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Abstract 

Lactic acid bacteria produce several exopolysaccharides (EPS) that may have antimicrobial action and/or induce 
defense responses in plants. This work aims to evaluate the potential of EPS produced by Lactobacillus 
plantarum in the protection of tomato plants against bacterial spot caused by Xanthomonas gardneri, as well as 
to predict the possible mechanisms of action. The EPS were characterized through FTIR and applied at 0; 0.5; 
1.5 and 3.0 mg mL-1 in tomato plants with five expanded leaves, followed by the pathogen inoculation after 3 or 
7 days. Antimicrobial activity of the biopolymer (1.5 or 10.0 mg mL-1) was evaluated in bioassay when EPS was 
incorporated into culture medium or embedded in antibiogram disk. The defense mechanisms i.e., total phenolic 
compounds and flavonoids content, phenylalanine ammonia-lyase (PAL), glutathione reductase (GR) and 
lipoxygenase (LOX) activities, were measured in tomato plants treated with EPS (1.5 mg mL-1), inoculated or 
not with X. gardneri. EPS reduced bacterial spot symptoms by up to 72.0% compared to the control. There were 
no direct effects of EPS on the in vitro growth of X. gardneri. The spectrophotometric profile, ascorbic and 
ellagic acid concentrations were change in tomato plants after EPS application, in plants challenged with the 
pathogen. Increases in PAL, GR and LOX activities were observed in plants treated with EPS. Thus, the 
application of L. plantarum exopolysaccharides can be considered as an effective alternative for controlling 
bacterial spot in tomato plants. This paper also discusses how these exopolysaccharides reduced the severity of 
the disease.  
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1. Introduction 

Tomatoes (Solanum lycopersicum) are very important for human nutrition because of its high levels of mineral 
salts, vitamins and soluble sugars (Raiola et al., 2014). This crop contributes economically because its chain 
production employs a great number of people, in conventional and organic food production (Dimitri & 
Oberholtzer, 2009; FAO, 2014). On the other hand, tomato plants are highly affected by several diseases that 
may restrict their yield, depending on the level of genetic resistance. In this sense, bacterial leaf spot caused by 
Xanthomonas sp. (X. euvesicatoria, X. gardneri, X. perforans and X. vesicatoria) is one of the major diseases 
affecting tomato plant growth, development and overall productivity (Jones et al., 2004; Quezado-Duval et al., 
2007).  

Bacterial leaf spot develops mainly in hot and rainy climate, since water favors the spread of the phytopathogen, 
as well as its infection and the colonization of plant tissues, reducing up to 50% of tomato crop yield 
(Quezado-Duval et al., 2007; Potnis et al., 2015). In favorable conditions, the progression of this disease is hard 
to control, even when specific strategies are adopted, e.g., the use of bacteria-free seeds or seedlings, the 
elimination of alternative hosts and the use of chemical control (Obradovic et al., 2004; Araujo et al., 2013; 
Potnis et al., 2015). Among the chemicals currently used for the pathogen control, antibiotics and copper-based 
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compounds have variable efficiency, impairing plant development, causing damages to the environment and 
selecting bacteria resistant to the active ingredient (Silva & Fay, 2006; Abbasi et al., 2014; Potnis et al., 2015).  

One alternative to the conventional control of plant diseases may reside in the induction of resistance, where 
elicitors are applied in plants to activate genes that promote the synthesis of defense compounds, as the enzyme 
phenylalanine ammonia-lyase - PAL (Tian et al., 2006; Ge et al., 2013; Ebrahim et al., 2011; Salazar et al., 2013). 
The PAL is the first enzyme activated in the phenylpropanoid pathway, being responsible to the deamination of 
L-phenylalanine, transforming it into trans-cinnamic acid and ammonia. The trans-cinnamic acid can then be 
incorporated in different phenolic compounds, which are present in the formation of esters, coumarins, 
flavonoids, lignins and salicylic acid, among others. For example, while salicylic acid is normally associated 
with the induction of resistance by acting as a signal, ellagic and ascorbic acid act as antioxidants, protecting cell 
against oxidative damage (Gao et al., 2015; Tian et al., 2006; Zhang & Zhou, 2010).  

