1.84 3.91 

L.S.D. (p = 0.05) 0.53 0.79 0.19 0.15 0.29 0.58 

Note. AW = measurement after waterlogging; AR = measurement after recovery; L.S.D. = least significant 
difference. 

 

3.3 Seedling Height 

The seedling height of the waterlogged wheat was significantly lower than that of the non-waterlogged wheat by 
approximately6%, but no significant difference between their seedling heights was observedafter recovery 
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(Tables 1 and 3). Significant differences were present among cultivars. Yangfumai 4 had the shortest seedling 
height and the lowest percentage decrease in seedling height. No significant interactions between the treatments 
and the cultivars were apparent. 

3.4 Leaf Area and Specific Leaf Dry Weight 

The leaf area of the waterlogged wheat was significantly lower than that of the control plants by approximately 
10% after waterlogging and approximately 11% after recovery. Specific leaf dry weight of the waterlogged 
wheat was significantly lower than that of the control plants by approximately 8% after waterlogging and 
approximately 11% after recovery (Tables 1 and 3). Significant differences among the three cultivars were 
observed with regard to leaf area and specific leaf dry weight after treatment and leaf area after recovery except 
specific leaf dry weight after waterlogging. Yangfumai 4 showed the lowest leaf area and the greatest specific 
leaf dry weight among the cultivars. Furthermore, Yangfumai 4 had the lowest percentage decrease in leaf area 
and specific leaf dry weight both after waterlogging and after recovery. No significant interactions between the 
treatments and the cultivars in terms of leaf area and specific leaf dry weight were observed.  

 

Table 3. Effect of waterlogging treatments on seedling height, leaf area, and specific leaf dry weight of different 
cultivars 

Treatments Cultivars 
Seedling height (cm) Leaf area (cm2 plant-1) Specific leaf dry weight (mg cm-2)

AW AR AW AR AW AR 

Control Yangmai 1 18.62 19.21 18.83 26.28 2.56 2.08 

Yangmai 158 18.01 18.92 15.78 26.09 2.67 2.15 

Yangfumai 4 15.34 16.24 14.01 24.13 2.72 2.22 

Waterlogging Yangmai 1 17.70 18.53 17.30 23.64 2.35 1.90 

Yangmai 158 16.88 18.05 14.14 23.23 2.52 2.02 

Yangfumai 4 14.75 15.75 13.64 22.57 2.74 2.09 

L.S.D. (p = 0.05) 2.04 2.06 2.60 3.12 0.22 0.27 

Note. AW = measurement after waterlogging; AR = measurement after recovery; L.S.D. = least significant 
difference. 

 

3.5 Shoot and Root Dry Matter and Root/Shoot Ratio 

The shoot dry weight, root dry weight, and root/shoot ratio of the waterlogged wheat was lower by 
approximately 10%, 32%, and 24%, respectively, than those of the non-waterlogged wheat after waterlogging, 
and approximately 19%, 25%, and 9%, respectively, after recovery (Table 4). Significant differences were 
observed among the different treatments and cultivars, except for the root/shoot ratio after recovery (Table 1). 
Among the cultivars, Yangfumai 4 showed the lowest shoot and root dry weight after waterlogging, though 
significant differences was not observed between the root dry weight of Yangmai 158 and that of Yangfumai 4 
under waterlogging. After recovery, however, Yangmai 1 had the lowest shoot and root dry weight, and 
significant differences were not observed between Yangmai 158 and Yangfumai 4. The lowest root/shoot ratio 
was observed in Yangmai 158 after waterlogging, and in Yangfumai 4 after recovery. Yangfumai 4 also 
demonstrated the lowest percentage decrease in root dry weight and root/shoot ratio both after waterlogging and 
after recovery.  

4. Discussion 
Previous studies reported that after seedling waterlogging, the number of adventitious roots and tillers formed 
per plant decreased, and the length, surface area, and nitrogen concentration of leaves, as well as the root and 
shoot dry weight and root/shoot ratio, were reduced (Malik et al., 2002; Robertson et al., 2009; Haque, 2012; 
Shao et al., 2013; Tıryakıoğlu et al., 2015). The present study showed that seedling waterlogging from GS12 to 
GS14 significantly disrupted the leaf stage growth and decreased the number of tillers per plant, number of 
adventitious roots per plant, seedling height, leaf area, specific leaf dry weight, shoot dry weight, root dry weight, 
and root/shoot ratio (Tables 1, 2, 3, and 4). Our results were similar to those of the previous studied although we 
used different environments, cultivars, and waterlogging methods. As indicated in Table 4, the decrease 
percentage in the dry weight was higher in the roots compared to that in the shoots. This finding implies that 
waterlogging has a much considerable effect on root development versus shoot development. In a previous study, 
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the decrease in the relative growth rate of the roots was observed to be higher than that of the shoots during 
waterlogging (Malik et al., 2001).  

