
Journal of Agricultural Science; Vol. 9, No. 4; 2017 
ISSN 1916-9752 E-ISSN 1916-9760 

Published by Canadian Center of Science and Education 

164 

Genetic Diversity of Moroccan Orobanche crenata Populations 
Revealed by Sequence-Related Amplified Polymorphism Markers 

Mounia Ennami1,2, Fatima Zahra Briache1, Joseph Mbasani Mansi1, Fatima Gaboun1, Lamiae Ghaouti2, 
Loubna Belqadi2 & Rachid Mentag1

 

1 National Institute of Agricultural Research (INRA), CRRA, Biotechnology Unit, Rabat, Morocco 
2 Agronomic and Veterinary Institute Hassan II (IAV), Production, Protection and Plant Biotechnology 
Department, Rabat, Morocco 

Correspondence: Rachid Mentag, National Institute of Agricultural Research (INRA), CRRA, Biotechnology 
Unit-Rabat, Morocco. Tel: 212-661-558-622. E-mail: rachidmentag@yahoo.ca 

 

Received: January 10, 2017      Accepted: February 24, 2017      Online Published: March 15, 2017 

doi:10.5539/jas.v9n4p164          URL: https://doi.org/10.5539/jas.v9n4p164 

 
The research is financed by INRA-Morocco, MAPM; MESRSFC; and ARIMNet “Medileg Project”. 
 
Abstract 
Orobanche crenata Forsk. is a root holoparasitic plant that affects legume species in Mediterranean basin 
especially in Northern Africa. This parasitic weed is particularly problematic in faba bean (Vicia faba L.) and 
lentil (Lens culinaris Medik.) fields. In Morocco, development of legume resistant/tolerant genotypes is 
considered the most economical and ecological control strategy against O. crenata. Efficient selection of 
resistant/tolerant cultivars requires prerequisite knowledge of the genetic diversity of the parasite. Thus, the 
present study focused on the assessment of the genetic diversity among and within Moroccan O. crenata 
populations, growing in faba bean fields, using Sequence-Related Amplified Polymorphism markers (SRAP). 
This marker system proved to be a powerful and an efficient tool for the evaluation of the genetic diversity 
among O. crenata populations. In fact, a total of 101 markers were identified and used for the Analysis of 
Molecular Variance (AMOVA), among which 98 bands were polymorphic (97.02%), indicating considerable 
genetic variation of these O. crenata populations. However, at population level, low level of polymorphic loci 
was observed with a percentage ranging between 41.58% and 67.33%. The Jaccard’s similarity coefficient and 
Principal Coordinate Analysis (PCoA) showed a clear differentiation among O. crenata samples according to the 
geographical origin of each population. AMOVA analysis revealed also a large extent of variation among O. 
crenata populations (60%; p < 0.010). Our outputs on molecular genetics of O. crenata combined with future 
epidemiological studies of these populations should clarify occurrence of O. crenata pathotypes and thereby 
validate the relevance of using multisite screening trials during breeding programs. 

Keywords: Orobanche crenata, genetic diversity, SRAP markers, AMOVA, geographic origin, population 
structure 

1. Introduction 

Faba bean (Vicia faba L.) is one of the most important legumes worldwide. According to Food and Agriculture 
Organization (2015), it is grown in 58 countries, from temperate, tropical to hot and arid conditions. Faba bean is 
used as a source of protein and minerals in human diet and as a feed crop for animals (Crépon et al., 2010). 
Furthermore, it provides an important added value on agriculture, improving fertility and soil structure for 
sustainable yield crop (Herridge, Peoples, & Boddey, 2008). 