Similarly to the phenolic compounds, glutathione is involved in the process of cell protection against oxidative 
damage, being considered as an oxidative stress biomarker, and found as reduced glutathione (GSH) and 
oxidized glutathione (GSSG). The reduction of GSSG to GSH occurs by the activity of glutathione reductase 
(GR), where the increase of enzymatic activity indicates that the plant is under some stress and that the 
“glutathione apparatus” will provide greater tolerance to oxidative stress (Sharma & Dubey, 2007; Sharma et al., 
2012). 

The jasmonic acid (JA) is also an important indicator related to stress, responsible to trigger several defense 
responses in plants, such as the synthesis of lipoxygenase (LOX). LOX is a key-enzyme that catalyzes the 
polyunsaturated fatty acids to hydro peroxides, resulting in reactive molecules, such as H2O2. The products of 
this pathway act in the plant development, in its defense against herbivores and pathogens, in detoxification 
reactions, among others (Feussner & Wasternack, 2002).  

In the search for compounds that can induce resistance and integrate the alternative control of plant diseases, 
polysaccharides such as β-glucans, chitins and chitosans present in the cell walls of fungi and yeasts, as well as 
exopolysaccharides (EPS) secreted by bacteria, are of interest because they are easily obtainable natural 
compounds (Wang et al., 2008; Mahapatra & Banerjee, 2013; Leemhuis et al., 2013). Furthermore, plants are 
genetically prepared to sense microbial molecular signatures, called microbe-associated molecular patterns 
(MAMPs), activating immune responses (Zhang & Zhou, 2010).  

In general, lactic acid bacteria produce a large variety of EPS whose physical-chemical properties are unique 
(Notararigo et al., 2013). Species of the genus Lactobacillus, particularly L. plantarum, have been reported as 
important probiotic agents, bringing several benefits to human health, being also generally recognized as safe 
(GRAS) by the USFDA (Laws et al., 2001), and non-toxic to the environment (Seo et al., 2015). 
Exopolysaccharides can be recognized by plants, triggering different responses of defense. Moreover, the 
bioprocess involved to their obtainment is generally cheap and generates low impact to the environment. In this 
sense, the use of a microbiological approach to induce resistance in plants has a strong technological appeal and 
a high commercial potential due to the possibility of an accurate control of the production process, resulting in a 
stable, standardized and high-quality raw materials that are easily extracted and that can bring environmental 
advantages (Baque et al., 2012; Huang & Mcdonald, 2009). In this study, we evaluated the efficacy of EPS 
extracted from L. plantarum to control bacterial spot and elicit defense mechanisms in tomato plants.  

2. Method 

2.1 Lactobacillus Strain, Growth Conditions and Extraction of Exopolysaccharides  
L. plantarum (CCT 0580, ATCC 8014) was obtained from André Tosello Tropical Culture Collection (Campinas, 
Brazil). The bacterial suspension was prepared by adding 2 mL of an initial inoculum stored in sterile glycerol 
2% into 20 mL of nutrient broth. Subsequently, the nutrient broth containing the inoculum was added into 200 
mL of bean curd whey (BCW, Tofutura Indústria de Alimentos Ltda). BCW was supplemented with glucose 
(11.5 g L-1), yeast extract (1 g L-1), sodium citrate (3 g L-1), Tween 80 (1 mL L-1), KH2PO4 (1 g L-1), K2HPO4 (1.4 
g L-1), MgSO4 (0.2 g L-1), MnSO4 (0.05 g L-1). Each step of the experiment was performed at 30 oC for 18 h. 
Furthermore, the production of L. plantarum EPS was performed in BCW in a 5-L airlift bioreactor. The 
production was conducted for 30 h and operated with a specific airflow rates, ranging from 0.2 to 1.3 vvm (air 
volume per medium volume per minute). Temperature and pH were automatically maintained (30 oC, pH 6.0). 
Polypropylene glycol (0.4 mL L-1) was used as an antifoaming agent.  

The resultant microbial biomass was separated from the culture medium by centrifugation (2000 rpm, 20 min), 
and the cell-free filtrate used to obtain the EPS through nanofiltration, condensation in a rotary-evaporator and 
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lyophilization (Camelini et al., 2013). The EPS were analyzed by FTIR spectroscopy (ABD Bomem Inc. FTLA 
2000), using KBr pellets. Protein content was determined by Bradford method, using BSA as reference.  