 

Table 4. Effect of waterlogging treatments on shoot dry weight, root dry weight, and root/shoot ratio of different 
cultivars 

Treatments Cultivars 
Shoot dry weight (mg plant-1) Root dry weight (mg plant-1)  Root/shoot ratio 

AW AR AW AR  AW AR 

Control Yangmai 1 83.33 221.48 68.51 121.23  0.82 0.55 

Yangmai 158 64.41 248.26 45.43 134.71  0.70 0.54 

Yangfumai 4 55.07 240.64 39.07 123.75  0.71 0.51 

Waterlogging Yangmai 1 74.68 180.61 46.33 90.39  0.62 0.50 

Yangmai 158 60.53 228.30 32.87 113.30  0.54 0.50 

Yangfumai 4 52.20 229.54 31.92 111.02  0.61 0.48 

L.S.D. (p = 0.05) 5.52 17.74 5.56 11.62  0.06 0.04 

Note. AW = measurement after waterlogging; AR = measurement after recovery; L.S.D. = least significant 
difference. 

 
After a 20-day recovery phase, no significant reduction in the leaf stage, seedling height, and root/shoot ratio 
between the two treatments (Table 1). However, the number of tillers and adventitious roots per plant, leaf area, 
specific leaf dry weight, and shoot and root dry weight were significantly reduced (Tables 1, 2, 3, and 4). 
Robertson et al. (2009) observed that waterlogging considerably inhibited the growth of the primary tillers 
anddelayed the productionof new tillers, thoughit did not affect the nitrogen concentration of the youngest 
expanded leaf after recovery. Shao et al. (2013) found that photosynthetic rate and transpiration rapidly returned 
to control levels after the soil was drained. However, Malik et al. (2001) demonstrated that the growth rates of 
the shoots and roots in intensified waterlogged treatments only partially recovered after a 14-day recovery period. 
In 2002, Malik et al. then found that the shoot mass remained significantly lower because of the waterlogging 
treatments after a 25-day recovery period. These results clearly demonstrated that seedling growth can not 
recover to control levels after a short-term recovery period, though some physiological trails can recover. Our 
results were consistent with their experimental results. In addition, whether grain yield is substantially reduced 
because of seedling waterlogging remains controversial (Dickin et al., 2009; Wu et al., 2015). Further research is 
thus necessary to determine the effects of seedling waterlogging on wheat yield in the YR.  

The researchers from the previous studies focused on the effects of genetic improvements on grain yield and the 
correlated characteristics of wheat (Fischer et al., 1998; Tian et al., 2011). They rarely investigated differences 
among the seedling growths. This study showed significant differences among the seedling growths of the three 
wheat cultivars grown in different decades (Table 1). The modern cultivar Yangmai 4 showed the highest number 
of adventitious roots per plant and the largest specific leaf dry weight, but it had the lowest seedling height, leaf 
area, and shoot and root dry weight (Tables 2, 3, and 4). Notably, Yangmai 4 had the lowest percentage decrease 
in all these parameters both after waterlogging and after recovery, demonstrating that it had the highest 
waterlogging resistance. Huang et al. (1997) reported that the effects of hypoxia on shoot and root growth were 
more substantial in waterlogging-sensitive cultivars because they had a relatively slow recovery. However, D. K. 
Singh and V. Singh (2003) reported that the degree of waterlogging tolerance, which was expressed as the 
percentage growth rate under waterlogged conditions relative to the non-waterlogged control conditions, can not 
actually reflect the waterlogging resistance of different cultivars. Thus, the evaluation of the waterlogging 
resistance of the additional cultivars grown in the YR requires other methods.  

Ourresults suggest that improvement in the number of adventitious roots per plant and specific leaf dry weight 
may be correlated with increased waterlogging resistance. Hayashi et al. (2013) showed that root length density 
is related to the maintenance of water uptake, photosynthesis, and yield production in common wheat grown 
under waterlogged conditions. Chakraborty et al. (2008) considered that relatively high specific leaf dry weight 
indicates healthy biomass, and can further promote photosynthesis. Furthermore, multiple waterlogging 
resistance traits have been proposed, such as high carbohydrate status, aerenchyma formation in roots, and 
suitable root system architecture (Huang & Johnson, 1995; Dickin & Wright, 2008; Haque et al., 2012; Hayashi 
et al., 2013). Further research is thus necessary to investigate the waterlogging response of wheat cultivars at 
other growth stages. 
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