In 2014, the world production of dry seeds reached 4.3 Million tons (Mt) from a total cultivated area of 2.3 
Million hectares (Mha) (Food and Agriculture Organization Statistical [FAOSTAT], 2015). Mainland China, is 
the leading country with a production of 1.595 Mt, followed by Ethiopia (0.838 Mt), Australia (0.308 Mt), 
France (0.278 Mt), and Morocco (0.166 Mt) (FAOSTAT, 2015). Despite its importance, the area allocated to this 
legume species has been reduced in many countries (FAOSTAT, 2015). In Morocco, the cultivated area of faba 
bean has been reduced from a total of 5.70 Mha between 1980-1990 to 2.32 Mha between 2004-2014 (FAOSTAT, 
2015). This yield instability was due mainly to biotic and abiotic constraints (Miguel, Nicolas, Elena, Rubiales, 
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& Karam, 2006; Rubiales et al., 2005). The most damaging of these stresses is Orobanche crenata Forsk. 
(Westwood, Yoder, Timko, & dePamphilis, 2010), this parasitic weed can cause losses in may reach 90% of 
Morocco’s crop production (Torres et al., 2006; Ennami et al., 2017). It connects to the host’s root system from 
which it extracts micronutrients needs (Joel et al., 2007). O. crenata was considered among the seven noxious 
pests of economically important crops in the world (Parker, 2009). A number of strategies of root parasitic weed 
control have been developed and employed. Unfortunately, most of them have been unfeasible, uneconomical, 
hard to achieve, or have resulted in incomplete protection (Rubiales et al., 2009). The most feasible approach for 
controlling damage caused by these parasitic weed is the development of resistant genotypes (Ter Borg et al., 
1994). However, the emergence of new Orobanche crenata populations could overcome host resistance (Verkleij 
& Pieterse, 1991), which is an ongoing challenge for breeding (Rubiales et al., 2009). Thus, the genetic 
variability of parasites should be considered. Some authors (Dybdahl & Lively, 1996; Thompson, 1994) have 
suggested that knowledge of the population structure of both the parasite and its host is necessary to fully 
understand the evolution of these pathosystems. Over the years, the study tools of genetic variation among 
Orobanche have progressed gradually from morphological and agronomic traits to molecular analysis (Román, 
Rubiales, Torres, Cubero, & Satovic, 2001). Thus, several techniques based on DNA analysis were used, such as 
random amplified polymorphic DNA (RAPD) (Román, Rubiales, Torres, Cubero, & Satovic, 2001), inter simple 
sequence repeat (ISSR) (Román et al., 2002; Westwood & Fagg, 2004), amplified fragment length 
polymorphism (AFLP) (Gagne et al., 2000), and simple sequence repeat (SSR) markers (Pineda-Martos et al., 
2014). Moreover, Sequence-Related Amplified Polymorphism (SRAP markers) is a simple and efficient 
molecular marker system, more reproducible than RAPDs ISSR, and SSR markers (Budak et al., 2004; Liu et al., 
2008; Liu et al., 2006) and easier to assay than AFLPs (Ferriol et al., 2003). This technique is based on open 
reading frames (ORFs) using two primers (forward and reverse) for amplification. It was developed and 
demonstrated by (Li & Quiros, 2001) in Brassica oleracea. The SRAP technique was very useful for the 
assessment of genetic diversity because it presents many merits over the other marker systems (Aneja, Yadav, 
Chawla, & Yadav, 2012). It was used in assessing genetic diversity in many species , including lentil (Rana, 
Singh, & Bhat, 2009), pea (Esposito, Martin, Cravero, & Cointry, 2007), Alfalfa (Al-Faifi et al., 2013; 
Castonguay, Cloutier, Bertrand, Michaud, & Laberge, 2010), mungbean (Aneja, 2010), quigke (Yang, Liu, Yang, 
& Feng, 2015), broccoli (Yu, Zhao, Sheng, Wang, & Gu, 2013), etc. 

In Morocco, no information is available on the genetic structure of Moroccan O. crenata populations. Also, as no 
attempts using SRAP targeting ORFs as function regions to characterize O. crenata populations have yet been 
undertaken. The present study is aiming to assess levels of genetic diversity at the molecular level using SRAP 
markers of O. crenata populations on faba bean fields from seven regions in Morocco.  

2. Materials and Methods 

2.1 Plant Material 

A total of 162 plants (spikes) from seven O. crenata populations were collected during spring of 2014. Spikes of 
O. crenata populations were sampled from seven highly infested regions of Morocco (Taza, Taounate, Fez, 
Meknes, Khemissat, Benslimane, and Settat) (Figure 1). In each region, samples were collected from faba bean 
fields. Each population consisted about twenty-three O. crenata mature plants. The number of O. crenata plants 
analyzed per population depending on the availability of specimens found in the screened fields. 
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Figure 1. 
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2.4 Statistical Analyses 

The amplification profile for each primer combination was scored according to present (1) or absent (0) of 
homologous bands to create a binary matrix of the different SRAP phenotypes. Only bands that were 
reproducible and could be scored unambiguously across all individuals were included in the analysis.  