2.2 Xanthomonas Strain and Growth Conditions 

X. gardneri was provided by Sakata Seed Sudamerica LTDA and identified at the Centro Nacional de Pesquisa 
de Hortaliças (CNPH, EMBRAPA, Brazil) using BOX-PCR and the primer 5’-CTACGGCAAGGCGAC 
GCTGACG-3’. The bacteria were maintained at 25 °C in phosphate buffer (8.6 mM K2HPO4; 7.4 mM KH2PO4). 
Periodic subcultures were replicated in Nutrient Agar (NA) culture medium [Composition (g/L): meat peptone 
5.0; meat extract 3.0; agar 12.0] (Merck, Darmstadt, Germany) and the plates incubated at 25 °C, for 48 h. The 
bacterial suspension was obtained by adding distilled water to the growth medium and spreading them with the 
aid of Drigalski spatula. The concentration of the suspensions was adjusted to 0.6 (OD600nm) (Coqueiro & Di 
Piero, 2011; Luiz et al., 2012).  

2.3 Disease Severity Assay in Tomato Plants 

Commercial tomato seeds of Santa Cruz Kada cultivar (Paulista) were provided by Isla Sementes Ltda and sown 
in polystirene trays containing substrate Plantmax®. Fifteen days after sowing, two plants were transferred to 2 L 
pots, filled with organic compost. Every 15 days, 20 mL of a solution containing 4.0 g of urea and 3.8 mL of 
Eurofit® per liter of distilled water was added to each pot. The experiments were conducted inside a greenhouse. 

The EPS were sprayed on five-leaf tomato plants at the concentrations of 0.5, 1.5 and 3 mg mL-1, 3 days before 
the inoculation with X. gardneri. All leaves of each plant were sprayed with 10 mL of a suspension, using an 
HVLP paint gun (maximum pressure = 58 psi, 0.7 mm nozzle, manufactured by Grifo, Italy) coupled to an air 
compressor (Schulz, Brazil; pressure = 25 lbf/in2; power = 180 W; air flow = 105 mL min-1). After inoculation, 
the plants remained in a moist chamber for 60 h, in order to favor the bacterium development.  

After the most effective EPS concentration was established (1.5 mg mL-1), the time interval between plant 
treatment and inoculation was evaluated, being investigated the intervals of 3 and 7 days. Two experiments were 
conducted in greenhouse, under different environmental conditions: the average temperature of the first 
experiment was 28 ± 2 oC, whereas in the second, it was 19.8 ± 1 oC. All plants were treated and inoculated as 
described previously, and all experiments were set up under a completely randomized design, with seven 
replications per treatment, where a pot containing two plants represented a repetition. The assessment of disease 
severity was performed 15 days after the inoculation, with the aid of a diagrammatic scale for bacterial spot 
described by Mello et al. (1997). For these experiments, distilled water and the commercially available resistance 
inducer, Acibenzolar-S-Methyl (ASM), 0.05 mg mL-1, were used as negative and positive control, respectively. 
ASM was obtained from the commercial product Bion® (Syngenta Proteção de Cultivos Ltda., Brazil).  

2.4 Determination of Antibiotic Activity 

The EPS were prepared and incorporated into NA culture medium (1.5 mg mL-1). The mixture was placed in 8 
cm Petri dishes, and 100 µL of the bacterial suspension (0.1 OD600nm, diluted to 1/1000) pipetted over the surface 
and spread with the aid of a Drigalski spatula. NA without EPS was used as control. The plates were incubated 
(25 ± 1 oC, 48 h) and the evaluation performed counting the number of colony-forming units (CFU) (adapted 
from Luiz et al., 2012).  

An antibiogram bioassay was also performed. For this, 50 µL of a bacterial suspension (0.3 OD600nm, diluted to 
1/1000) were spread in NA plates, and left drying. Then, paper discs (5 mm diameter) were soaked with 10 µL of 
a suspension containing EPS (10 mg mL-1), distilled water or the antibiotic oxytetracycline (10 mg mL-1). Five 
replications were made for each treatment, where a replication was represented by a single plate containing four 
disks. The plates were incubated at 25 ± 1 oC for 48 h and the evaluation performed by analyzing the formation 
of a bacterial growth inhibition halo.  

2.5 Biochemical Analyses 

EPS (1.5 mg mL-1), ASM (0.05 mg mL-1) or distilled water (control) were applied on tomato plants with five true 
leaves. At the 3th day after application, the inoculation was performed with bacterial suspension of X. gardneri 
(OD 0.6; 600 nm). Leaf samples were collected at 3, 5 and 7 days after spraying the treatments. The second, 
third and fourth leaves were sampled. Five replications for each treatment were made. The collected samples 
were stored in transparent plastic bags, put in contact with liquid nitrogen, and subsequently stored in 
ultra-freezer (-80 °C), until processing time. The samples were processed for evaluation of spectrophotometric 
profile, quantification of total phenolic compounds and flavonoids, identification of phenolic compounds 
through HPLC, as well as for the determination of enzymatic activity of phenylalanine ammonia-lyase (PAL), 
glutathione reductase (GR) and lipoxygenase (LOX).  
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2.5.1 Spectrophotometric Profile, Quantification of Total Phenolic Compounds and Flavonoids and Identification 
of Phenolic Compounds through HPLC 

For the spectrophotometric profile, leaf samples (250 mg) were homogenized in 5 mL ethanol-toluene (1:1; v/v), 
with the aid of a mortar for 3 min, and left standing for 15 min. The extracts were diluted in ethanol-toluene (1:5; 
v/v) and the absorbance scanned spectrophotometrically (250 to 750 nm). A scan was performed for each sample 
and the results were expressed by the mean absorbance values of three replications. 

In order to quantification of total phenolic compounds, flavonoids and identification of phenolic compounds 
through HPLC, 200 mg of the foliar tissue of each sample were crushed in a porcelain pestle with liquid nitrogen, 
and homogenized with 3 mL of 80% acidified methanol (methanol: HCl = 80:1, v/v). The resulting mixture was 
incubated in dark for 1 h, at room temperature, and subsequently centrifuged (3000 g, 5 min), recovering the 
supernatant for the subsequent analysis.  

The phenolic compounds were performed according of McCue et al. (2000), with modifications. Firstly, 0.5 mL 
of the obtained extract was mixed with 0.5 mL of methanol (95%). Then, 1 mL of ethanol (95%), 1 mL of 
distilled water and 0.5 mL of Folin-Ciocalteau were added to this mixture. After 5 min, 1 mL of Na2CO3 (5%) 
was added, and the sample was incubated in the dark for another 1 h. The absorbance of the final solution was 
measured at 725 nm using a spectrophotometer and the quantification of phenolic compounds calculated based 
on a gallic acid standard curve (0.0-100 μg). The results were expressed in μg of gallic acid equivalents per gram 
of fresh weight (μg EAG·g·FW-1).  

For the flavonoid quantification, 0.5 mL of the crude extract was added with 2.5 mL of ethanol (99%) and 0.5 
mL of methanol solution of aluminum chloride (2%), and left 1 h in darkness. The absorbance was measured at 
420 nm and flavonoid content was expressed in μg of quercetin equivalents per g of fresh weight (μg 
EQ·g·FW-1).  

For the identification of phenolic compounds through HPLC, aliquots (10 µL) of the crude extract were injected 
into liquid chromatography equipment (Thermo Scientific Dionex UltiMate 3000) equipped with a reverse phase 
column (C18 reverse phase; Phenomenex LC-18, 250 mm × 4.6 mm, 5 μm Ø inner; 40 °C) and a 
spectrophotometric detector UV-visible (λ = 280 nm). A solution of acidified water (pH 3.0) and methanol PA 
(85:15 v/v), in a flow of 1 mL min-1, was used as mobile phase. The identification of the compounds of interest 
was performed through the comparison between the samples retention times with the retention times of standard 
compounds (ascorbic acid, ellagic acid, gallic acid, epicatechin, gallocatechin, caffeic acid, rutin). The 
quantification of the phenolic acids was performed using the standard curves of the major compound (ascorbic 
acid). The results were expressed in µg per g of fresh weight (μg·g·FW-1) and refer to the average of three 
consecutive injections for each sample (n = 3). 