The Polymorphism Information Content values (PICv) were calculated for the most produced primer 
combinations, using the formula:  

PIC value	=	1 – ∑ pi2n
i	=	1                                  (1) 

Where, pi is the frequency of the ith allele (Smith et al., 1997). 

Using Gen AlEx ver. 6.5, levels of genetic diversity within and between each population were measured by 
calculating: expected heterozygosity, percentage of polymorphic loci, pairwise distance matrices, and pairwise 
genetic distances. The number of permutations for significant testing was set at 1000 for analysis. Analysis of 
molecular variance (AMOVA) based on PhiPT values was carried out using the same program, to calculates 
Fixation index (FST) analogue (PhiPT = AP/(WP + AP) = AP/TOT with AP = Est. Var. Among Populations, WP = 
Est. Var. Within Populations), which estimates variation among and within populations. These values can range 
between 0 (no differentiation) and 1 (complete differentiation).  

In addition, to assess genetic relationships among populations, the matrix of inter-individual Dice’s distance 
coefficients (Nei & Li, 1979) was used for a principal coordinate analysis (PCoA). Finally, Jaccard’s similarity 
coefficient was estimated using XLSTAT 5.14 software, UPGMA (un-weighted pair-group method with 
arithmetic average) was performed and a dendrogram was derived from the tree option. 

3. Results 
3.1 Variation for SRAP Markers 

The objective of the study was to determine the genetic relationships among 162 Moroccan O. crenata 
populations from different regions using SRAP analysis. Among thirty primer combinations tested, only six 
(F3R4, F4R2, F4R3, F4R6, F5R3, F5R5) generated robust and reproducible amplification products. The number 
of polymorphic fragments detected by each primer combinations varied from 13 bands (F4R2) to 26 bands 
(F4R3), and fragments sizes ranged between 50 bp to 2000 bp. A total of 101 bands amplified were scored, 3 
were monomorphic, and 98 bands were Polymorphic, discriminating therefore between the seven analyzed O. 
crenata populations. The average number of total bands and polymorphic bands per primer were 16.83 and 16.33, 
respectively. Three of the SRAP primer combinations analyzed (F4R3, F4R6, and F5R3) yielded 100% 
polymorphic bands. On the other hand, the minimum proportion of polymorphic bands (92.30%) was obtained 
by F4R2 (Table 2).  

In order to measure the efficiency of polymorphic loci for detecting the genetic diversity among the studied 
populations, the PICv was calculated. For the 6 primer combinations, PICv ranged from 0.91 (F4R2) to 0.98 
(F4R3, F4R6, and F5R3) with an average of 0.95 (Table 2). 
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Table 2. Polymorphism number and rate and PIC values of six SRAP primers pairs used to amplify 162 genomic 
DNA templates of seven Moroccan O. crenata populations 

SRAP Primers Sequence (5′-3′) 
Number of  
total fragments

Number of  
polymorphic bands

Polymorphism (%) PIC values 

F4R3 F-TGAGTCCAAACCGGACC 26 26 100 0.98 

R-GACTGCGTACGAATTGAC

F4R6 F-TGAGTCCAAACCGGACC 18 18 100 0.98 

R-GACTGCGTACGAATTGCA

F5R5 F-TGAGTCCAAACCGGAAG 14 13 92.85 0.94 

R-GACTGCGTACGAATTAAC

F3R4 F-TGAGTCCAAACCGGAAT 15 14 93.33 0.96 

R- GACTGCGTACGAATTTGA

F4R2 F- TGAGTCCAAACCGGACC 13 12 92.30 0.91 

R- GACTGCGTACGAATTTGC

F5R3 F-TGAGTCCAAACCGGAAG 15 15 100 0.98 

R-GACTGCGTACGAATTGAC

Average 16.83 16.33 96.41 0.95 

Total 101 98 - - 

Note. F: forward of SRAP primers; R: reverse of SRAP primers. 