2.5.2 Determination of Phenylalanine Ammonia-lyase Activity 

Sampled leaf tissue (100 mg) was homogenized in sodium borate buffer (25 mM, pH 8.8) containing ethylene 
diamine tetra-acetic acid (EDTA, 1 mM) and polyvinylpyrrolidone (PVP, 0.5%) for determining phenylalanine 
ammonia-lyase activity. The obtained solution was centrifuged (20,000 g, 30 min, 4 °C) and the supernatant 
(protein extract) recovered. The enzymatic activity was determined according to Falcón et al. (2008), with 
modifications. Fifty mM of phenylalanine was added to 100 mM sodium borate buffer (pH 8.8). Then, a total of 
250 μL of protein extract was added to 250 μL to the previous mixture, and incubated at 40 °C for 1 h. The 
reaction was interrupted by the addition of 200 μL of 5 N HCl and ice bath for 5 min. Subsequently, 300 μL of 
distilled water were added, and the absorbance of the final solution was measured at 290 nm. The results were 
expressed in nmol of trans-cinnamic acid formed per mg of protein per minute of reaction (nmol trans-cinnamic 
acid min-1·mg protein).  

2.5.3 Glutathione Reductase and Lipoxygenase Activity 

Leaf samples (100 mg) were macerated in liquid nitrogen, and added 1.5 mL of Tris-HCl buffer (50 mM) with 
CaCl2 (20 mM), pH 8.0. The resultant extract was centrifuged (5.500 g, 10 min, 4 °C), and the supernatant 
recovered. The glutathione reductase (GR) activity was determined according to the method described by 
Calrberg e Mannervick (1985) while lipoxygenase activity (LOX) of linoleic acid was determined according to 
the method described by Axelrod et al. (1981).  

The GR activity was determined by adding 50 μL of the obtained extract to 250 µL of reaction buffer (Tris-HCl 
buffer; 0.10 M, pH 7.5), magnesium chloride (0.3 mM), glutathione oxidized (GSSG; 1.0 mM), and NADPH 
(0.20 mM). The decrease in the absorbance was measured over the first minute of the reaction (340 nm, 28 °C) 
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After verified the best concentration of EPS against bacterial spot in tomato plants, an assay was performed to 
determine the best time interval between the application of the treatments and the inoculation with X. gardneri (3 
or 7 day-interval) (Table 1). It was observed an interaction between the variables in both experiments. The EPS 
(1.5 mg mL-1) controlled the disease when applied 3 days before the inoculation of the pathogen. However, this 
efficiency was reduced when a 7 day interval was used. Furthermore, it was observed that the ASM provided 
higher disease control independent of time interval between the application of the product and the pathogen 
inoculation, in both experiments. 

The EPS did not inhibit the in vitro growth of X. gardneri (Table 2). In the assays where EPS were incorporated 
to the culture medium (NA), no significant difference was observed in the number of colonies of X. gardneri, 
compared to control. This result was further confirmed by the disk diffusion test (antibiogram), which showed 
that the EPS did not reduce the growth of X. gardneri. An inhibition halo (1 cm) only appeared in the bactericide 
(tetracycline) used as control. 

 

 
Figure 2. Bacterial leaf spot severity in tomato plants treated with the EPS of Lactobacillus plantarum (0; 0.5; 

1.5 and 3.0 mg mL-1) 3 days before the inoculation with Xanthomonas gardneri. The assessment of disease 
severity was performed at 9 and 18 days after inoculation (1st and 2nd assessment). There was a significant effect 

of doses according to the F-test (p < 0.05). Bars represent the mean ± standard deviation 

 

Table 1. Bacterial leaf spot severity in tomato plants submitted to different time intervals (3 and 7 days) between 
the application of the EPS of Lactobacillus plantarum (EPS Lac), Acibenzolar-S-Methyl (ASM) or distilled 
water, and the inoculation with Xanthomonas gardneri. Assessments performed at 15 days after inoculation 

 

Severity (%) 

Experiment 1 Experiment 2 

3 day 7 day 3 day 7 day 

Water 40.23 ± 2.91 Aa 40.62 ± 6.63 Aa 21.58 ± 2.01 Aa 20.00 ± 1.26 Aa 

EPS Lac 19.76 ± 5.19 Bb 35.69 ± 6.31 Aa 13.67 ± 2.16 Bb 18.75 ± 3.06 Aa 

ASM 7.14 ± 4.06 Ca 6.71 ± 4.23 Ba 0.85 ± 0.53 Ca 0.71 ± 0.33 Ba 

Note. Means followed by the same capital letters in the column and lower case letters in the line, do not differ 
statistically by the Tukey test (p < 0.05). 