 

3.2 Genetic Diversity 

The SRAP marker analysis of the seven O. crenata populations revealed a high level of genetic variation with 
97.02% of polymorphic bands. Nevertheless, a low genetic diversity within populations was shown with a 
variation ranging from 41.58% to 67.33%. The mean percentage of polymorphic loci was 53.18%. At the 
intra-population levels, the highest percentage of polymorphism was found in Taounate population, whereas the 
lowest value was that of Meknes population (Table 3). The diversity analysis within the populations using 
Shannon’s index (I) as well as the expected heterozygosity (He) ranked the populations based on their region of 
origin from the most diverse to the least diverse as follows of Taounate, Benslimane, Khemissat, Taza, Meknes, 
Fez, and Settat region, with an average of 0.238 (I) and 0.154 (He) respectively. The estimated allele frequency 
with number of different alleles (Na) of Taounate population was the highest (1.574) and that of Meknes and Fez 
populations was the lowest (1.307). For the estimated allele frequency with number of effective alleles (Ne), the 
Taounate population was the highest one (1.323) and the Settat population was the lowest one (1.144) (Table 3). 

 

Table 3. Summary of molecular data of SRAP primer combinations used for O. crenata populations from seven 
regions of Morocco 

Populations P (%) N Na (±SE) Ne (±SE) I (±SE) He (±SE) 

Taounate 67.33% 30 1.574(0.067) 1.323(0.035) 0.302(0.026) 0.196(0.019) 

Taza 52.48% 24 1.327(0.078) 1.295(0.038) 0.255(0.028) 0.169(0.020) 

Settat 43.56% 24 1.109(0.087) 1.144(0.025) 0.156(0.022) 0.095(0.014) 

Benslimane 63.37% 16 1.525(0.068) 1.289(0.031) 0.287(0.025) 0.184(0.017) 

Khemissat 57.43% 19 1.485(0.065) 1.303(0.034) 0.281(0.027) 0.184(0.019) 

Meknes 41.58% 25 1.307(0.066) 1.228(0.033) 0.207(0.027) 0.137(0.018) 

Fez 46.53% 24 1.307(0.073) 1.168(0.025) 0.180(0.023) 0.112(0.015) 

Average 53.18% 23.143 1.376(0.028) 1.250(0.012) 0.238(0.010) 0.154(0.007) 

Note. P (%) = percentage of polymorphic loci; N = number of individuals; Na = number of different alleles; Ne = 
number of effective alleles; I = Shannon’s diversity index; He = expected heterozygosity. 

 

3.3 Genetic Structure of Global O. crenata Populations Based on Geographic Origin 

Genetic differentiation between populations was relatively high, and all populations were significantly different 
(P < 0.05; Table 4). Genetic distance and identity coefficient were calculated by the method (Nei, 1972). These 
values were practically high with the mean genetic identities among populations varying from 0.553 to 0.806. 
Considering the genetic distance, the values ranged from 0.216 to 0.592. Genetic identity and genetic distance 
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among the seven regions demonstrated that the Benslimane and Taza population pair had the highest genetic 
similarity (0.806) and the lowest genetic distance (0.216; P = 0.377), while Meknes and Benslimane had the least 
similarity (0.553) and the highest genetic distance (0.592; P = 0.628) (Table 5).  

 

Table 4. Paiwise population matrix of average differentiation among O. crenata populations from Taounate, 
Benslimane, Khemissat, Taza, Meknes, Fez, and Settat regions 

Taounate Taza Settat Benslimane Khemissat Meknes Fez 

Taounate **** 

Taza 0.566 **** 

Settat 0.552 0.604 **** 

Benslimane 0.486 0.377 0.573 **** 

Khemissat 0.530 0.587 0.644 0.496 **** 

Meknes 0.607 0.645 0.719 0.628 0.592 **** 

Fez 0.629 0.612 0.704 0.572 0.626 0.613 **** 

Note. Number values based on 1000 permutations. 

 

Table 5. Pairwise comparison matrix of Nei genetic identity (Above diagonal) and Nei genetic distance (Below 
diagonal) for O. crenata populations from Taounate, Benslimane, Khemissat, Taza, Meknes, Fez, and Settat 
regions based on their geographic origin 

 Taounate Taza Settat Benslimane Khemissat Meknes Fez 

Taounate **** 0.652 0.713 0.709 0.651 0.570 0.584 

Taza 0.428 **** 0.679 0.806 0.619 0.603 0.641 

Settat 0.338 0.386 **** 0.700 0.633 0.565 0.588 

Benslimane 0.344 0.216 0.357 **** 0.687 0.553 0.658 

Khemissat 0.429 0.480 0.457 0.375 **** 0.636 0.619 

Meknes 0.563 0.507 0.572 0.592 0.452 **** 0.698 

Fez 0.537 0.444 0.532 0.419 0.480 0.359 **** 

 

Analysis of Molecular Variance (AMOVA) was used to evaluate diversity structure between the seven O. crenata 
populations (Table 6). Considerable internal variation was observed within O. crenata populations (60%). 
Furthermore, significant divergence (40%; Ø = 0.597; p = 0.010) among the seven populations was also 
detected. 

 

Table 6. Analysis of molecular variation (AMOVA) for O. crenata population from seven regions 

Source of variation Df SS MS Est. Var. % PhiPT P 

Among populations 6 1964.500 327.417 13.819 60% 0.597 < 0.001 

Within populations 155 1445.426 9.325 9.325 40%  < 0.001 

Total  161 3410.926 23.144 100   

Note. Df = degree of freedom; SS = Sums of squares; MS = mean squares; Est. var = estimate of variance; % = 
percentage of total variation; PhiPT = Phi-statistics probability level after 1000 permutations; P = is based on 
1000 permutation. 

 

3.4 Cluster Analysis 

The data obtained from SRAP analysis of 162 O. crenata samples was used in the frame of a cluster analysis. 
The estimated Jaccard’s differences between O. crenata populations varied from 0 to 0.996 (p = 0.001) between 
different pairs of individuals and the UPGMA method showed a good fit to the matrix on which it was based. 
UPGMA separated O. crenata populations into three main clusters: The first group encompassed the populations 
from North-central area including Fes, Meknes, Khemissat, and six samples of the Benslimane region. The 
second group consisted on 2 populations (Taounate and Settat populations). The third group included Taza 
population and the rest of the Benslimane population (10 samples). In this dendrogram, most samples formed 
clusters according to the the geographical scope (Figure 2).  
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Figure 2. UPGMA cluster analysis of SRAP data for all O. crenata individuals sampled (Tn: Taounate, Tz: Taza, 
St: Settat, Bs: Benslimane, Km: Khemissat, Mk: Meknes, and Fs: Fez) 
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proportion of variability were reported among O. cumana populations from Eastern Bulgaria (Pineda-Martos et 
al., 2014) and among Cuscuta campestris populations from Iran (Tajdoost, Khavari-Nejad, Meighani, Zand, & 
Noormohammadi, 2013) with 53.6% and 81%, respectively. In fact, population genetic structure is affected by a 
number of evolutionary factors including gene flow, seed dispersal, and mode of reproduction (Tajdoost, 
Khavari-Nejad, Meighani, Zand, & Noormohammadi, 2013). At the opposite, (Román, Rubiales, Torres, 
CuberoI, & Satovic, 2001) based on the RAPD markers, found high intra-population variability (94%) within six 
southern Spain O. crenata populations. Furthermore, our previous study on genetic diversity, using RAPD 
markers, within six O. crenata populations collected from faba bean and lentil fields in three highly infested 
regions of Morocco (Taza, Meknes and Settat) showed 81% and 82% of intra-population variability respectively 
(Ennami et al., 2017). These dissimilarities between our current study and former RAPD analysis may be due to 
the type of markers used. In fact, previous studies reported the presence of artifactual bands (false positives and 
false negatives) on RAPD markers. This may seriously restrict the reliability of this marker for genetic diversity 
studies (Semagn, Bjornstad, & Ndjiondjop 2006; Li & Quiros, 2001). At the opposite, SRAP results seam more 
trustworthy, as they have the highest average discriminating power among the four systems AFLP, SSR, ISSR, 
and RAPD (Budak, Shearman, Parmaksiz, Gaussoin, & Riosdan, 2004). Furthermore, SRAP markers have the 
asset to amplify coding regions of the genome with primers targeting ORFs, elucidating therefore regions with 
inherent biological significance (Robarts, & Wolfe, 2014). 

5. Conclusions 
In this study, SRAP markers revealed sufficient polymorphism and provided adequate information for the 
assessment of genetic diversity of O. crenata populations. In fact, AMOVA of this parasitic weed showed a high 
level of inter-population variation (60%; p < 0.010). Furthermore, cluster analysis illustrated a clear 
differentiation among O. crenata samples according to the geographical origin. These results may suggest the 
existence of pathovars. Further epidemiological studies of these seven O. crenata populations should clarify 
occurrence of O. crenata pathotypes. In this case, multisite screening trials during breeding programs should be 
considered for the development of faba bean resistant/tolerant genotypes. 
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