 

 

 

 

 

 

 

● y = 5.6803x2 – 22.354x + 26.724   R2 = 0.92 

○ y = 4.2485x2 – 18.239x + 30.66    R2 = 0.89 
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other studies against human bacteria (Li et al., 2014; Roselló et al., 2013). Therefore, it is suggested that the EPS 
could have acted against the pathogen through the activation of resistance mechanisms in tomato plants, even 
with the plant protection occurring in a short interval between EPS application and the inoculation of the plants 
(3 days), and the lacking of bacterial spot control when applied 7 days before the treatment.  

The possible use of natural compounds, such as EPS of L. plantarum, for the control of diseases in plants, meets 
the growing demand for healthier foods. The demand for and sale of organic food commodities have increased 
approximately twenty-fold in recent years (APEDA, 2012). Due to this demand, the conventional disease control 
measures in organic production need to be combined or replaced with effective natural compounds to increased 
resistance in plants against pathogens.  

The EPS capacity to control the bacterial spot of tomato may be related to the plant’s ability in recognize 
molecules from microorganisms (MAMP’s). This recognition is known to occur by the receptors located on the 
cell membrane surface or inside the cell, which will trigger a signal transduction cascade, leading to the 
activation of defense mechanisms. This type of defense allows plants to respond quickly and efficiently to 
several pathogens (Zhang & Zhou, 2010, Shang et al., 2007).  

The eliciting effects of bacterial EPS in different pathosystems were previously documented. In barley plants, 
Antoniazzi et al. (2008) observed a reduction of 75% in the disease severity caused by Bipolaris sorokiniana. 
This value was very similar to those observed to the fungicide application. In that study, the control of the 
disease was attributed to the increase of 1,3-glucanase activities and the increase of phenolic compound levels in 
plants treated with EPS.  

In coffee plants, the application of EPS extracted from Xanthomonas spp. (xanthan gum) and commercial 
xanthan gum were able to induce plant resistance against Hemileia vastatrix, reducing the disease severity by 
92% (Guzzo et al., 1996). These effects were also observed in studies with tomato plants against X. gardneri 
(Luiz et al., 2015) and in studies with EPS extracted from X. campestris, which induced resistance in wheat 
plants against Bipolaris bicolor, Bipolaris sorokiniana, and Drechslera tritici-repentis (Bach, 1997; Bach et al., 
2003). In the present study, the activation of defense mechanisms have been evidenced by the changes in 
absorbance rates of leaf extract, concentration of phenolics, such as ascorbic and ellagic acid, and also in PAL 
and GR activities of plants treated with EPS or ASM.  

In general, the changes observed in the range of 285-325 nm are related to the class of phenolic compounds, 
indicating a change in the defense mechanisms in treated plants, especially after the inoculation with the 
pathogen. Although no changes were observed in the total phenolic content using the reagent Folin-Ciocalteu, 
probably due the low method sensibility, with the use of a more sensitive technique (HPLC), differences in the 
concentration of phenolics were found, such as ascorbic and ellagic acid. Phenolic compounds have a great 
importance in the defense of plants, once after elicitation, several phenolic compounds are oxidized and 
transformed into antimicrobial compounds, such as quinones (Vaughn & Duke, 1984). In this sense, the presence 
of ascorbic acid and ellagic acid ensures a reduction in the oxidative damage within the cell, once they act as 
non-enzymatic antioxidants. Meanwhile, the biosynthesis and regulation of these compounds are directly 
involved with the activity of phenylalanine ammonia lyase (PAL).  

Increased PAL activity is often associated with an increased phenylpropanoid concentration, which would lead to 
an association with phenolic compound accumulation, since phenylalanine and phenols are both produced by 
shikimic acid pathway. This enzyme acts in the conversion of L-phenylalanine to trans-cinnamic acid, resulting 
in several phenolic compounds, such as phytoalexins, flavonoids, and lignin, which confers resistance to the cell 
wall and act as a signal to the plant defense responses against biotic and abiotic stresses (Gerasimova et al., 2005; 
Latha et al., 2009).  

In this study, EPS and ASM increased PAL activity in inoculated plants. However, plants treated with EPS 
showed this increase later (4 days after challenge or 7 dat), compared to those plants treated with ASM, in which 
the increase in activity PAL was observed 2 days after the inoculation (5 dat). Similar trend was observed for the 
activity of glutathione reductase (GR), where plants treated with the commercial inducer (ASM) showed a faster 
increase of the enzymatic activity in response to the pathogen when compared to EPS. This may be related to the 
difference observed in the disease control level provided by the products: ASM activated FAL and GR earlier 
and more intensely controlled the disease compared to EPS (around 90% against 72%).  

GR is an important part of the antioxidant system. In general, the whole set that involves glutathione molecules 
in plants is related to the tolerance increase to oxidative stress (Sharma, 2012; Sharma & Dubey, 2007). Ge et al. 
(2013) for example, reported that in melon cultivars resistant to Colletotrichum lagenarium, enzymatic 
antioxidants such as glutathione reductase and ascorbate peroxidase, and non-enzymatic molecules such as 
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glutathione (reduced form) and ascorbic acid, are widely expressed during the defense of the plant. These 
compounds, along with PR proteins are essential for the defense of melon seedlings, allowing an efficient 
protection against the pathogen infection. Besides, the glutathione and ascorbic acid are directly involved in the 
ascorbate-glutathione cycle reactions, and are crucial for the preservation of many metabolic processes of the 
cell (Drazkiewicz et al., 2003).  

The application of EPS in tomato plants also triggered an increase the LOX activity, unlike the commercial 
inducer. LOX is part of another metabolic pathway, the pathway of jasmonic acid (JA). JA is a phytohormone 
directly involved in the plant defense responses against stress, and used as a stress indicator. Choudhary (2011) 
and Ferraz et al. (2014) reported that the application of biotic inducers able to stimulate LOX activity, 
contributed to the resistance of tomato plants against Fusarium sp., and also in soybean plants against 
Macrophomina phaseolina. In both cases, the disease control was attributed to the activation of JA pathway. In 
this sense, the control of tomato bacterial spot provided by the application of EPS could be the result of the 
activation of more than one metabolic pathway, unlike the ASM, compound similar to salicylic acid, which 
primarily triggers those metabolites from the phenylpropanoid pathway (Oostendorp et al., 2001).  

It is well known that jasmonic and salicylic acids are usually referred as antagonistic hormones acting against 
different kinds of pathogens i.e., the plant starts to increase the levels of salicylic acid (against biotrophic 
pathogens) or jasmonate (against necrotrophic pathogens), promoting specific defense responses, focused on the 
type of pathogen detected. Though, in some cases, these hormones can occur and act synergistically, e.g., when 
present in low concentrations in healthy tissues, performing nonspecific immune response (Fu & Dong, 2013). 
For example, Davidsson et al. (2013) described that the simultaneous activation of salicylate and jasmonate 
pathways appear to be crucial for the attenuation of virulence of Pectobacterium spp. In our study, considering 
that Xanthomonas is a hemibiotrophic pathogen, initially forming an association with living cells of the host, 
thereafter killing the plant cell to use the nutrients from this process (Chan & Goodwin, 1999), the use of an 
inducer capable of stimulate both pathways, as we observed for EPS, can be an attractive way for control this 
bacterial disease.  

Also, the obtained results suggest that EPS is able to induce resistance on tomato plants by pre-conditioning 
them against the pathogen, because plants previously treated with the biopolymer had increased defense 
mechanisms only after bacterial challenge (priming effect) (Cools & Ishii, 2002; Conrath et al., 2002). In a 
different way, we observed that the application of ASM increased the content of phenolic acids in tomato plants 
before the arrival of the pathogen, which could generate costs for the plant at the end of the process. Some 
studies indicated that ASM, depending of the dose, number of applications, plant growth stage and pathogen 
pressure, may cause a reduction in the yield, and a delaying on fruit maturity, indicating the efforts of the cells to 
increase proteins related to defense rather than those related to cell proliferation (Suzuki et al., 2006; Walters et 
al., 2013).  

5 Conclusions 

The findings indicate that the EPS of L. plantarum were able to decrease the severity of tomato bacterial spot by 
pre-conditioning the plant, and by increasing the compounds and enzymes related to the plant defense from 
different pathways. The results provide a basis for further studies in a way that the Lactobacillus EPS can be 
used in agriculture in a few years as an option for the disease control, especially in organic farming. 
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